Age-related variations of needles and twigs in nutrient, nonstructural carbon and isotope composition along altitudinal gradients

TANG Duo-teng¹ https://orcid.org/0000-0002-0327-4379; e-mail: tangduoteng@imde.ac.cn

PENG Guo-quan² https://orcid.org/0000-0001-7645-6723; e-mail: 103963787@qq.com

ZHANG Sheng^{1*} ^(D) https://orcid.org/0000-0001-5322-9704; ^[M] e-mail: shengzhang@scu.edu.cn

*Corresponding author

1 College of Life Science, Sichuan University, Chengdu 610065, China

2 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Citation: Tang GT, Peng GQ, Zhang S (2019) Age-related variations of needles and twigs in nutrient, nonstructural carbon and isotope composition along altitudinal gradients. Journal of Mountain Science 16(7). https://doi.org/10.1007/s11629-018-5344-0

© Science Press, Institute of Mountain Hazards and Environment, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract: The biochemical and physiological properties of alpine woody plants responding to elevation are associated with needles and twigs age. However, the interactions with elevation were not well studied. In this study, we investigated age-related (current, one-year and two-year old) functional traits of Abies faxoniana in needles and twigs with elevation (2500 m, 2750 m, 3000 m, 3250 m, and 3500 m a.s.l) at the eastern edge of the Tibetan Plateau. The macro-elements (C, N, P, K, Ca, and Mg), nonstructural carbons (soluble sugar, sucrose, and starch) and isotope composition (δ^{13} C) were measured in needles and twigs of adult A. faxoniana trees (breast height diameter about 30 cm). There were significant age, elevation and their interaction effects on these traits (except for δ^{13} C). Compared with twoyear-old needles and twigs, the current and one-yearold tissues possessed higher concentrations of P and K, lower Ca concentrations, as well as a lower δ^{13} C values and C: P and N: P ratios in needles. The current-year twigs generally had higher sucrose concentration and sucrose: starch ratio than the old ones. This study suggested that more nutrients were invested to young needles and twigs to cope with

Received: 16-Dec-2018 Revised: 16-Feb-2019 Accepted: 17-Feb-2019 elevation for A. faxoniana than the old ones.

Keywords: Fir; Elevation; Nutrient; Age; Needle and twig; Sub-alpine

Introduction

Needles and twigs are important tissues for assimilation and transportation for conifers. Lifespan of needles and twigs is a comprehensive trait that reflects the adaptive strategy to the environment for plants to achieve maximum photosynthetic production and maintain efficient nutrient utilization (Eckstein et al. 1999). It has been reported that plant tissues show kinds of physiological changes associated with age. Comparing with juvenile needles, the mature needles of Pinus koraiensis accumulated more nonstructural carbon (NSC) due to a higher photosynthetic capacity (Yan et al. 2012). However, younger tissues possessed higher nutrient concentrations than the old, e.g. nitrogen (N) and phosphorus (P), particular for coniferous and broad-leaved species (Escudero and Mediavilla **2003**; Li et al. **2009**a). Leaf age also had an impact on δ^{13} C values. Previous study has found a higher value of δ^{13} C in younger leaves than in older leaves (Vitoria et al. **2016**). These age-related variations of plant functional traits may be a reflection of growth adapting strategy to resources utilization (Tegischer et al. **2002**). Although these plant functional traits associated with lifespan had been found to show a similar tendency within or across plant species, environmental variations will shift their relationships (Day et al. **2001**).

Declining temperature with an increasing elevation in the alpine regions has dramatic and multifactorial impacts on plant functional traits (Fajardo et al. 2017). For example, the pool size of NSC in plants, reflecting the balance between carbon gain by photosynthesis and demand by growth and metabolism, closely related to elevation (Garcia Lino et al. 2017; Zhu et al. 2012). Foliar N and P concentrations and δ^{13} C value generally increased with elevation (Fajardo et al. 2017; Hultine and Marshall 2000). Previous studies figured out that lifespan have a pronounced effect on the variation of plant functional traits along elevation. The younger leaves of Rhododendron agglutinatum showed more obvious changes than the old ones (Wang et al. 2017). Moreover, Peng et al. (2012) has reported that leaf characteristics showed significant differences with elevation between juvenile and mature trees of Abies faxoniana. However, such scarce knowledge was adverse to comprehend the plant functional traits and their correlation across the lifespan along elevation in subalpine regions (Li et al. 2009; Wang et al. 2017; Huang et al. 2018). Understanding these variations can reveal the plant adaptive strategies to environmental variation, and contribute to predict their responses to future climate changes.

Abies faxoniana Rehder & E.H, an evergreen subalpine conifer, is widely distributed in the eastern margin of Tibetan Plateau (Taylor and Qin 1988). It has been shown that the growth, spatial

pattern and population structure of A. faxoniana are closely related to elevation. Zhao et al. (2015) has found that there is a unimodal pattern of plant functional traits along elevation, including stomata parameters, specific leaf area and C: N ratio of A. faxoniana. However, we still do not know whether there are age-related changes in A. faxoniana along elevation or whether young tissues are more sensitive to elevation. In this study, nutrient concentrations, NSC concentrations, and $\delta^{13}C$ in the needles and twigs of A. faxoniana were measured to reveal the changes of age-related functional traits from 2500 m to 3500 m a.s.l. We will answer the following two questions: (1) are there distinct differences in plant traits among age cohorts? (2) do these age-related characters affect by elevation?

1 Materials and Methods

1.1 Study site

This study was conducted in the Wanglang Natural Reserve (32°49'-33°02'N, 103°55'-104°10'E) at the eastern edge of the Tibetan Plateau, Sichuan Province of China. The natural elevation range of distribution of A. faxoniana was from 2500 m to 3500 m in Wanglang Natural Reserve. Five elevations were selected with an interval of 250 m (2500 m, 2750 m, 3000 m, 3250 m, and 3500 m, respectively) for tree stands, as shown in Table 1 and Figure 1. The mean annual air temperature (MAT) was from 5.04°C to 1.52°C, which measured by TP-2200usb loggers (digital sensor of CMOSens, Beijing Anfu electronic technique Co., China) from May of 2008 to September of 2009. Both rainfall and tree growth season was from April to October every year (Xu et al. 2013). The forest soils of the study sites were mountain brown soils. The main soil nutrients are listed in Table 2.

1.2 Field sampling

Fable 1 Description of the sample stands along an altitudinal gradient in Wanglang Natural Reserve

Sample stands	E1	E2	E3	E4	E5
Elevation (m a.s.l.)	2500 ± 50	2750 ± 50	3000±50	3250 ± 50	3500 ± 50
Longitude	104°05' E	104°02' E	104°01' E	104°01' E	104°01' E
Latitude	32°58' N	32°59' N	32°59' N	32°59' N	32°59' N
Slope (°)	37	38	37	30	40
Mean annual temperature (°C)	5.04±0.36	3.91±0.31	2.87±0.29	2.13 ± 0.25	1.52 ± 0.23

Figure 1 Distribution of stands in Wanglang Natural Reserve and the morphology of the current-year, one-year and two-year old needles and twigs of *A. faxoniana*.

Fifteen stands were selected from 2500 m to 3500 m a.s.l (three sub-stands for each elevation). For each elevation, nine *A. faxoniana* adult trees with breast height diameter of 30.0 ± 2.00 cm were selected for sample collection in early September, 2008. The three sub-stands of each elevation were at least 200 m away and the sampled trees were more than 25 m away from each other within a sub-stand. The trees from each site were according to the following criterions: (1) the *A. faxoniana* forest coverage ranges from 70% to 90%, and the tree height reaches 30 m within the study area; (2) were away from the edge of the forest and there was little evidence of human disturbance; (3) were at a similar slope and aspect.

For each individual tree, a one-meter long and fully expanded twig was identified and cut by a telescoping pole. The sun-exposed tissues (needles and twigs) of current year, 1-year-old and 2-yearold were collected, respectively (Figure 1). Afterwards, the needles and twigs were bagged and labeled, and then stored in a cooler for transportation. To eliminate the effects of irradiance and tissue temperature on diurnal NSC concentrations, sample collection was carried out between 10:00 and 14:00 (Li et al. 2008). All of the plant samples were dried at 105°C for 40 min and then at 75°C to constant weight in a force-air stove. The selected samples were ground into fine powder for further analyses. At the downslope direction of the sampled trees, forest soils were collected up to a depth of 20 cm using a soil-corer. Nine soil samples were naturally dried at the room temperature.

1.3 Chemical analysis

1.3.1 Determination of nutrients in plant and soil

Two hundred milligram of dry powder of plants or soils was used for nutrient determination. The carbon (C) concentration was determined using a rapid dichromate oxidation technique (Nelson and Sommers 1982). The concentrations of N and P were determined by the semi-micro Kjeldahl method and induced plasma emission spectroscopy, following with Mitchell (1998), Lotscher and Hay (1997), respectively. The concentrations of calcium (Ca), potassium (K), and magnesium (Mg) of plant needles and twigs were analyzed by atomic absorption spectroscopy (Agilent 710 ICP-OES) after HNO₃ digestion.

1.3.2 Non-structural carbohydrates (NSCs)

NSCs defined as the sum of soluble sugar and starch in this study. The extraction process of NSC was according to Hoch et al. (2003). The resolution of total soluble sugar was detected colorimetrically at 625 nm following the anthrone-sulfuric acid method (Yemm and Willis 1954). The sucrose

Table 2 Soil nutrient concentrations of A. faxoniana along an altitudinal gradient

Stands (m)	C (g·kg ⁻¹)	N (g·kg ⁻¹)	P (g⋅kg ⁻¹)	K (g·kg-1)	C: N	C: P	N: P
2500	87.92±7.64a	6.53±0.43ab	$0.83 \pm 0.07 b$	15.23±0.68ab	13.32±0.38a	110.80±12.77a	8.25±0.85ab
2750	132.76±14.94a	9.17±0.82a	$0.86 \pm 0.05 b$	10.58±0.76c	14.37±0.93a	151.82±11.90a	10.64±0.79a
3000	116.20±14.01a	8.03±0.82ab	1.14±0.08a	17.73±1.51a	14.33±0.33a	104.32±11.06a	7.20±0.66b
3250	109.24±17.18a	7.15±0.83ab	$0.86 \pm 0.05 b$	13.91±0.77bc	14.86±0.61a	128.36±17.22a	8.43±0.88ab
3500	91.04±9.03a	6.13±0.39b	$0.87 \pm 0.05 b$	15.93±0.54ab	14.66±0.73a	107.77±13.79a	7.19±0.63b
P:Fa	0.115	0.026	0.007	0.000	0.490	0.097	0.020

Note: *P: Fa*, altitude effect. Values followed by the different letters in the same column are significantly different at the p < 0.05 level according to Tukey's test. Each value is the mean±SE (n=9).

concentration was detected colorimetrically at 480 nm following the resorcinol method with little modification (Murata et al. 1968). Residues left in the tubes after extraction were used to starch determination (Green et al. 2010).

1.3.3 Determination of carbon isotope composition

The determination of δ^{13} C values in needle and twig samples followed Hubick et al. (1986). The ¹³C: ¹²C ratio was analyzed by Isotope Ratio Mass Spectrometer (DELTA V Advantage; Thermo Fisher Scientific, Inc., USA). The δ^{13} C value was expressed relative to the standard Pee Dee Belemnite (PDB) and expressed as:

 $\delta^{13} \mathcal{C}(\%_0) = \left[\left(R_{\text{sample}} / R_{\text{standard}} \right) - 1 \right] \times 1000,$

where R_{sample} is the ¹³C: ¹²C ratio of the samples and R_{standard} is that of the standard material.

1.4 Statistical analyses

To detect the difference within these functional traits (the concentrations of C, N, P, K, Ca and Mg and the ratios of C: N, C: P, and N: P) and NSCs (the soluble sugar, sucrose, and starch) concentrations and the ratio of sucrose: starch among samples, two-factor ANOVA performed with age and elevation as fixed factors. One-way ANOVA was applied to analyze the variations in soil nutrients along an altitudinal gradient. Further, Tukey's HSD tests were carried out as post hoc tests to clarify the significances. Pearson's correlation coefficients were calculated to express the relationships among variables. In addition, the relationships between elevations and plant traits were investigated by regression analyses with Origin 8.5. All statistical analyses were conducted with SPSS 16.0 for windows statistical software package (SPSS Inc., Chicago, IL, USA).

2 Results

2.1 Variation of nutrient concentrations in soils

As shown in Table 2, the concentrations of soil N, P, K, and N: P ratio showed significant differences among elevations (p<0.05). There was a higher N concentration and N: P ratio at 2750 m than 3500 m, and a higher P concentration at 3000 m than that of at other elevations. Potassium concentration showed a lowest value at 2750 m (10.58 g·kg⁻¹). However, C, C: N ratio and C: P ratio showed less variation among elevations.

2.2 Variation of nutrients, NSCs and δ¹³C among ages

As shown in Tables 3 and 4, the effects of age, elevation and their interaction on C, N, P, K, Ca, Mg, and NSCs concentrations were significant (p<0.05) in both needles and twigs of *A. faxoniana*. The δ^{13} C values were significantly affected by age and elevation but not by their interaction either in needles or in twigs (Figure 2). Compared among three age cohorts, the current-year needles and twigs had the highest P and K

Figure 2 Variations of δ^{13} C in *A. faxoniana* needles (a) and twigs (b) along an altitudinal gradient. *P: Fy*, age effect; *P: Fa*, altitude effect; *P: Fy×a*, age and altitude interaction effect. The lower cases indicates difference in needles or twigs with the same age along an altitudinal gradient, capitals indicates difference in the same elevation among different ages at the *p* <0.05 level according to Tukey's test. Each value is the mean ± SE (*n*=9).

	N: P	10.14±0.16fg	9.22±0.29h	9.50±0.20gh	9.87±0.24fgh	10.57±0.50f	12.77±0.15e	13.12±0.44de	13.07±0.30de	14.33±0.08b	13.31±0.37cde	13.00±0.11de	13.71±0.18bcd	14.02±0.09bc	15.31±0.14a	15.31±0.17a	0.000	0.000	0.000
	C: P	441.48±10.26g	389.79±8.42h	402.96±10.87h	395.70±12.90h	410.12±16.24h	531.89±3.84e	533.66±11.65de	491.17±10.64f	555.83±7.06de	548.02±11.29de	562.72±5.64cd	618.31±6.63b	584.45±3.00c	626.89±5.49ab	646.79±5.16a	0.000	0.000	0.000
	C: N	43.57±0.50b	42.34±0.85bc	42.45±0.62bc	40.09±0.38f	38.80±0.29g	41.65±0.24cde	40.67±0.50ef	37.59±0.22g	38.78±0.33g	41.18±0.31cdef	43.29±0.34b	45.11±0.15a	41.67±0.40cde	40.94±0.22def	42.24±0.47bcd	0.000	0.002	0.000
	Mg (g·kg ⁻¹)	0.78±0.04cd	0.75±0.04cde	o.72±o.o2def	o.7o±o.o6defg	0.62±0.04h	0.90±0.01a	0.80±0.02bc	0.87±0.01ab	0.69±0.01efgh	0.63±0.01gh	o.87±0.00ab	0.65±0.02fgh	o.67±0.01efgh	0.54±0.01i	o.51±0.01i	0.000	0.000	0.000
ldinal gradient	Ca (g·kg ⁻¹)	4.36±0.04fh	3.72±0.06i	4.14±0.09h	3.19±0.15j	2.59±0.06k	10.60±0.27b	7.05±0.05e	7.61±0.07d	5.88±0.09f	$5.41 \pm 0.10g$	15.03±0.09a	7.20±0.07e	9.34±0.08c	7.01±0.04e	6.15±0.03f	0.000	0.000	0.000
along an altitu	K (g·kg ⁻¹)	7.52±0.10b	9.45±0.26a	7.19±0.12c	7.48±0.19bc	7.17±0.13c	5.41±0.04e	6.26±0.03d	3.66±0.08h	4.83±0.00f	4.25±0.04h	4.77±0.05f	4.71±0.04f	3.52±0.04h	4.26±0.04g	4.37±0.04g	0.000	0.000	0.000
e of A. faxoniana	P (g·kg ⁻¹)	1.16±0.03b	1.34±0.03a	1.29±0.04a	1. 33±0.04a	1.29±0.05a	o.97±o.ood	0.98±0.02d	1.07±0.02c	0.97±0.01d	0.97±0.02d	0.93±0.01de	0.86±0.01efg	o.90±0.00def	0.84±0.01fg	0.82±0.00g	0.000	0.014	0.000
utrients in needle	N (g·kg ⁻¹)	11.71±0.17g	12.30±0.25ef	12.25±0.20ef	13.08±0.10b	13.62±0.10a	12.42±0.12ef	12.84±0.16bcd	13.99±0.11a	13.86±0.07a	12.93±0.07bc	12.08±0.09fg	11.79±0.09g	12.63±0.12cde	12.86±0.05bcd	12.51±0.14de	0.000	0.000	0.000
concentration of n	C (g·kg ⁻¹)	510.15±4.16f	520.37±2.30cde	519.78±1.21de	524.58±1.67bcde	528.42±1.08bc	517.36±3.26e	522.21±1.47cde	525.77±1.08bcd	537.60±4.30a	532.66±3.43ab	522.75±1.11cde	531.63±2.40ab	526.36±2.60bcd	526.59±1.47bcd	<u>5</u> 28.19±1.99bc	0.000	0.000	0.007
Table 3 The	Age Elevation (m)	2500	ज़ 2750	3000 3000	150 3250	Cur. 3500	2500	년 2750	3000 1-0	ed 3250	1-7 3500	2500	1d 2750	1-0 1-0	3250 Vea	ર્સ 3500	P:Fy	P:Fa	P:Fy×a

÷ ÷ 1:11 . ÷ Ę h Ē

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	e E	4 ILE ULA			D (a.]za-1)	ווא מווועטווע ע (ה,ףה-ו)	u צו מחובווו Ca (م.ا <i>ل</i> م-۱)	Μα (α.]za-1)	N÷	٥٠	N. D
502.48±3.31c 10.76±0.12c 2.13±0.050 12.24±0.13a 4.44±0.24ft 1.18±0.050 4.67±0.051 2.565±6.34e 5.65±6.34e 5.65±6.24c 5.44±0.13 530.64±23D 10.36±0.05T 1.81±0.05C 8.87±0.05C 8.87±0.05C 8.87±0.05B 8.87±0.05B 5.7±0.07E 5.7±0.07E 513.74±2.5D 054 1.42±0.01d 9.11±0.08d 4.45±0.05B 3.45±0.05B 5.7±0.07E 5.7±0.07E 501.09±11.05c 9.5±0.01d 9.11±0.08d 4.5±0.03B 3.2±0.053B 3.45±0.053B 5.7±0.07E 501.09±11.05c 0.37±0.07E 1.17±0.006 5.7±0.03E 1.3±0.053B 3.45±0.056B 5.7±0.02E	502.442.83U 10.75±0.12c 2.13±0.06a 12.24±0.13a 4.41±0.261d 1.18±0.03dd 4.57±0.251g 5.355±0.271d 5.95±0.271d 5.91±0.167 5.71±0.042f 5.71±0.042d 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.91±0.162 5.71±0.042 5.91±0.162 5.71±0.042 5.91±0.162 5.71±0.042 5.91±0.176 5.71±0.043 5.51±0.052 5.91±0.176 5.71±0.042 5.91±0.066 5.71±0.042 5.91±0.075 5.71±0.075 5.71±0.075 5.71±0.075 5.71±0.075 5.71±0.075 5.71±0.075 5.71±0.075 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 5.71±0.076 <td>Elevation</td> <td>(m)</td> <td>C (g·kg⁻¹)</td> <td>N (g·Kg⁻¹)</td> <td>r (g·kg⁻¹)</td> <td>K (g·kg⁻¹)</td> <td>Ca (g·Kg⁻¹)</td> <td>Mg (g·Kg⁻¹)</td> <td>C N</td> <td>с. Р</td> <td>N: P</td>	Elevation	(m)	C (g·kg ⁻¹)	N (g·Kg ⁻¹)	r (g·kg ⁻¹)	K (g·kg ⁻¹)	Ca (g·Kg ⁻¹)	Mg (g·Kg ⁻¹)	C N	с. Р	N: P
515.044:2.80b10.46±0.28c1.87±0.04b11.65±0.13b $3.34\pm0.10h$ 1.25±0.03bc49.26±1.44de $274.81\pm7.13d$ $5.58\pm0.27b$ 530.644:2.53a10.75±0.05c1.81±0.05bc $8.8\pm0.10d6$ $1.12\pm0.05db$ $39.37\pm1.20i$ $293.44\pm9.87cd$ $5.94\pm0.17b$ 513.744:2.53b13.05±0.35a1.78±0.05bc $8.8\pm0.10d6$ $4.12\pm0.10b$ $1.13\pm0.05db$ $39.37\pm0.2d6$ $5.94\pm0.17b$ 518.70±3.45b11.50±0.02b $1.78\pm0.07bc$ $9.49\pm0.16c$ $3.00\pm0.21i$ $1.12\pm0.05db$ $47.510\pm0.90g$ $505.40\pm17.61c$ $6.77\pm0.26f$ 501.85±1.08c $9.52\pm0.06de$ $1.77\pm0.01d$ $9.11\pm0.08d$ $4.55\pm0.05de$ $45.10\pm0.90g$ $39.54+0.53d$ $5.74\pm0.26f$ 501.99±1.06c $9.52\pm0.06de$ $1.47\pm0.01d$ $9.11\pm0.08d$ $4.55\pm0.05de$ $5.74\pm0.53d$ $5.74\pm0.26f$ 501.99±1.16c10.37\pm0.07c $1.17\pm0.00e$ $7.13\pm0.05f$ $1.12\pm0.01d$ $48.4\pm0.30d$ $349.41\pm5.10b$ 6.89 ± 0.038 497.43±2.78cd $1.86\pm0.06b$ $1.47\pm0.01d$ $5.73\pm0.03g$ $5.3\pm0.01d$ $42.26,0\pm0.36f$ $5.75\pm0.06f$ 497.43±2.78cd $1.86\pm0.06b$ $1.47\pm0.01d$ $5.73\pm0.03g$ $5.94\pm0.32d$ $7.95\pm0.036f$ 497.43±2.78cd $1.86\pm0.06b$ $1.47\pm0.01d$ $5.73\pm0.03g$ $5.05\pm0.03d$ $49.74\pm0.36f$ 497.43±2.78cd $1.86\pm0.06b$ $1.42\pm0.03d$ $4.14\pm0.07d$ $1.19\pm0.02d$ $42.95,0\pm1.19b$ 497.43±6.16c $0.38\pm0.00f$ $0.38\pm0.01d$ $4.78\pm0.03d$ $1.19\pm0.02d$ $42.95,0\pm1.06d$ 497.43±6.16c $0.38\pm0.00f$	515.04±280b 10.46±0.28c 1.87±0.04b 11.65±0.13b 3.34±0.10b 1.25±0.03bc 492.6±1.44de 274.81±7.13d 5.58±0.27bi 513.04±2.53a 10.75±0.05c 1.81±0.05b 8.87±0.10b 1.13±0.02db 5.93±0.36dc 5.93±4.9.687cd 5.94±0.17b 513.74±2.53a 10.75±0.05c 1.81±0.05b 8.87±0.10c 1.31±0.05dd 5.93±1.20i 5.94±0.17bi 5.94±0.27bi 5.74±0.26fg 5.74±0.26fg 5.74±0.02fg 5.74±0.07bi 5.74±0.02bi 5.74±0.007bi 5.74±0.02bi 5.74±0.02bi </td <td>2500</td> <td></td> <td>502.48±3.31c</td> <td>10.76±0.12c</td> <td>2.13±0.06a</td> <td>12.24±0.13a</td> <td>4.44±0.22def</td> <td>1.18±0.03cd</td> <td>46.70±0.25fg</td> <td>235.65±6.34e</td> <td>5.05±0.15i</td>	2500		502.48±3.31c	10.76±0.12c	2.13±0.06a	12.24±0.13a	4.44±0.22def	1.18±0.03cd	46.70±0.25fg	235.65±6.34e	5.05±0.15i
530.64±2.53a 10.75±0.05c 1.81±0.05bc 8.87±0.19de 4.12±0.10f 1.13±0.02d 49.38±0.36de 293.44±9.87cd 5.94±0.17 513.74±2.53b 13.05±0.35a 1.78±0.07bc 9.49±0.16c 3.94±0.17g 1.31±0.05ab 39.37±1.20i 288.02±9.83cd 7.31±0.438 513.74±2.53b 11.50±0.21b 1.70±0.08c 8.875±0.20e 3.00±0.21b 1.70±0.09g 305.40±17.61c 6.77±0.26i 490.99±2.06de 9.52±0.06de 1.47±0.01d 9.11±0.08d 4.65±0.05de 1.22±0.005c 346.10±3.39b 6.71±0.078 501.08±1.06c 9.52±0.05de 1.47±0.01d 9.11±0.08d 4.65±0.05de 1.22±0.005c 346.10±3.39b 6.71±0.078 501.09±1.105c 10.37±0.07c 1.47±0.01d 9.11±0.08d 4.55±0.05de 1.32±0.05de 341.92±0.26i 58.9±0.08 497.47±1.05cd 9.84±0.09b 1.41±0.01d 4.32±0.05de 1.42±0.013 8.87±0.08 8.89±0.09 7.9±0.03 497.47±1.05cd 9.3±0.05df 1.41±0.01df 1.10±0.01d 4.9±0.03df 1.19±0.03df 7.5±0.05d6 7.5±0.006	530.64±2.53a10.75±0.05c181±0.05bc8.87±0.19de4.12±0.10fg1.13±0.02dl49.38±0.36de293.44±9.87cd5.94±0.17h537.74±2.53b13.05±0.32a1.78±0.07bc9.49±0.16c3.94±0.07bl3.94±0.99g305.40±17.61c $6.77\pm0.26f$ 518.70±3.45b11.50±0.21b1.77±0.03de8.75±0.20c3.00±0.07b1.22±0.05de $45:10\pm0.99g$ 305.40±17.61c $6.77\pm0.07g$ 518.70±3.45b11.50±0.02db1.47±0.01d9.11±0.08d $4.55\pm0.05de$ $45:10\pm0.99g$ 305.40±17.61c $6.77\pm0.07g$ 50.108±1.08c8.98±0.06d9.81±0.05d1.47±0.01d9.11±0.08df $4.55\pm0.03de$ $4.51\pm0.39bf$ $6.71\pm0.07g$ 50.109±1.16c10.37±0.07c1.17±0.00e7.13±0.03gf $4.14\pm0.03df$ $4.72\pm0.03bf$ $3.94.041\pm5.10b$ $6.89\pm0.08ff$ 50.09±1.16c10.37±0.07c1.17±0.00e7.73±0.03gf $4.14\pm0.03df$ $4.14\pm0.03df$ $4.92\pm0.33df$ $7.95\pm0.036ff$ 50.05±1.56cd9.49±0.06f $4.92\pm0.03ff$ $4.92\pm0.03ff$ $7.32\pm0.03ff$ $7.92\pm0.03ff$ $7.95\pm0.036ff$ 50.15±0.05c9.09±0.07ef1.17±0.02e $7.78\pm0.03g$ $5.06\pm0.03hff$ $7.95\pm0.03ff$ $7.95\pm0.036ff$ 50.05±1.56d9.99±0.06f9.99±0.06f0.99±0.07ef $1.17\pm0.02e$ $7.58\pm0.03g$ $7.95\pm0.03ff$ $7.52\pm0.06ff$ 50.15±0.56cd9.99±0.06f9.99±0.06ff9.99±0.06ff9.99±0.03ff $7.95\pm0.03ff$ $7.55\pm0.04eff$ $7.55\pm0.06ff$ 50.05±1.56cd9.99±0.06f9.99±0.06ff $4.94\pm0.07ff$ $1.11\pm0.02de$ <td< td=""><td>2750</td><td></td><td>515.04±2.80b</td><td>10.46±0.28c</td><td>1.87±0.04b</td><td>11.65±0.13b</td><td>3.34±0.10h</td><td>1.25±0.03bc</td><td>49.26±1.44de</td><td>274.81±7.13d</td><td>5.58±0.27hi</td></td<>	2750		515.04±2.80b	10.46±0.28c	1.87±0.04b	11.65±0.13b	3.34±0.10h	1.25±0.03bc	49.26±1.44de	274.81±7.13d	5.58±0.27hi
$513.74\pm 2.53b$ $13.05\pm 0.35a$ $1.78\pm 0.07bc$ $9.49\pm 0.16c$ $3.94\pm 0.17c$ $1.31\pm 0.05db$ $39.37\pm 1.20i$ $288.02\pm 9.83cd$ $7.31\pm 0.43c$ $518.70\pm 3.45b$ $11.50\pm 0.21b$ $1.70\pm 0.08c$ $8.75\pm 0.20c$ $3.00\pm 0.21i$ $11.20\pm 0.05dc$ $45.10\pm 0.99c$ $305.40\pm 17.61c$ 6.77 ± 0.261 $490.99\pm 2.06dc$ $9.52\pm 0.06dc$ $1.47\pm 0.01d$ $9.11\pm 0.08d$ $4.65\pm 0.05dc$ $1.22\pm 0.005dc$ $34.197\pm 2.50b$ 6.77 ± 0.076 $490.99\pm 2.06dc$ $9.25\pm 0.05dc$ $1.47\pm 0.01d$ $9.11\pm 0.08d$ $4.65\pm 0.05dc$ $1.22\pm 0.00bc$ $34.197\pm 2.50b$ 6.77 ± 0.076 $497.97\pm 1.09cd$ $9.81\pm 0.05d$ $1.47\pm 0.01d$ $9.11\pm 0.08d$ $4.55\pm 0.05dc$ $34.197\pm 2.50b$ 6.77 ± 0.084 $497.47\pm 1.09cd$ $9.88\pm 0.01cf$ $1.17\pm 0.01d$ $7.76\pm 0.01g$ $3.86\pm 0.03g$ $1.19\pm 0.03dc$ $394.145\pm 10b$ 6.89 ± 0.086 $497.43\pm 1.56cd$ $8.89\pm 0.01cf$ $1.17\pm 0.02e$ $7.76\pm 0.01g$ $3.86\pm 0.03dc$ $1.33\pm 0.01cf$ $4.92\cdot 5.02\pm 0.05dc$ 7.95 ± 0.066 $497.63\pm 1.56cd$ $8.45\pm 0.11g$ $1.17\pm 0.02e$ $7.76\pm 0.03g$ $5.08\pm 0.04cf$ $1.10\pm 0.02dc$ $7.56\pm 0.05dc$ $497.63\pm 1.56cd$ $8.45\pm 0.11g$ $1.17\pm 0.02e$ $5.75\pm 0.00g$ $5.08\pm 0.04cf$ $4.75\cdot 9.7\pm 0.91g$ 7.95 ± 0.066 $407.63\pm 1.56cd$ $9.91\pm 0.05d$ $1.17\pm 0.02e$ $5.94\pm 0.03g$ 7.96 ± 0.02 7.55 ± 0.066 7.55 ± 0.066 $407.63\pm 1.55cd$ $9.91\pm 0.05d$ $1.19\pm 0.02e$ 0.000 0.00 ± 0.000 0.000 0.000 <t< td=""><td>513.74± 2.53)13.05$\pm 0.35a$1.78$\pm 0.07bc$949$\pm 0.16c$3.94$\pm 0.17b$1.31$\pm 0.05ab$38.02$\pm 9.83ac24$7.31$\pm 0.43ef$518.70$\pm 3.45$11.50$\pm 0.21b$1.70$\pm 0.08c$8.75$\pm 0.20c$3.00$\pm 0.21c$288.02$\pm 9.83acd$7.31$\pm 0.43ef$518.70$\pm 3.45$11.50$\pm 0.21b$1.70$\pm 0.08c$8.75$\pm 0.20c$3.00$\pm 0.21c$5.71$\pm 0.05fc$6.71$\pm 0.07bc$490.99$\pm 2.06dc$9.52$\pm 0.06dc$1.47$\pm 0.00d$9.11$\pm 0.08dc$4.55$\pm 0.05dc$34.610$\pm 3.34b$6.79$\pm 0.09bc$497.47$\pm 1.00cd$9.81$\pm 0.05dc$1.47$\pm 0.00cd$7.12$\pm 0.08dc$1.25$\pm 0.05dc$34.610$\pm 3.34bc$6.89$\pm 0.08bc$501.081$\pm 1.08cd$10.37$\pm 0.07cd$1.71$\pm 0.00cd$7.12$\pm 0.00bc$7.19$\pm 0.03bc$6.89$\pm 0.08bc$6.89$\pm 0.08bc$497.332$\pm 7.8cd$1.186$\pm 0.06b$1.49$\pm 0.01d$1.19\pm 0.01d4.32$\pm 0.03bc$34.941$\pm 0.510cd$6.89$\pm 0.08bc$497.332$\pm 7.8cd$1.186$\pm 0.06b$1.49\pm 0.01d5.75\pm 0.07kc7.94$\pm 0.03bc$7.95\pm 0.08bc6.89$\pm 0.08bc$497.332$\pm 7.8cd$1.186$\pm 0.06b$1.17$\pm 0.02cc$7.19$\pm 0.05ac$1.31$\pm 0.03abc$7.25\pm 0.06bc6.66\pm 0.05cc499.41$\pm 2.92dc$9.09\pm 0.00cf1.17$\pm 0.02cc$7.58$\pm 0.03bc$7.95\pm 0.026cc7.55\pm 0.026cc50.0155156cd8.45\pm 0.01gc1.01$\pm 0.02cc$1.31$\pm 0.02cc$1.31$\pm 0.02cc$7.95\pm 0.026cc499.41$\pm 2.92dc$9.09\pm 0.026cd5.99\pm 0.026cd3.66\pm 0.076cc7.95\pm 0.026cc50.0155156cd8.45\pm 0.01gc1.010\pm 0.026cc</td><td>3000</td><td></td><td>530.64±2.53a</td><td>10.75±0.05c</td><td>1.81±0.05bc</td><td>8.87±0.19de</td><td>4.12±0.10fg</td><td>1.13±0.02d</td><td>49.38±0.36de</td><td>293.44±9.87cd</td><td>5.94±0.17h</td></t<>	513.74 ± 2.53)13.05 $\pm 0.35a$ 1.78 $\pm 0.07bc$ 949 $\pm 0.16c$ 3.94 $\pm 0.17b$ 1.31 $\pm 0.05ab$ 38.02 $\pm 9.83ac24$ 7.31 $\pm 0.43ef$ 518.70 ± 3.45 11.50 $\pm 0.21b$ 1.70 $\pm 0.08c$ 8.75 $\pm 0.20c$ 3.00 $\pm 0.21c$ 288.02 $\pm 9.83acd$ 7.31 $\pm 0.43ef$ 518.70 ± 3.45 11.50 $\pm 0.21b$ 1.70 $\pm 0.08c$ 8.75 $\pm 0.20c$ 3.00 $\pm 0.21c$ 5.71 $\pm 0.05fc$ 6.71 $\pm 0.07bc$ 490.99 $\pm 2.06dc$ 9.52 $\pm 0.06dc$ 1.47 $\pm 0.00d$ 9.11 $\pm 0.08dc$ 4.55 $\pm 0.05dc$ 34.610 $\pm 3.34b$ 6.79 $\pm 0.09bc$ 497.47 $\pm 1.00cd$ 9.81 $\pm 0.05dc$ 1.47 $\pm 0.00cd$ 7.12 $\pm 0.08dc$ 1.25 $\pm 0.05dc$ 34.610 $\pm 3.34bc$ 6.89 $\pm 0.08bc$ 501.081 $\pm 1.08cd$ 10.37 $\pm 0.07cd$ 1.71 $\pm 0.00cd$ 7.12 $\pm 0.00bc$ 7.19 $\pm 0.03bc$ 6.89 $\pm 0.08bc$ 6.89 $\pm 0.08bc$ 497.332 $\pm 7.8cd$ 1.186 $\pm 0.06b$ 1.49 $\pm 0.01d$ 1.19\pm 0.01d4.32 $\pm 0.03bc$ 34.941 $\pm 0.510cd$ 6.89 $\pm 0.08bc$ 497.332 $\pm 7.8cd$ 1.186 $\pm 0.06b$ 1.49\pm 0.01d5.75\pm 0.07kc7.94 $\pm 0.03bc$ 7.95\pm 0.08bc6.89 $\pm 0.08bc$ 497.332 $\pm 7.8cd$ 1.186 $\pm 0.06b$ 1.17 $\pm 0.02cc$ 7.19 $\pm 0.05ac$ 1.31 $\pm 0.03abc$ 7.25\pm 0.06bc6.66\pm 0.05cc499.41 $\pm 2.92dc$ 9.09\pm 0.00cf1.17 $\pm 0.02cc$ 7.58 $\pm 0.03bc$ 7.95\pm 0.026cc7.55\pm 0.026cc50.0155156cd8.45\pm 0.01gc1.01 $\pm 0.02cc$ 1.31 $\pm 0.02cc$ 1.31 $\pm 0.02cc$ 7.95\pm 0.026cc499.41 $\pm 2.92dc$ 9.09\pm 0.026cd5.99\pm 0.026cd3.66\pm 0.076cc7.95\pm 0.026cc50.0155156cd8.45\pm 0.01gc1.010\pm 0.026cc	3000		530.64±2.53a	10.75±0.05c	1.81±0.05bc	8.87±0.19de	4.12±0.10fg	1.13±0.02d	49.38±0.36de	293.44±9.87cd	5.94±0.17h
518.70±3.45b 11.50±0.21b 1.70±0.08c 8.75±0.20e 3.00±0.21i 1.70±0.08c 8.75±0.20e 3.00±0.21i 1.70±0.09g 305.40±17.61c 6.77±0.26i 490.99±2.06de 9.52±0.06de 1.42±0.01d 8.22±0.06f 6.61±0.07b 1.27±0.02abc 51.59±0.52cd 346.10±3.39b 6.71±0.07g 501.08±1.08c 8.89±0.07d 1.47±0.01d 9.11±0.08d 4.65±0.05cd 1.22±0.01a 50.59±0.52cd 346.10±3.39b 6.71±0.07g 501.09±1.16c 10.37±0.07c 1.17±0.00e 7.13±0.03b 4.32±0.01cd 48.42±0.30cd 8.87±0.08 497.47±1.09cd 9.81±0.05d 1.49±0.01d 5.75±0.07k 7.19±0.05cd 1.19±0.01cd 48.42±0.30cd 7.99±0.08 497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01cd 42.9.50±1.96a 8.87±0.08 489.41±2.92de 9.28±0.01g 1.77±0.00e 5.75±0.07k 7.19±0.01cd 41.92±0.23h 341.45.72±7.36a 7.55±0.106 497.63±1.56cd 8.45±0.11g 1.17±0.02e 7.58±0.03g 5.075±0.03b 52.75±0.29c <td>518.70$\pm 3.45$11.50$\pm 0.021$1.70$\pm 0.08$8.75$\pm 0.206$3.00$\pm 0.221$1.12$\pm 0.0546$45.10$\pm 0.099$305.40$\pm 1.7616$6.77$\pm 0.0264$490.99$\pm 2.0646$9.52$\pm 0.0646$1.42$\pm 0.014$8.22$\pm 0.064$4.65$\pm 0.0246$51.59$\pm 0.5224$346.10$\pm 3.39$6.77$\pm 0.0264$501.08$\pm 1.08c$9.88$\pm 0.005$1.47$\pm 0.014$8.22$\pm 0.0646$1.22$\pm 0.0026$56.34$\pm 0.538$50.49$\pm 1.7525$6.07$\pm 0.0864$490.99$\pm 1.06c$9.52$\pm 0.0664$1.42$\pm 0.014$8.22$\pm 0.0564$1.22$\pm 0.0026$349.41$\pm 5.100$6.89$\pm 0.0864$497.47$\pm 1.09cd$9.88$\pm 0.006$1.49$\pm 0.016$1.17$\pm 0.006$7.76$\pm 0.038$1.93$\pm 0.0264$349.41$\pm 5.100$6.89$\pm 0.0864$497.33$\pm 1.864$10.37$\pm 0.076$1.47$\pm 0.014$5.75$\pm 0.038$34.14$\pm 0.0464$5.95$\pm 0.0264$37.94$\pm 0.0864$7.95$\pm 0.0264$497.33$\pm 1.56cd$8.45$\pm 0.118$1.17$\pm 0.0026$5.75$\pm 0.038$3.14$\pm 0.0464$7.95$\pm 0.0264$7.95$\pm 0.0264$497.53$\pm 1.55cd$8.45$\pm 0.118$1.17$\pm 0.0226$7.58$\pm 0.038$7.94$\pm 0.0564$7.95$\pm 0.0264$50.015$\pm 0.966$9.08$\pm 0.016$1.17$\pm 0.0226$5.99\pm 0.08317.94$\pm 0.0264$7.95\pm 0.026450.015$\pm 0.566$9.09\pm 0.07641.17$\pm 0.0226$5.99\pm 0.0331426.57$\pm 7.363$7.95\pm 0.046450.015$\pm 0.9150$9.91\pm 0.02641.109\pm 0.02640.0000.0000.0000.00050.91\pm 0.75641.19$\pm 0.0264$1.109\pm 0.02641.110\pm 0.02641.95\pm 0.02641.95\pm 0.0264<td>3250</td><td></td><td>513.74±2.53b</td><td>13.05±0.35a</td><td>1.78±0.07bc</td><td>9.49±0.16c</td><td>3.94±0.17g</td><td>1.31±0.05ab</td><td>39.37±1.20i</td><td>288.02±9.83cd</td><td>7.31±0.43ef</td></td>	518.70 ± 3.45 11.50 ± 0.021 1.70 ± 0.08 8.75 ± 0.206 3.00 ± 0.221 1.12 ± 0.0546 45.10 ± 0.099 305.40 ± 1.7616 6.77 ± 0.0264 490.99 ± 2.0646 9.52 ± 0.0646 1.42 ± 0.014 8.22 ± 0.064 4.65 ± 0.0246 51.59 ± 0.5224 346.10 ± 3.39 6.77 ± 0.0264 501.08 $\pm 1.08c$ 9.88 ± 0.005 1.47 ± 0.014 8.22 ± 0.0646 1.22 ± 0.0026 56.34 ± 0.538 50.49 ± 1.7525 6.07 ± 0.0864 490.99 $\pm 1.06c$ 9.52 ± 0.0664 1.42 ± 0.014 8.22 ± 0.0564 1.22 ± 0.0026 349.41 ± 5.100 6.89 ± 0.0864 497.47 $\pm 1.09cd$ 9.88 ± 0.006 1.49 ± 0.016 1.17 ± 0.006 7.76 ± 0.038 1.93 ± 0.0264 349.41 ± 5.100 6.89 ± 0.0864 497.33 ± 1.864 10.37 ± 0.076 1.47 ± 0.014 5.75 ± 0.038 34.14 ± 0.0464 5.95 ± 0.0264 37.94 ± 0.0864 7.95 ± 0.0264 497.33 $\pm 1.56cd$ 8.45 ± 0.118 1.17 ± 0.0026 5.75 ± 0.038 3.14 ± 0.0464 7.95 ± 0.0264 7.95 ± 0.0264 497.53 $\pm 1.55cd$ 8.45 ± 0.118 1.17 ± 0.0226 7.58 ± 0.038 7.94 ± 0.0564 7.95 ± 0.0264 50.015 ± 0.966 9.08 ± 0.016 1.17 ± 0.0226 5.99\pm 0.08317.94 ± 0.0264 7.95\pm 0.026450.015 ± 0.566 9.09\pm 0.07641.17 ± 0.0226 5.99\pm 0.0331426.57 ± 7.363 7.95\pm 0.046450.015 ± 0.9150 9.91\pm 0.02641.109\pm 0.02640.0000.0000.0000.00050.91\pm 0.75641.19 ± 0.0264 1.109\pm 0.02641.110\pm 0.02641.95\pm 0.02641.95\pm 0.0264 <td>3250</td> <td></td> <td>513.74±2.53b</td> <td>13.05±0.35a</td> <td>1.78±0.07bc</td> <td>9.49±0.16c</td> <td>3.94±0.17g</td> <td>1.31±0.05ab</td> <td>39.37±1.20i</td> <td>288.02±9.83cd</td> <td>7.31±0.43ef</td>	3250		513.74±2.53b	13.05±0.35a	1.78±0.07bc	9.49±0.16c	3.94±0.17g	1.31±0.05ab	39.37±1.20i	288.02±9.83cd	7.31±0.43ef
$490.99\pm2.06de$ $9.52\pm0.06de$ $1.42\pm0.01d$ $8.22\pm0.06f$ $6.61\pm0.07b$ $1.27\pm0.02abc$ $51.59\pm0.52cd$ $346.10\pm3.39b$ 6.71 ± 0.076 $501.08\pm1.08c$ $8.89\pm0.09f$ $1.47\pm0.01d$ $9.11\pm0.08d$ $4.65\pm0.05de$ $1.22\pm0.00bc$ $56.34\pm0.53b$ $341.97\pm2.50b$ 6.07 ± 0.09 $497.47\pm1.09cd$ $9.81\pm0.05d$ $1.42\pm0.02d$ $7.13\pm0.09h$ $4.55\pm0.05ef$ $1.22\pm0.00bc$ $56.34\pm0.53b$ $341.97\pm2.50b$ 6.07 ± 0.09 $497.47\pm1.09cd$ $9.81\pm0.05d$ $1.42\pm0.02d$ $7.13\pm0.09h$ $4.55\pm0.05ef$ $1.35\pm0.01a$ $349.41\pm5.10b$ 6.89 ± 0.08 $497.33\pm2.78cd$ $1.186\pm0.06b$ $1.49\pm0.01d$ $6.79\pm0.03i$ $4.14\pm0.04fg$ $1.03\pm0.01cf$ $41.92\pm0.23h$ $334.88\pm4.09b$ 7.95 ± 0.08 $497.33\pm2.78cd$ $1.186\pm0.00f$ $1.17\pm0.00e$ $5.75\pm0.03g$ $5.75\pm0.02f$ $3.275\pm0.29c$ $419.65\pm3.03a$ 7.96 ± 0.02 $497.33\pm2.78cd$ $1.186\pm0.01f$ $1.17\pm0.02e$ $7.58\pm0.03g$ $4.14\pm0.04fg$ $1.03\pm0.01cf$ $41.92\pm0.23h$ $324.88\pm4.09b$ 7.95 ± 0.02 $497.63\pm1.56cd$ $8.45\pm0.11g$ $1.17\pm0.02e$ $7.58\pm0.03g$ $5.08\pm0.04c$ $3.25\pm0.02e$ $419.86\pm3.03a$ 7.95 ± 0.02 $500.1\pm5.17b$ $9.91\pm0.05f$ $1.17\pm0.02e$ $6.66\pm0.07ig$ $4.74\pm0.03b$ $52.75\pm0.29c$ $419.86\pm7.236a$ 7.55 ± 0.06 $500.1\pm5.17b$ $9.91\pm0.05d$ $1.17\pm0.02e$ $6.66\pm0.07ig$ $4.74\pm0.17ef$ $1.10\pm0.02e$ $5.98\pm0.06f$ $425.62\pm7.36a$ 7.95 ± 0.206 500.1 ± 5.175 $9.91\pm0.05f$ $1.17\pm0.02e$ 6.66	490.99±2.06de9.52±0.06de1.42±0.01d8.22±0.06f6.61±0.07b1.27±0.02abc51.59±0.52cd346.10±3.39b6.71±0.07b501.08±1.08c8.89±0.09f1.47±0.01d9.11±0.08d4.65±0.05d1.22±0.00bc56.34±0.53b341.97±2.50b6.07±0.09h497.47±1.09cd9.81±0.05d1.47±0.01d9.11±0.08d4.55±0.03c1.19±0.01cd8.89±0.09f5.89±0.06f501.09±1.16c10.37±0.07c1.177±0.00e7.73±0.09h4.32±0.03cf1.35±0.01cd349.41±5.10b6.89±0.08b501.99±1.16c10.37±0.07c1.177±0.00e7.73±0.03g3.86±0.03g1.19±0.01cd48.42±0.39f329.41±5.10b8.87±0.08b497.33±2.78cd11.86±0.06b1.49±0.01ef1.17±0.00e5.75±0.03g5.06±0.03g1.31±0.03db7.99±0.08cd497.33±2.78cd9.28±0.01ef1.17±0.00e5.75±0.03g5.08±0.04f1.11±0.02de52.75±0.23b334.88±4.09b7.95±0.05cd497.33±2.78cd9.91±0.05d1.17±0.00e5.75±0.07j4.14±0.17def1.11±0.02de52.75±0.03b7.95±0.05cd500.15±0.95cd9.91±0.05d1.17±0.02e6.66±0.07j4.44±0.17def1.10±0.04de51.53±0.05cd345.52ia3.45±0.17bc500.15±0.95cd9.91±0.05d1.17±0.02e6.66±0.07j4.44±0.17def1.10±0.04de51.53±0.03b7.95±0.17bc500.15±0.95cd9.91±0.05d1.17±0.02e6.66±0.07j4.44±0.17def1.10±0.02de55.03±0.73b2.65±0.17bc60000.0000.0000.0000.0000.000<	3500		518.70±3.45b	11.50±0.21b	1.70±0.08c	8.75±0.20e	3.00±0.21i	1.12±0.05de	45.10±0.99g	305.40±17.61c	6.77±0.26fg
501.08±1.08c 8.89±0.09f 1.47±0.01d 9.11±0.08d 4.65±0.05de 1.22±0.00bc 56.34±0.53b 341.97±2.50b 6.07±0.09 497.47±1.09cd 9.81±0.05d 1.42±0.02d 7.13±0.09b 4.32±0.05ef 1.35±0.01a 50.69±0.30cd 349.41±5.10b 6.89±0.08 501.99±1.16c 10.37±0.07c 1.17±0.00e 7.75±0.03j 4.32±0.03gd 1.92±0.23h 349.41±5.10b 6.89±0.08 497.43±2.92de 9.81±0.06b 1.49±0.01d 6.79±0.03j 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.95±0.08 499.41±2.92de 9.28±0.01ef 1.17±0.02e 7.58±0.07k 7.19±0.05a 1.31±0.03ab 52.75±0.23h 334.88±4.09b 7.95±0.02h 497.63±1.56cd 8.45±0.11g 1.17±0.02e 7.58±0.07k 7.19±0.05a 1.31±0.02de 52.75±0.29c 419.86±3.03a 7.95±0.02h 500.155c1.17b 9.91±0.05d 1.17±0.02e 7.58±0.07kg 7.19±0.02de 53.88±0.03b 7.95±0.02h 7.55±0.02h 7.55±0.02h 7.55±0.02h 7.55±0.02h 7.55±0.02h 7.55±0.02h 7.55±0.04h	501.08±1.08c8.89±0.09f $1.47\pm0.01d$ 9.11±0.08d4.65±0.05de1.22±0.00bc56.34±0.53b341.97±2.50b6.07±0.09b497.47±1.090d9.81±0.05d1.42±0.02d7.13±0.09b4.32±0.05ef1.35±0.01d50.69±0.30cd349.41±5.10b6.89±0.08b501.99±1.16c10.37±0.07c1.17±0.00e7.76±0.01g3.86±0.03g1.19±0.01ed48.42±0.39ef449.50±1.96a8.87±0.08b497.47±1.090d9.81±0.05b1.42±0.00e7.75±0.01d5.75±0.07b1.11±0.01ed48.42±0.33b5.95±1.96c8.87±0.08b497.33±2.78cd11.85±0.06b1.47±0.00e5.75±0.07b7.19±0.05a1.31±0.03b52.75±0.29c419.86±3.03a7.99±0.08cd497.63±1.56cd8.45±0.11g1.17±0.02e7.58±0.07b7.99±0.06fg1.31±0.03de52.75±0.29c419.86±3.03a7.95±0.06fg500.15±0.96c9.09±0.07ff1.19±0.03e6.50±0.07b4.44±0.17def1.11±0.02de55.87±0.73a3.45±0.17de510.91±5.17b9.91±0.05d1.17±0.02e6.66±0.07b4.44±0.17def1.10±0.04de51.53±0.66cd435.3±13.21a8.45±0.17bc510.91±5.17b9.91±0.05d1.17±0.02e6.66±0.07b3.90±0.03b1.00±0.01f45.97±0.91g4455.2±13.21a8.45±0.17bc510.91±5.17b9.91±0.05d1.17±0.02e6.66±0.07b3.90±0.03b1.00±0.01f45.97±0.91g425.7±13.21a8.45±0.17bc510.91±5.17b9.91±0.05d1.10±0.04e5.99±0.05bk3.90±0.02f3.90±0.05f425.7±7.36a9.63±0.05c0.000	2500		490.99±2.06de	9.52±0.06de	1.42±0.01d	8.22±0.06f	6.61±0.07b	1.27±0.02abc	51.59±0.52cd	346.10±3.39b	6.71±0.07g
497.47±1.09cd 9.81±0.05d 1.42±0.02d 7.13±0.09h 4.32±0.05ef 1.35±0.01a 50.69±0.30cd 349,41±5.10b 6.89±0.08 501.99±1.16c 10.37±0.07c 1.17±0.00e 7.76±0.01g 3.86±0.03g 1.19±0.01cd 48.42±0.39ef 429.50±1.96a 8.87±0.08 497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.99±0.08 497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.99±0.08 499.41±2.92de 9.28±0.01ef 1.17±0.02e 7.55±0.07k 7.19±0.05a 1.31±0.03ab 52.75±0.29c 419.86±3.03a 7.96±0.02 497.63±1.56cd 8.45±0.17g 1.17±0.02e 7.58±0.07k 7.19±0.05a 1.31±0.02de 52.75±0.29c 419.86±3.03a 7.56±0.176 500.155.0156 9.09±0.07ef 1.17±0.02e 7.58±0.07k 7.19±0.02de 51.53±0.066d 435.32±13.21a 8.45±0.176 500.9115.17b 9.91±0.05d 1.07±0.02de 51.53±0.01g 4.45.67±1.36a 7.65±0.176 50.55±0.203a 7.55±0.204	497.47±1.09cd9.81±0.05d1.42±0.02d7.13±0.09h4.32±0.05e1.35±0.01a50.69±0.30cd349.41±5.10b6.89±0.08f501.99±1.16c10.37±0.07c11.7±0.00e7.76±0.01g3.86±0.03g1.19±0.01cd48.42±0.39ef429.50±1.96a8.87±0.08h497.33±2.78cd11.86±0.06h1.47±0.00e7.76±0.01g3.86±0.03g1.19±0.01cd48.42±0.39ef429.50±1.96a8.87±0.08h497.33±2.78cd11.86±0.06h1.419±0.01d6.79±0.03i4.14±0.04fg1.03±0.01ef41.92±0.23h334.88±4.09h7.99±0.08cd497.63±1.56cd8.45±0.11g1.17±0.02e7.58±0.03g5.08±0.04c0.98±0.04f58.87±0.37a7.56±0.07ed500.15±0.96c9.09±0.07fd1.19±0.03e6.59±0.03g1.01±0.03eh5.75±0.06fg7.55±0.06fg500.15±0.96c9.09±0.07fd1.17±0.02e7.58±0.03g1.01±0.03eh5.75±0.06fg8.45±0.17b510.91±5.17b9.91±0.05d1.17±0.02e5.59±0.03g1.01±0.03eh5.75±0.06fg9.63±0.28a610.91±5.17b9.91±0.05d1.17±0.02e5.99±0.08jk3.90±0.03g1.01±0.04eh51.53±0.66d435.32±13.28a645±7.255.04e0.0000	2750		501.08±1.08c	8.89±0.09f	1.47±0.01d	9.11±0.08d	4.65±0.05de	1.22±0.00bc	56.34±0.53b	341.97±2.50b	6.07±0.09h
501.99±1.16c 10.37±0.07c 1.17±0.00e 7.76±0.01g 3.86±0.03g 1.19±0.01cl 48.42±0.39ef 429.50±1.96a 8.87±0.08 497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.99±0.08 497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.99±0.08 497.63±1.56cd 8.45±0.11g 1.17±0.02e 7.58±0.07k 7.19±0.05a 1.31±0.03ab 52.75±0.29c 419.86±3.03a 7.96±0.02 497.63±1.56cd 8.45±0.11g 1.17±0.02e 7.58±0.07j 7.19±0.05d 1.31±0.03ab 52.75±0.29c 419.86±3.03a 7.56±0.102 500.156 9.09±0.07ef 1.19±0.02e 7.58±0.07j 4.78±0.04f 58.87±0.05j 425.67±7.36a 7.55±0.176 510.9156 9.91±0.05d 1.17±0.02e 6.66±0.07j 4.44±0.17def 1.10±0.04de 51.53±0.66cd 435.32±13.21a 8.45±0.176 485.23±5.04e 10.56±0.15c 1.10±0.02de 55.00±0.033b	501.99±1.16c10.37±0.07c1.17±0.00e7.76±0.01g3.86±0.03g1.19±0.01cd48.42±0.39ef429.50±1.96a8.87±0.08h497.33±2.78cd11.86±0.06b1.49±0.01d6.79±0.03i4.14±0.04fg1.03±0.01ef41.92±0.23h334.88±4.09b7.99±0.08cd497.33±2.78cd11.86±0.06b1.49±0.01d6.79±0.03i4.14±0.04fg1.03±0.01ef41.92±0.23h334.88±4.09b7.99±0.08cd497.33±2.78cd9.28±0.01ef1.17±0.02e $7.58\pm0.03g$ $5.08\pm0.04f$ $5.03\pm0.04f$ $58.87\pm0.97a$ $419.86\pm3.03a$ $7.95\pm0.06fg$ 500.15±0.96c9.09±0.07ef1.19±0.02e $7.58\pm0.03g$ $5.08\pm0.04cd$ $1.13\pm0.02de$ $52.75\pm0.29cc$ $419.86\pm3.03a$ $7.55\pm0.06fg$ 500.15±0.96c9.09±0.07ef1.19±0.02e $6.50\pm0.07gf$ $4.19\pm0.03fe$ $7.55\pm0.04cg$ $9.63\pm0.77bc$ 500.15±0.15e9.09±0.07ef1.19±0.02e $6.50\pm0.07gf$ $1.11\pm0.02de$ $51.53\pm0.66cd$ $435.32\pm3.32a$ $8.45\pm0.17bc$ 485.23±5.04e10.56±0.15c1.10±0.04df $5.99\pm0.08fk$ $3.90\pm0.03g$ $1.00\pm0.01f$ $47.97\pm0.91g$ $44.25.72\pm7.36a$ $7.55\pm0.05efg$ 60000.0000.0000.0000.0000.0000.0000.0000.000 0.000 0.000 0.000 0.000 0.000 0.0000.0000.0000.0000.0000.0000.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000.0000.0000.0000.000 0.000 <t< td=""><td>3000</td><td></td><td>497.47±1.09cd</td><td>9.81±0.05d</td><td>1.42±0.02d</td><td>7.13±0.09h</td><td>4.32±0.05ef</td><td>1.35±0.01a</td><td>50.69±0.30cd</td><td>349.41±5.10b</td><td>6.89±0.08fg</td></t<>	3000		497.47±1.09cd	9.81±0.05d	1.42±0.02d	7.13±0.09h	4.32±0.05ef	1.35±0.01a	50.69±0.30cd	349.41±5.10b	6.89±0.08fg
497.33±2.78cd 11.86±0.06b 1.49±0.01d 6.79±0.03i 4.14±0.04fg 1.03±0.01ef 41.92±0.23h 334.88±4.09b 7.99±0.08b 489.41±2.92de 9.28±0.01ef 1.17±0.00e 5.75±0.07k 7.19±0.05a 1.31±0.03ab 52.75±0.29c 419.86±3.03a 7.96±0.02b 489.41±2.92de 9.28±0.01ef 1.17±0.02e 7.58±0.03g 5.08±0.04f 58.87±0.97a 426.72±7.36a 7.25±0.06c 500.155±0.05c 9.09±0.07ef 1.19±0.03e 6.20±0.07j 4.78±0.04cd 0.11±0.02de 55.00±0.33b 426.72±7.36a 7.55±0.06c 500.1155.07b 9.91±0.05d 1.19±0.03e 6.20±0.07j 4.78±0.07de 1.11±0.02de 55.00±0.33b 420.65±10.94a 7.65±0.17b 510.91±5.17b 9.91±0.05d 1.17±0.02e 6.66±0.07j 4.44±0.17def 1.10±0.04de 51.53±0.66cd 435.32±13.21a 8.45±0.17b 485.23±5.04e 10.56±0.15c 1.10±0.04df 5.99±0.08jk 3.90±0.03g 1.00±0.01f 45.97±0.91g 442.88±13.58a 9.63±0.20 485.23±5.04e 10.56±0.15c 1.10±0.04de 51.53±0.01g 442.88±13.58a 9.63±0.20 0.000 0.000 <td>$\begin{array}{llllllllllllllllllllllllllllllllllll$</td> <td>3250</td> <td></td> <td>501.99±1.16c</td> <td>10.37±0.07c</td> <td>1.17±0.00e</td> <td>7.76±0.01g</td> <td>3.86±0.03g</td> <td>1.19±0.01cd</td> <td>48.42±0.39ef</td> <td>429.50±1.96a</td> <td>8.87±0.08b</td>	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	3250		501.99±1.16c	10.37±0.07c	1.17±0.00e	7.76±0.01g	3.86±0.03g	1.19±0.01cd	48.42±0.39ef	429.50±1.96a	8.87±0.08b
$489.41\pm2.92de$ $9.28\pm0.01ef$ $1.17\pm0.00e$ $5.75\pm0.07k$ $7.19\pm0.05a$ $1.31\pm0.03ab$ $52.75\pm0.29c$ $419.86\pm3.03a$ $7.96\pm3.02a$ $497.63\pm1.56cd$ $8.45\pm0.11g$ $1.17\pm0.02e$ $7.58\pm0.03g$ $5.08\pm0.04c$ $0.98\pm0.04f$ $58.87\pm0.97a$ $426.72\pm7.36a$ 7.25 ± 0.066 $500.15\pm0.96c$ $9.09\pm0.07ef$ $1.19\pm0.03e$ $6.20\pm0.07j$ $4.78\pm0.04cd$ $1.11\pm0.02de$ $55.00\pm0.33b$ $420.69\pm10.94a$ $7.65\pm0.17d$ $510.91\pm5.17b$ $9.91\pm0.05d$ $1.17\pm0.02e$ $6.66\pm0.07j$ $4.74\pm0.17def$ $1.10\pm0.04de$ $51.53\pm0.66cd$ $435.32\pm13.21a$ $8.45\pm0.17l$ $485.23\pm5.04e$ $10.56\pm0.15c$ $1.10\pm0.04df$ $5.99\pm0.08jk$ $3.90\pm0.03g$ $1.00\pm0.01f$ $45.97\pm0.91g$ $422.88\pm13.58a$ 9.63 ± 0.28 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3500		497.33±2.78cd	11.86±0.06b	1.49±0.01d	6.79±0.03i	4.14±0.04fg	1.03±0.01ef	41.92±0.23h	334.88±4.09b	7.99±0.08cd
497.63±1.56cd 8.45±0.11g 1.17±0.02e 7.58±0.03g 5.08±0.04c 0.98±0.04f 58.87±0.97a 426.72±7.36a 7.25±0.06i 500.15±0.96c 9.09±0.07ef 1.19±0.03e 6.20±0.07j 4.78±0.04cd 1.11±0.02de 55.00±0.33b 420.69±10.94a 7.65±0.17d 510.91±5.17b 9.91±0.05d 1.17±0.02e 6.66±0.07j 4.78±0.04cd 1.11±0.02de 55.00±0.33b 420.69±10.94a 7.65±0.17d 8.45±0.17b 9.91±0.05d 1.17±0.02e 6.66±0.07j 4.74±0.17def 1.10±0.04de 51.53±0.66cd 435.32±13.21a 8.45±0.17l 485.23±5.04e 10.56±0.15c 1.10±0.04d 5.99±0.08jk 3.90±0.03g 1.00±0.01f 45.97±0.91g 442.88±13.58a 9.63±0.28l 0.000 <	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2500		489.41±2.92de	9.28±0.01ef	1.17±0.00e	5.75±0.07k	7.19±0.05a	1.31±0.03ab	52.75±0.29c	419.86±3.03a	7.96±0.02cd
500.15±0.96c 9.09±0.07ef 1.19±0.03e 6.20±0.07j 4.78±0.04cd 1.11±0.02de 55.00±0.33b 420.69±10.94a 7.65±0.17d 510.91±5.17b 9.91±0.05d 1.17±0.02e 6.66±0.07i 4.44±0.17def 1.10±0.04de 51.53±0.66cd 435.32±13.21a 8.45±0.17l 485.23±5.04e 10.56±0.15c 1.10±0.04d 5.99±0.08jk 3.90±0.03g 1.00±0.01f 45.97±0.91g 4422.88±13.58a 9.63±0.28 0.000	500.15±0.96c $9.09\pm0.07ef$ $1.19\pm0.03e$ $6.20\pm0.07j$ $4.78\pm0.04cd$ $1.11\pm0.02de$ $55.00\pm0.33b$ $420.69\pm10.94a$ $7.65\pm0.17de$ $510.91\pm5.17b$ $9.91\pm0.05d$ $1.17\pm0.02e$ $6.66\pm0.07j$ $4.44\pm0.17def$ $1.10\pm0.04de$ $51.53\pm0.66cd$ $435.32\pm13.21a$ $8.45\pm0.17bc$ $485.23\pm5.04e$ $10.56\pm0.15c$ $1.10\pm0.04d$ $5.99\pm0.08jk$ $3.90\pm0.03g$ $1.00\pm0.01f$ $45.97\pm0.91g$ $442.88\pm13.58a$ $9.63\pm0.28a$ 0.000 <	2750		497.63±1.56cd	8.45±0.11g	1.17±0.02e	7.58±0.03g	5.08±0.04c	0.98±0.04f	58.87±0.97a	426.72±7.36a	7.25±0.06efg
510-91±5.17b 9.91±0.05d 1.17±0.02e 6.66±0.07i 4.44±0.17def 1.10±0.04de 51.53±0.66cd 435.32±13.21a 8.45±0.17l 485.23±5.04e 10.56±0.15c 1.10±0.04d 5.99±0.08jk 3.90±0.03g 1.00±0.01f 45.97±0.91g 442.88±13.58a 9.63±0.28. 0.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3000		500.15±0.96c	9.09±0.07ef	1.19±0.03e	6.20±0.07j	4.78±0.04cd	1.11±0.02de	55.00±0.33b	420.69±10.94a	7.65±0.17de
485-23±5.04e 10.56±0.15c 1.10±0.04d 5.99±0.08jk 3.90±0.03g 1.00±0.01f 45.97±0.91g 442.88±13.58a 9.63±0.28 0.000	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3250		510.91±5.17b	9.91±0.05d	1.17±0.02e	6.66±0.07i	4.44±0.17def	1.10±0.04de	51.53±0.66cd	435.32±13.21a	8.45±0.17bc
0.000 0.000 <th< td=""><td>0.000 <t< td=""><td>3500</td><td></td><td>485.23±5.04e</td><td>10.56±0.15c</td><td>1.10±0.04d</td><td>5.99±0.08jk</td><td>3.90±0.03g</td><td>1.00±0.01f</td><td>45.97±0.91g</td><td>442.88±13.58a</td><td>9.63±0.28a</td></t<></td></th<>	0.000 0.000 <t< td=""><td>3500</td><td></td><td>485.23±5.04e</td><td>10.56±0.15c</td><td>1.10±0.04d</td><td>5.99±0.08jk</td><td>3.90±0.03g</td><td>1.00±0.01f</td><td>45.97±0.91g</td><td>442.88±13.58a</td><td>9.63±0.28a</td></t<>	3500		485.23±5.04e	10.56±0.15c	1.10±0.04d	5.99±0.08jk	3.90±0.03g	1.00±0.01f	45.97±0.91g	442.88±13.58a	9.63±0.28a
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000	$P:F_{\mathcal{Y}}$		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00	P:Fa		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	y , age effect; $P:Fa$, altitude effect; $P:Fy\times a$, age and altitude interaction effect. Values followed by the different letters in each column are significantly the $n \ge 0$ or $1 \ge 1 \le $	$P:Fy \times a$		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

J. Mt. Sci. (2019) 16(7): 1546-1558

concentrations but a lower Ca concentration than other cohorts. The ratios of C: P and N: P in both needles and twigs as well as δ^{13} C in needles were lower in the current-year needles than that of in other age cohorts. The starch concentrations in the current-year needles and sucrose in the currentyear twigs were higher than other ages (Figures 3 and 4). The δ^{13} C values decreased significantly with ages in needles, in which the current-year needles showed significantly higher values than the oneyear and the two-year old needles.

Figure 3 The concentrations of soluble sugar (a), starch (b), sucrose (c) and NSC (d) and the ratio of sucrose: starch (e) in the current, one-year and two-year old of *A. faxoniana* needles along an altitudinal gradient. *P: Fy*, age effect; *P: Fa*, altitude effect; *P: Fy×a*, age and altitude interaction effect. Values followed by different letters are significantly different at the p<0.05 level according to Tukey's test. Each value is the mean ± SE (n=9).

2.3 Variation of nutrients, NSCs and δ^{13} C among elevations

The δ^{13} C values showed an increasing tendency with elevation in both needles and twigs with a lowest value in 2750 m a.s.l. (Figure 2). The concentration of C and N in needles as well as sucrose in twigs increased with elevation (Appendix 1). Moreover, the concentration of Mg in needles and Ca in twigs decreased with increasing elevation. The twig C: N ratio increased with elevation below 2750 m a.s.l., then declined (Appendix 1). Both soluble sugar and sucrose in the

Figure 4 The concentrations of soluble sugar (a), starch (b), sucrose (c) and NSC (d) and the ratio of sucrose: starch (e) in the current, one-year and two-year old of *A. faxoniana* twigs along an altitudinal gradient. *P: Fy*, age effect; *P: Fa*, altitude effect; *P: Fy×a*, age and altitude interaction effect. Values followed by different letters are significantly different at the p < 0.05 level according to Tukey's test. Each value is the mean \pm SE (*n*=9).

current-year twigs increased with elevation (Figure 4). The effects of elevation were generally more profound in the current-year needles and twigs, suggesting a growth rate variation among three ages along elevation (Appendix 2).

2.4 The correlation among nutrients and NSCs in needles and twigs

In this study, we found not only the effects of age or/and elevation but also their interaction were significant for all the plant traits except for δ^{13} C,

indicating water may be not a growth limiting factor in our study sites. To better understand the relationship among these functional traits, partial correlation analysis was performed (Tables 5 and 6). In needles, the δ^{13} C values showed a significantly positive correlation (p < 0.01) with the concentrations of N, P, starch and NSCs but significantly negative correlation with the concentrations of Ca and Mg and the ratios of C: N and sucrose: starch (p < 0.01). Sucrose had a significantly positive correlation with the concentrations of C, N, Ca and soluble sugar and

the ratios of C: P and N: P, but a significantly negative correlation with the concentrations of P, K and starch and C: N ratio. Additionally, C: N ratio was strongly negative correlated (p < 0.001) with N concentration. In twigs (Table 6), δ^{13} C value was positively correlated (p < 0.05)with the concentrations of N, sucrose and TNC and the ratios of N: P and sucrose: starch, but was correlated (*p*<0.01) K negatively with concentration and C: N ratio. Sucrose was positively correlated (p < 0.05) with C, N, P and soluble sugar concentrations but negatively correlated (p < 0.01) with Ca concentration and the ratios of C: N and C: P. Additionally, P had a strongly positive correlation (p < 0.001) with C and N concentrations.

3 Discussion

3.1 Variation in nutrient concentration, NSCs and δ^{13} C associated with age

The concentration and distribution of soil nutrients have considerable effects on plant growth and nutrient use efficiency (Vondrackova et al. **2014**), and the limited soil nutrient availability may translate into reduced leaf nutrient concentration (Sullivan et al. 2016). The ratio of soil C: N and C: P been widely used estimate has to the mineralization capability and nutrient availability (Dise et al. 1998; Sardans et al. 2012). In this study, a constant ratio of C: N and C: P at each elevation suggests less variation in the availability of soil C, N, and P for tree growth.

Growth hypothesis rate suggests that organisms adjust their C: N: P ratio to adapt to growth rate variations (Main et al. 1997). Various data indicate that rapidly growing organisms commonly have low biomass C: P and N: P ratios (Elser et al. 2003). In this study, the increasing ratios of C: P and N: P with age (Tables 3 and 4) may attribute to increased allocation to P rich ribosomal RNA, as rapid protein synthesis by ribosomes is required to support fast growth (Elser et al. 2003). As known, the younger tissues generally tend to be more active in relation to the older. Moreover, it generally associates with higher photosynthetic rate, growth rate and competitiveness for resources that more N and P in leaves, while more foliar C suggests a strong defense against environmental variations (Lourens and Frans 2006; Wright et al. 2004). Hence, the higher concentration of starch in current-year needles may result from the accumulation of N, P and the lower C: P ratio (Figure 3 and Table 3). Moreover, the significant correlations between the P, C: P, N: P and starch also confirm their intensive relationship. It is commonly considered that N: P ratio >16 indicates a P limitation while a value <14 indicates N limitation (Koerselman and Meuleman 1996). The mean N: P ratios in the current-year, one-year and two-year needles were 9.86, 13.32 and 14.27, respectively. A similar foliar N concentration of A. faxonana in Wolong Natural Reserve (8.0~13.0 g·kg⁻¹) and in Wanglang Natural Reserve (8.0~13.6 g·kg⁻¹) have been reported respectively (Peng et al. 2012; Zhao et al. 2015). Considering the consistent N concentration along elevation, we inferred that a greater demand for N supply to the current-year needles than other cohorts due to its active physiological activity. In addition to the various demands for nutrients among ages, the nutrient status is also probably due to the resorption capacity from the senescent needles (Sohrt et al. 2018). Foliar resorption allows trees to reduce nutrient loss and to establish nutrient storage pools, which contributes faster shoot growth in spring and decreases the need for competitive nutrient uptake (See et al. 2015).

3.2 Variation in nutrient, NSC and δ^{13} C associated with elevation

Plants growing at high elevations have higher δ^{13} C values than that at low elevations (Korner et al. 1988). It has documented that the δ^{13} C values of plants increased with elevation both on a global scale and locally in humid climates, usually with an average of 1.2‰ km⁻¹ (Korner et al. 1991). High carboxylation capacity in relation to the stomatal conductance of plants and reduction of CO₂ diffusivity due to the low temperature may be accounted for the increase of $\delta^{13}C$ at the high elevations. Interestingly, in this study, the $\delta^{13}C$ value decreased with elevation below 2750 m, then increased from 2750 to 3500 m. Similar results have been found in Quercus aquifolioides (Li et al. 2009a) and A. faxoniana (Zhao et al. 2015) at this region. This inflection point was interpreted

			D					د	2		2					
		C	z	Ч	K	Ca	Mg	C: N	C: P	N: P	Soluble sugar	Starch	Sucrose	NSC	Sucrose: starch	§¹3C
a)	C		0.494***	-0.275*	-0.429***	-0.049	-0.429***	-0.252	0.376**	0.451***	0.232	-0.380**	0.415*** -	0.061	0.449 ^{***}	0.108
	Z	0.355**		0.113	-0.229	-0.22	-0.043	-0.964***	-0.091	0.196	0.415***	-0.140	0.465***	0.241	0.392**	0.358**
	Ρ	0.102	-0.006		0.817***	-0.605***	0.205	-0.204	-0.984 ^{***} .	-0.942 ^{***} .	0.228	0.623***	-0.487***	0.222	-0.609***	0.402**
	K	-0.077	-0.505***	0.310^{*}		-0.575***	0.142	0.125	-0.812*** .	-0.862 ^{***} .	0.401 ^{**}	0.634***	-0.575***	0.091	-0.664***	0.173
	Ca	-0.004	0.386**	0.133	-0.399**		0.422***	0.229	0.548***	0.489***	0.061	-0.580***	0.333** -	0.328*	0.529***	-0.504***
	Mg	0.096	0.621***	0.004	-0.563***	0.649***		-0.067	-0.322*	-0.301*	0.008	-0.044	-0.003 -	0.022	0.156	-0.396**
	C: N	-0.102	-0.964***	0.032	0.501***	-0.425***	-0.633***		0.208	- 060 ^{.0-}	0.408**	0.048	-0.404** -	0.295*	-0.298*	-0.374**
	C: P	0.023	-0.094	-0.943***	-0.111	-0.325*	-0.193	0.108		0.955***	0.198	-0.623***	0.460*** -	0.246	0.577***	-0.357**
	N: P	0.073	0.505***	-0.834***	-0.409**	-0.018	0.219	-0.516***	0.791***		0.332**	-0.652***	0.593*** -	0.158	0.686***	-0.252
	Soluble sugar	0.091	0.372**	-0.347**	-0.539***	0.237	0.312*	-0.387**	0.260*	0.467***		-0.057	0.750***	0.762***	0.398**	0.231
	Starch	-0.313*	-0.421***	0.027	0.214	-0.228	-0.344**	0.369**	0.026	-0.221	0.004		-0.372**	0.603***	-0.815***	0.541***
	Sucrose	0.237	0.521***	-0.399**	-0.471***	0.423***	0.408**	-0.502***	0.301*	0.565***	0.758***	-0.199		0.357**	0.722***	0.042
	NSC	-0.087	0.096	-0.282*	-0.347**	0.082	0.085	-0.136	0.236	0.282*	0.851***	0.522***	0.542***		-0.211	0.536***
	Sucrose: starch	0.418**	0.694***	-0.288*	-0.466***	0.323*	0.507***	-0.621***	0.187	0.558***	0.432***	-0.715***	0.692*** -	0.008		-0.406**
	813C	-0.184	-0.065	0.136	-0.083	0.237	-0.119	0.017	-0.174	-0.148	0.188	0.484***	0.083	0.414**	-0.313*	
(q	U		0.256	-0.331*	-0.384**	0.330*	-0.048	0.022	0.391**	o.397 ^{**}	0.122	-0.488***	0.355** -	0.227	0.546***	-0.350**
	Z	0.575***		0.139	-0.134	0.096	0.631***	-0.959***	-0.178	0.079	0.351^{**}	-0.199	0.418**	0.146	0.480***	0.022
	Ъ	0.080	-0.007		0.836***	-0.703***	0.292*	-0.233	-0.988***.	- ***9690.0-	-0.235	0.623***	-0.500***	0.228	-0.609***	0.504***
	K	-0.282*	-0.599***	0.288*		-0.811***	-0.014	0.028	-0.814 ^{***} .	-0.855 ^{***} .	·0.369**	0.658***	-0.553***	0.144	-0.68***	0.386**
	Ca	-0.426**	* -0.184	0.096	0.008		0.099	-0.018	0.696***	0.725***	0.217	-0.649***	0.536*** -	-0.259^{*}	0.611***	-0.288*
	Mg	-0.385**	-0.075	0.005	-0.078	0.831***		-0.665***	-0.364 ^{**} .	-0.196	0.263*	-0.022	0.236	0.194	0.218	0.063
	C: N	-0.365**	-0.970***	0.029	0.589***	0.089	-0.014		0.291*	0.025	•0 . 344 ^{**}	0.077	-0.345** -	0.223	-0.342**	-0.122
	C: P	0.178	0.080	-0.909***	-0.201	-0.412**	-0.324*	-0.042		0.963***	0.181	-0.630***	0.452*** -	-0.275*	0.580***	-0.523***
	N: P	0.338**	0.638***	-0.733***	-0.514 ^{***}	-0.351**	-0.221	-0.630***	0.798***		0.292*	-0.681***	0.571*** -	0.220	0.707***	-0.507***
	Soluble sugar	0.213	0.433***	-0.337**	-0.575***	-0.008	0.031	-0.445***	0.308*	0.513***		-0.069	0.735***	0.749***	0.411**	0.113
	Starch	-0.217	-0.312*	0.026	0.177	-0.200	-0.275*	0.294*	0.040	-0.167	0.010		-0.392**	0.609***	-0.816***	0.648***
	Sucrose	0.331^{*}	0.555***	-0.388**	-0.515***	0.113	0.088	-0.545 ^{***}	0.347**	0.599 ^{***}	0.772***	-0.179		0.324^{*}	0.743***	-0.124
	NSC	0.071	0.210	-0.275*	-0.400**	-0.109	-0.114	-0.230	0.283*	0.353 ^{**}	0.859^{***}	0.520***	0.568***		-0.215	0.520***
	Sucrose:starch	0.332*	0.565***	-0.288*	-0.429***	0.231	0.349**	-0.538***	0.178	0.487***	0.418***	-0.715***	0.670*** -	0.009		-0.506***
	813C	0.282*	0.337**	0.101	-0.306*	-0.342**	-0.543***	-0.313*	0.051	0.217	0.295*	0.401**	0.222	0.457***	-0.240	
Not age	e: (a) Partial col and altitude (low	rrelation ver triang	coefficient tle).	s on rem	oving the e	effects of	both age a	und altitu	de (upper	triangle)	. The corre	lation coe	fficients w	ithout re	moving the	effects of
)		·														

Table 5 Correlation coefficient among nutrients. NSCs and δ^{13} C in needle of *A. faxoniana* along an altitudinal gradient

(b) Partial correlation coefficients on removing the effects of age (upper triangle). The correlation coefficients without removing the effects of altitude (lower triangle). *, *p*<0.05; **, *p*<0.01; ***, *p*<0.001.

			0	600000000000000000000000000000000000000			maria			0						
		с U	Z	Ь	K	Ca	Mg	C: N	C: P	N: P	Soluble sugar	Starch	Sucrose	NSC	Sucrose: starch	813C
(a)	C		0.364**	0.523***	0.442***	-0.519***	0.036 -	0.162	-0.443***	-0.404**	0.202	-0.152	0.543 ^{***}	0.378**	0.549 ^{***}	0.040
	z	-0.303*		0.508***	0.297*	-0.529***	0.035	·0.967 ^{***}	-0.508***	0.043	0.074	-0.035	0.760***	0.652***	0.581***	0.383^{**}
	Р	-0.005	0.234		0.873***	-0.359**	0.272* -	0.433***	-0.978***	-0.817***	0.011	-0.237	0.424***	0.215	0.420***	-0.213
	K	-0.011	-0.084	0.405**		-0.355**	0.268* -	0.216	-0.831***	-0.784***	-0.002	-0.079	0.205	0.128	0.193	-0.394**
	Ca	-0.213	0.475***	-0.175	-0.699***		0.256* (0.452***	0.306*	0.045	-0.147	-0.169	-0.560***	-0.614***	-0.40**	-0.180
	Mg	-0.144	0.133	-0.307*	-0.380**	0.296*		0.043	-0.324*	-0.333**	0.250	-0.234	-0.010	-0.169	0.075	-0.141
	C: N	0.557***	-0.931***	-0.219	0.102	-0.487***	-0.180		0.446***	-0.132	-0.010	0.000	-0.704***	-0.627***	-0.511***	-0.426***
	C: P	0.270*	-0.260*	-0.858***	-0.158	-0.036	0.165 0	0.293*		0.826***	-0.073	0.304*	-0.406**	-0.153	-0.424***	0.244
	N: P	-0.261*	0.510***	-0.608***	-0.210	0.347 ^{**}	0.295* -	·0.540***	0.633***		-0.070	0.323*	-0.013	0.209	-0.148	0.519***
	Soluble sugar	0.032	-0.308*	-0.470***	-0.338**	0.135	0.287* 0	0.331^{*}	0.308*	0.010		-0.121	0.325*	0.206	0.334**	-0.115
	Starch	-0.021	0.048	0.150	0.523***	-0.320*	-0.066 -	0.059	0.024	0.036	-0.093		-0.213	0.495***	-0.587***	0.092
	Sucrose	0.148	0.203	-0.046	-0.351**	0.382**	0.068	0.179	0.112	0.209	0.172	-0.319*		0.743***	0.902***	0.366**
	NSC	0.088	0.194	0.110	0.244	-0.028	-0.014 -	0.187	0.104	0.187	0.037	0.723***	0.425***		0.400**	0.388**
	Sucrose:starch	0.206	0.007	-0.146	-0.492***	0.346**	0.060	0.026	0.124	0.082	0.195	-0.747***	0.835***	-0.105		0.258*
	δ ¹³ C	0.021	0.340**	-0.025	-0.292*	0.252	0.174 -	·0.357 ^{**}	0.105	0.331*	-0.210	-0.070	0.272*	0.132	0.209	
(q)	C		0.320*	0.577***	0.547 ^{***}	-0.539***	0.127 -	0.074	-0.496***	-0.628***	0.180	-0.198	0.544 ^{***}	0.348**	0.527***	-0.071
	z	-0.04		0.750***	0.628***	-0.257*	0.355** -	0.953***	-0.757***	-0.401 ^{**}	-0.012	-0.187	0.646***	0.456***	0.484***	0.118
	Р	-0.103	-0.153		0.878***	-0.654***	0.217 -	·0.654 ^{***}	-0.977***	-0.880***	0.040	-0.206	0.663***	0.456***	0.538***	-0.137
	K	-0.149	-0.476***	0.548***		-0.831^{***}	0.144 -	0.520***	-0.830***	-0.761***	0.054	-0.007	0.529***	0.503***	0.372**	-0.262*
	Ca	-0.312^{*}	-0.326*	0.219	0.095		-0.031	0.139	0.591***	0.683***	-0.063	-0.041	-0.291*	-0.317*	-0.219	0.279*
	Mg	-0.229	-0.233	-0.061	-0.006	0.510***		0.362**	-0.273*	-0.128	0.349**	-0.164	0.312*	0.155	0.276*	0.110
	C: N	0.257*	-0.960***	0.126	0.455***	0.258^{*}	0.168		0.677***	0.266*	0.089	0.142	-0.566***	-0.419***	-0.394**	-0.183
	C: P	0.339**	0.154	-0.885***	-0.380**	-0.359**	-0.065 -	0.092		0.886***	-0.106	0.274*	-0.647***	-0.380**	-0.547***	0.169
	N: P	0.011	0.773***	-0.681***	-0.565***	-0.428***	-0.162 -	0.762***	0.708***		-0.191	0.253	-0.508***	-0.265*	-0.474***	0.307*
	Soluble sugar	0.067	-0.102	-0.487***	-0.361 ^{**}	-0.032	0.185 (0.146	0.342**	0.124		-0.158	0.294*	0.144	0.303*	-0.235
	Starch	0.032	0.189	0.040	0.276*	-0.370**	-0.155 -	0.187	0.119	0.189	-0.056		-0.419***	0.485***	-0.735***	-0.026
	Sucrose	0.268*	0.615***	-0.335**	-0.629***	-0.380**	-0.279* -	·0.567 ^{***}	0.391**	0.642***	0.230	-0.056		0.591***	0.905***	0.079
	NSC	0.225	0.596***	-0.225	-0.282***	-0.545 ^{***}	-0.319* -	0.558***	0.378**	0.617 ^{***}	0.135	0.657 ^{***}	0.716***		0.219	0.053
	Sucrose:starch	0.286^{*}	0.337**	-0.315*	-0.628***	-0.155	-0.159 -	·0.287*	0.306*	0.400**	0.243	-0.543***	0.847***	0.260*		0.071
	813C	0.144	0.587***	-0.249	-0.522***	-0.275*	-0.109 -	·0.581 ^{***}	0.320*	0.592***	-0.089	0.061	0.551***	0.459***	0.408**	
Note age al (b) P ₂	:: (a) Partial co nd altitude (lov artial correlatic	rrelation ver triang m coeffici	coefficient le). ents on re	s on remov moving the	ring the eff effects of	ects of bot age (uppe	h age an r triangle	d altitude e). The col	(upper tri rrelation c	angle). Th oefficients	e correls without	ation coeff removing	icients wit g the effect	hout remo s of altitue	oving the e de (lower t	ffects of riangle).
$^*, p_{<}$	0.05; **, <i>p</i> <0.0 means nonstru	01; ***, <i>p</i> < ctural car	:0.001. bon.													

Table 6 Correlation coefficient among nutrients, NSC and δ^{13} C in twig of A. faxoniana along an altitudinal gradient

1555

as the optimum distribution zone for tree population, which resulting from the higher nitrogen use efficiency (NUE, derived from C: N ratio) at the expense of decreasing WUE. In this case, δ^{13} C was negatively correlated with C: N ratio in both needles and twigs along elevation (Tables 5 and 6), which follows the theory of trade-off between WUE and NUE (Iii et al. 1990). Therefore, the trade-off between NUE and WUE along elevation may contribute to understand the altitudinal distribution of A. faxoniana in relation to moisture and nutrient availability. Moreover, the variation of C: N ratio in twig also supported this point (Appendix 1). In addition, the a sampling bias may be another explanation for this inflection point, a humidity inhibit in the valley near to a river is in favor of tree growth and will show relative low water use efficiency.

The size and variation of NSC pool could mirror the balance between the demand for carbon and its supply for plants (Fajardo et al. 2012; Yan et al. 2012). Compared with other studies, our results indicate that A. faxoniana needles and twigs possessed high NSC concentration at the end of growing season (Xu et al. 2013; Yan et al. 2012). An abundant NSC suggests no carbon limitation under present CO₂ status, which is consistent with previous study (Li et al. 2009b; Shi et al. 2006). Moreover, carbon investment in storage (higher NSC) is an advantageous strategy in habitats with frequent stress or disturbance (Poorter and Kitajima 2007). Generally, high elevation are associated with low temperature, in which a decrease in the assimilation of photosynthetic carbon and starch turnover, as well as an increase in the accumulation of soluble sugars, such as sucrose and glucose (Dubey and Singh 1999; Klotke et al. 2004). The higher sucrose concentration may be a physiological adaptive strategy to high elevation for A. faxoniana (Wang et al. 2018; Xu et al. 2013). The concentrations of C and N in needles and δ^{13} C in needles increased in A. faxoniana with elevation (Figure 2 and Appendix 1). However, the photosynthetic rate along elevation showed distinct difference among three age cohorts, which could indicate the sensitivity differences for three ages.

References

Both current-year needles and twigs displayed a greater increase in both C: N ratio and δ^{13} C along elevation (Appendix 2), indicating the current-year tissues have a trade-off between NUE and WUE, and then lead to in a higher photosynthesis for carbon fixation. Therefore, the younger tissues may be able to better cope with changes such as global warming or extreme chilling.

4 Conclusion

The results of this study suggest that, both intrinsic and environmental factor are responsible for the variations in the plant traits of A. faxoniana in the Wanglang Natural Reserve. The age, elevation, and their interaction have profound effects on the physiological ecology of trees. The tissues generally possessed voung higher concentrations of P, K and δ^{13} C (only in needles), but lower Ca concentrations and ratios of C: P and N: P than the older ones. The current-year needles and twigs generally had the highest sucrose concentrations and sucrose: starch ratio among those of one-year and two-year old tissues. Our results suggested that A. faxoniana may employ more nutrient but not water to young tissues with elevation. Therefore, there are age-related variations in needles and twigs of A. faxoniana in nutrient, nonstructural carbon and isotope composition and the younger tissues are more sensitive to elevation than the older.

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA20020401) and the National Natural Science Foundation of China (NO. 31770650).

Electronic supplementary material: Supplementary material (Appendixes 1, 2) is available in the online version of this article at https://doi.org/10.1007s11629-018-5344-0.

Cabalkova J, Wahlund KG, Chmelik J (2007) Complex analytical approach to characterization of the influence of

carbon dioxide concentration on carbohydrate composition in Norway spruce needles. Journal of Chromatography A

1148(2): 189-199.

https://doi.org/10.1016/j.chroma.2007.03.017

- Custodio L, Correia PJ, Martins-Loucao MA, et al. (2007) Floral analysis and seasonal dynamics of mineral levels in carob tree leaves. Journal of Plant Nutrition 30(4-6): 739-753. https://doi.org/10.1080/01904160701289750
- Day ME, Greenwood MS, White AS (2001) Age-related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiology 21(16): 1195-1204. https://doi.org/ 10.1093/treephys/21.16.1195
- Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. Environmental Pollution 102(1): 453-456. https://doi.org/ 10.1016/S0269-7491(98)80068
- Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolising enzymes in rice plants. Biologia Plantarum 42(2): 233-239. https://doi.org/10.1023/a:1002160618700
- Elser JJ, Sterner RW, Gorokhova E, et al. (2003) Biological stoichiometry from genes to ecosystems. Ecology Letters 3(6): 540-550. https://doi.org/10.1111/j.1461-0248.2000.00185.x Escudero A, Mediavilla S (2003) Decline in photosynthetic
- nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. Journal of Ecology 91(5): 880-889. https://doi.org/10.1046/j.1365-2745.2003.00818.x
- Fajardo A, Piper FI (2017) An assessment of carbon and nutrient limitations in the formation of the southern Andes tree line. Journal of Ecology 105(2): 517-527. https://doi.org/10.1111/1365-27 5.1260
- Fajardo A, Piper FI, Pfund L, et al. (2012) Variation of mobile carbon reserves in trees at the alpine treeline ecotone is under environmental control. New Phytologist 195(4): 794-802. https://doi.org/10.1111/j.1469-8137.2012.04214.x
- Farquhar GD, Richards RA (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology 11(6): 539-552. https://doi.org/10.1071/pp9840539
- Garcia Lino MC, Cavieres LA, Zotz G, et al. (2017) Carbohydrate reserves in the facilitator cushion plant Laretia acaulis suggest carbon limitation at high elevation and no negative effects of beneficiary plants. Oecologia 183(4): 997-1006. https://doi.org/10.1007/s00442-017-3840-
- Green TH, Mitchell RJ, Gjerstad DH (2010) Effects of nitrogen on the response of loblolly pine to drought. II. Biomass allocation and C:N balance. New Phytologist 128(1): 145-152. https://doi.org/10.1111/j.1469-8137.1994.tb0399
- Hoch G, Richter A, Korner C (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell and Environment 26(7): 1067-1081.
- https://doi.org/10.1046/j.0016-8025.2003.01032.x Huang K, Liao Y, Dong T, et al. (2018) Sex-specific responses of tree-ring growth to climate associated with altitude in the dioecious tree Populus cathayana. Journal of Plant Ecology 11(5): 771-779. https://doi.org/ 10.1093/jpe/rtx048
- Hubick K, Farquhar G, Shorter R (1986) Correlation between water-use efficiency and carbon isotope discrimination in diverse peanut germplasm. Functional Plant Biology 13(6): 803-816. https://doi.org/ 10.1071/PP9860803 Hultine KR, Marshall JD (2000) Altitude trends in conifer leaf
- morphology and stable carbon isotope composition. Oecologia 123(1): 32-40.

https://doi.org/10.1007/s004420050986

Iii FSC, E Schulze A, Mooney HA (1990) The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21(1): 423-447.

https://doi.org/10.1146/annurev.ecolsys.21.1.423

Jam H, Winter K (2005) Carbon isotope composition of canopy leaves in a tropical forest in Panama throughout a seasonal cycle. Trees 19(5): 545-551.

https://doi.org/10.1007/s00468-005-0413-8

Klotke J, Kopka JN, Heyer AG (2004) Impact of soluble sugar

concentrations on the acquisition of freezing tolerance in accessions of Arabidopsis thaliana with contrasting cold adaptation - evidence for a role of raffinose in cold acclimation. Plant Cell and Environment 27(11): 1395-1404. https://doi.org/10.1111/j.1365-3040.2004.01242.x

- Koerselman W, Meuleman AFM (1996) The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33(6): 1441-1450. https://doi.org/10.2307/2404783
- Korner C, Farquhar GD, Roksandic Z (1988) A global survey of carbon isotope discrimination in plants from high-altitude. Oecologia 74(4): 623-632. https://doi.org/10.1007/bf00380063
- Korner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88(1): 30-40. https://doi.org/10.1007/bf00328400

Li C, Wu C, Duan B, et al. (2009a) Age-related nutrient concentration and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal

gradient. Trees 23(5): 1109-1121. https://doi.org/10.1007/s00468-009-0354-8

Li M, Kong G, Zhu J (2009b) Vertical and leaf-age-related variations of nonstructural carbohydrates in two alpine timberline species, southeastern Tibetan Plateau. Journal of Forest Research 14(4): 229-235. https://doi.org/10.1007/s10310-009-0132-x

Li MH, Xiao WF, Wang SG, et al. (2008) Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiology 28(8): 1287-1206.

https://doi.org/10.1093/treephys/28.8.1287

Livingston NJ, Guy RD, Sun ZJ, et al. (1999) The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell and Environment 22(3): 281-280.

https://doi.org/10.1046/j.1365-3040.1999.00400.x

- Lourens P, Frans B (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7): 1733-1743. https://doi.org/10.2307/20069130 Lowdon JA, Dyck W (1974) Seasonal variations in the isotope
- ratios of carbon in maple leaves and other plants. Canadian Journal of Earth Sciences 11(1): 79-88.

https://doi.org/10.1139/e74-007 Main TM, Dobberfuhl DR, Elser JJ (1997) N:P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis. Limnology and Oceanography 42(6): 1474-

1478. https://doi.org/10.4319/lo.1997.42.6.1474 Mitchell AK (1998) Acclimation of Pacific yew (Taxus brevifolia) foliage to sun and shade. Tree Physiology 18(11): 749-775.

https://doi.org/10.1093/treephys/18.11.749

Murata T, Akazawa T, Fukuchi S (1968) Enzymic mechanism of starch breakdown in germinating rice seeds. i. an analytical study. Plant Physiology 43(12): 1899. https://doi.org/10.1104/pp.43.12.1899

Nelson DW and Sommwers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH (eds) methods of soil analysis, Part 2. American Society of Agronomy and Soil Science, Madison, pp 539-579.

Niinemets U and Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell and Environment 20(7): 845-866.

https://doi.org/10.1046/j.1365-3040.1997.do1-133.x

- Peng G, Wu C, Xu X, et al. (2012) The age-related changes of leaf structure and biochemistry in juvenile and mature subalpine fir trees (Abies faxoniana Rehder & E.H. Wilson.) along an altitudinal gradient 60(2): 311-321.
- Poorter L and Kitajima K (2007) Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology 88(4): 1000-1011. https://doi.org/10.1890/06-0984

- Sardans J, Rivas-Ubach A, Penuelas J (2012) The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspectives in Plant Ecology Evolution and Systematics 14(1): 33-47. https://doi.org/10.1016/j.ppees.2011.08.002
- See CR, Yanai RD, Fisk MC, et al. (2015) Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest. Ecology 96(9): 2488-2498. https://doi.org/10.1890/15-0188.1
- Shi P, Koerner C, Hoch G (2006) End of season carbon supply status of woody species near the treeline in western China. Basic and Applied Ecology 7(4): 370-377.

https://doi.org/10.1016/j.baae.2005.06.005

- Sobrado MA and Ehleringer JR (1997) Leaf carbon isotope ratios from a tropical dry forest in Venezuela. Flora 192(2): 121-124. https://doi.org/10.1016/s0367-2530(17)30766-1
- Sohrt J, Herschbach C, Weiler M (2018) Foliar P- but not N resorption efficiency depends on the P-concentration and the N:P ratio in trees of temperate forests. Trees 32(5): 1443-1455. https://doi.org/10.1007/s00468-018-1725-9
- Sullivan PF (2016) Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska: reply. Ecology 97(3): 803-808. https://doi.org/10.1890/15-1734.1
- Taylor AH and Qin Z (1988) Regeneration patterns in oldgrowth Abies-Betula forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology 76(4): 1204-1218. https://doi.org/10.2307/2260643
- Tegischer K, Tausz M, Wieser G, et al. (2002) Tree- and needleage-dependent variations in antioxidants and photoprotective pigments in Norway spruce needles at the alpine timberline. Tree Physiology 22(8): 591.

https://doi.org/10.1093/treephys/22.8.591

- Vitoria AP, Vieira TD, Camargo PD, et al. (2016) Using leaf delta C-13 and photosynthetic parameters to understand acclimation to irradiance and leaf age effects during tropical forest regeneration. Forest Ecology and Management 379: 50-60. https://doi.org/10.1016/j.foreco.2016.07.048
 Vondrackova S, Hejcman M, Szakova J, et al. (2014) Soil
- Vondrackova S, Hejcman M, Szakova J, et al. (2014) Soil chemical properties affect the concentration of elements (N, P, K, Ca, Mg, As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) and their

distribution between organs of *Rumex obtusifolius*. Plant and Soil 379(1-2): 231-245.

https://doi.org/10.1007/s11104-014-2058-0

Wang H, Gong M, Xin H, et al. (2018) Effects of chilling stress on the accumulation of soluble sugars and their key enzymes in *Jatropha curcas* seedlings. Physiology and Molecular Biology of Plants 24(5): 857-865.

https://doi.org/10.1007/s12298-018-0568-6

- Wang M, Liu GH, Jin TT, et al. (2017) Age-related changes of leaf traits and stoichiometry in an alpine shrub (*Rhododendron agglutinatum*) along altitudinal gradient. Journal of Mountain Science 14(1): 106-118. https://doi.org/10.1007/s11629-016-4096-v
- Wright IJ, Reich PB, Mark W, et al. (2004) The worldwide leaf economics spectrum. Nature 428(6985): 821. https://doi.org/10.1038/nature02403
- Xu G, Jiang H, Zhang, YB, et al. (2013) Effect of warming on extracted soil carbon pools of *Abies faxoniana* forest at two elevations. Forest Ecology and Management 310: 357-365. https://doi.org/10.1016/j.foreco.2013.08.038
- Yan CF, Han SJ, Zhou YM, et al. (2012) Needle-age related variability in nitrogen, mobile carbohydrates, and delta¹³C within *Pinus koraiensis* tree crowns. Plos One 7(4): e35076. https://doi.org/10.1371/journal.pone.0035076
- Yemm EW and Willis AJ (1954) The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57(3): 508-514. https://doi.org/10.1042/bj0570508
- Zhao HX, Duan BL, Lei YB (2015) Causes for the unimodal pattern of leaf carbon isotope composition in *Abies faxoniana* trees growing in a natural forest along an altitudinal gradient. Journal of Mountain Science 12(1): 39-48. https://doi.org/10.1007/s11629-014-3174-2
- Zhu WZ, Xiang JS, Wang SG, et al. (2012) Resprouting ability and mobile carbohydrate reserves in an oak shrubland decline with increasing elevation on the eastern edge of the Qinghai– Tibet Plateau. Forest Ecology and Management 278(6): 118-126. https://doi.org/10.1016/j.foreco.2012.04.032
- Zorb C, Senbayram M, Peiter E (2014) Potassium in agriculture--status and perspectives. Journal of Plant Physiology 171(9): 656-669.

https://doi.org/10.1016/j.jplph.2013.08.008