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Abstract: This study aimed to produce a high-quality 
landslide susceptibility map for Teziutlán 
municipality, a landslide-prone region in Mexico, 
which is characterised by a depositional pyroclastic 
ramp. The heterogeneous quality of available 
topographic information (i.e. higher resolution digital 
elevation model only for a sub-region) encouraged to 
confront modelling results based on two different 
study area delineations and two raster resolutions. 
Input data was based on the larger modelling region 
L15 (163 km²) and smaller S (70 km²; located inside 
L15) with an associated raster cell size of 15 m (region 
L15 and S15) and 5 m (region S5). The resulting three 
data sets (L15, S15 and S5) were included into three 
differently flexible modelling techniques (Generalized 
Linear Model - GLM, General Additive Model - GAM, 
Support Vector Machine -SVM) to produce nine 
landslide susceptibility models. Preceding variable 
selection was performed heuristically and supported 
by an exploratory data analysis. The final models were 
based on the explanatory variables slope angle, slope 
aspect, lithology, relative slope position, elevation, 
convergence index, distance to streams, distance to 
springs and topographic wetness index. The ability of 
the models to classify independent test data was 

elaborated using a k-fold cross validation procedure 
and the AUROC (Area Under the Receiver Operating 
Characteristic) metric. In general, all produced 
landslide susceptibility maps depicted the hillslopes 
of the ravines, which cut the pyroclastic ramp, as 
prone to landsliding. The modelling results showed 
that predictive performances (i.e. AUROC values) 
slightly increased with an increasing flexibility of the 
applied modelling technique. Thus, SVM performed 
best, while the GAM outperformed the GLM. This 
tendency was most distinctive when modelling with 
the largest landslide sample size (i.e. data set L15; n = 
662 landslides). Non-linear classifiers (GAMs, SVMs) 
performed slightly better when trained on the basis of 
lower raster resolution (data set S15) compared to the 
5 m counterparts (data set S5). Highest predictive 
performance was obtained for the model based on 
data set L15 and the SVM classifier (median AUROC: 
0.82). However, SVMs also indicated the highest 
degree of model overfitting. This study indicates that 
the decision to delineate a study area, the selection of 
a raster resolution as well as the chosen classification 
technique can affect varying aspects of subsequent 
modelling results. The results do not support the 
assumption that a higher raster resolution (i.e. a more 
detailed digital representation of the terrain) 
inevitably leads to better performing or 
geomorphically more plausible landslide 
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Introduction  

Landslide susceptibility can be defined as the 
spatial likelihood of landsliding due to a particular 
set of static environmental conditions (Guzzetti 
2005). Susceptibility maps provide a spatial 
evaluation concerning the location of potential 
future slope instabilities and areas where 
landslides are not to be expected (Cardinali et al. 
2002; Guzzetti et al. 1999, 2005). In general, 
landslide susceptibility can be elaborated using 
qualitative, semi-quantitative or quantitative 
approaches (Reichenbach et al. 2018). Qualitative 
approaches, where a domain expert determines the 
most susceptible zones, are considered subjective 
as the results are mainly founded on experience 
and knowledge of a person (van Westen et al. 1999; 
Chen et al. 2009; Chauhan et al. 2010). 
Quantitative analyses are either based on physical 
laws (e.g. infinite slope models) or on empirical 
rules (i.e. statistically-based classifiers) that allow 
the combination of available spatial environmental 
information (Fell et al. 2008). Despite the large 
number of published research in the field of 
quantitative landslide susceptibility modelling, 
there is still no encompassing agreement on which 
modelling approach to choose under which 
circumstances (Brabb 1984; van Westen et al. 1997; 
Guzzetti et al. 1999; Glade and Crozier 2005; 
Reichenbach et al. 2018). 

In summary, statistically-based approaches 
built an empirical association between past 
landslide occurrences (and non-occurrences) and 
static environmental factors to elaborate typical 
landslide conditions. Resultant landslide 
susceptibility maps spatially depict the resultant 
classification rule in the form of a relative estimate 
on the propensity of spatial units to be affected by 
landslide susceptibility. The subsequent 
quantitative model validation primarily focuses on 
comparing the predicted susceptibility score with 
test data that was not applied to train the model 
(Chung and Fabbri 2003; Steger et al. 2016a). 

Statistically-oriented classification techniques 
are especially valuable for larger areas, also 
because of their lower reliance on challenging to 
derive geotechnical information (Fell et al. 2008; 
Cascini 2008). During the last decade, a vast 
number of publications confronted modelling 
results obtained by different statistical 
classification techniques (Brenning 2005; Rossi et 
al. 2010; Goetz et al. 2011; Vorpahl et al. 2012; 
Pradhan 2013; Kavzoglu et al. 2014; Pourghasemi 
and Rahmati 2018). Other research focused on the 
effects of data properties on the reliability of 
subsequent landslide susceptibility maps 
concluding that the input data quality co-
determines the final modelling results (Guzzetti et 
al. 2006; Cascini 2008; van Westen et al. 2008; 
Petschko et al. 2016; Steger et al. 2017; Zêzere et al. 
2017).  

According to literature, terrain derivatives 
extracted from Digital Elevation Models (DEMs) 
are regularly used in combination with thematic 
information as potential explanatory variables 
(Conforti et al. 2014). Commonly used terrain 
attributes include slope, aspect, elevation, slope 
curvature and diverse proxies for hydrological 
influences (Reichenbach et al. 2018). 

Several publications emphasize that the 
quality and spatial resolution (i.e. pixel size) of the 
underlying topographic information (i.e. DEM) co-
determines the final modelling results (Lee et al. 
2004; Akgün and Bulut, 2007; Catani et al. 2013; 
Fressard et al. 2014; Palamakumbure et al. 2015; 
Schlögel et al. 2018). Catani et al. (2013) 
emphasized that the optimal input data 
configuration changes with the pre-selected spatial 
scale in a notable manner, while Legorreta-Paulín 
et al. (2010) and Trigila et al. (2015) highlighted 
that model performance generally improved with 
increasing resolution of input data. 
Palamakumbure et al. (2015) concluded that a 10m 
DEM resolution was the optimal choice for 
modelling landslide prone terrain within their 
study site. Yet, in some areas, particularly in less 
developed countries, high quality topographic 
information, as derived by Light Detection and 
Ranging (LiDAR), is rarely available (Deb et al. 
2009; Althuwaynee et al. 2014; Romer and 
Ferentinou 2016). 

The aim of this study was to produce a high-
quality landslide susceptibility map for Teziutlán. 
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For this purpose, statistical-based landslide 
susceptibility modelling was performed. The 
objective was to confront modelling results based 
on different study area delineations (region L vs. S), 
different raster resolutions (5 m vs. 15 m) and 
differently flexible modelling algorithms in order to 
develop a suitable model for the study site with 
availability of heterogeneous data qualities. Thus, 
the presented research not only allowed insights 
into the effect of differently flexible classifiers on 
the modelling results, but also into the interplay 
between classification algorithms, study area 
delineation and modelling resolution. The 

produced nine models were evaluated 
quantitatively (e.g. k-fold cross validation) and 
qualitatively (e.g. prediction pattern). 

1    Study Area 

Teziutlán municipality is located in the Sierra 
Norte of Puebla mountainous system, within the 
transition of the Sierra Madre Oriental and the 
Trans-Mexican Volcanic Belt physiographic 
provinces (Figure 1). The capital town of the 
municipality is also called Teziutlán and it is 

 
Figure 1 Location map. The analyses were based on two different study area delineations, L15 and S5. DEM 
resolution was 15 m for the data set L15, 5 m for S5 and 15 m for S15. 
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located on the top of a plateau formed by lava flows 
and pyroclastic materials from Los Humeros 
caldera volcano (LHVC), which is situated 
approximately 20 km to the South of Teziutlán 
town.  

The climate can be described as warm 
temperate (range 12°C-22°C) and rainfall takes 
place all year long (precipitation ranges per year: 
1100-3600 mm) (INEGI 2009). The main drainage 
of the area is oriented N-S and NE-SW and 
influenced by tectonic lineaments (Capra et al. 
2003). The soils of the area are of volcanic origin 
and can predominantly assigned to the group of 
andosols (INEGI 2009). Human impact led to the 
tendency that the original vegetation (mountainous 
cloud forest) has been removed or replaced by 
grasslands, arable land and urban areas. Only at 
the north of the study area pine-oak woodlands are 
still present. The geology of Teziutlán (Figure 2) is 
linked directly to the activity of LHVC, one of the 
Pleistocene silica centres (Dávila-Harris and 
Carrasco-Núñez 2014). Among the eruptive 
products derived from LHVC that range from 

basalt to high-silica rhyolite, the Xaltipan 
ignimbrite is the most significant deposit. Most of 
these deposits are non-welded material easily 
recognized as ash-pumice flow deposits. These 
pyroclastic flows filled low areas of the rugged pre-
existing terrain covering a surface of circa 3500 
km2 (Ferriz and Mahood 1984) and formed ramps. 
Further details on the geological context of the area 
can be found in Murillo-García and Alcántara-
Ayala (2017). 

2    Materials and Methods 

2.1 Landslide inventory and landslide 
absences 

The landslide inventory used within this study 
consists of 662 landslides of the slide-type 
movement (Varnes and IAEG 1984). Four different 
archives of aerial photographs served as the basis 
for the visual identification of geomorphic 
landslide features: (i) the archive of the National 

 
Figure 2 Lithology map with the rock units (modified from Salinas-Rodríguez and Castillo-Reynoso 2011) 
Sedimentary rocks were joined on a single class. The same applied for the Andesite Teziutlán and granite layers. 
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Institute of Statistics and Geography (INEGI), (ii) 
the archive of ICA Foundation (private entity), (iii) 
the library of the Geography Institute of the 
National University of Mexico (UNAM), and the 
archive of the National Centre for Disaster 
Prevention (CENAPRED). In summary, stereo-
pairs of aerial photographs for the years 1942, 1956, 
1974, 1978, 1980, 1991, 1999 and 2007 as well as 
very high resolution satellite images from the 
period 1999 to 2015 were adopted. Additional field 
surveys were carried out to cross-check the 
previously mapped landslides. More details on the 
landslide inventory can be found in Murillo-García 
and Alcántara-Ayala (2017).  

For modelling, landslide occurrences were 
represented by one point per mapped landslide 
initiation zone as recommended by several 
previous investigations to avoid a weighting for 
landslide magnitude and to reduce the impact of 
spatial autocorrelation (Atkinson and Massari 1998; 
van den Eeckhaut et al. 2006; Qi et al. 2010; 
Gorum et al. 2011; Petschko et al. 2014; Goetz et al. 
2015). Landslide absence locations related to a 
random sample of points outside digitized 
landslide bodies. The final binary response 
variables consisted of an identical number of 
landslide presence and absence observations (1:1 
sampling) (Heckmann et al. 2014; Regmi et al. 
2014; Goetz et al. 2015; Steger et al. 2016a). Hussin 
et al. (2016) analysed the effects of different 
sampling strategies for a grid-based susceptibility 
modelling and concluded that in some cases, even a 
minor proportion of 1:1 could be sufficient to 
obtain meaningful landslide susceptibility models.  

2.2 Study area definition and 
environmental variables 

The topographic variables of this study relate 
to two DEMs of varying quality. The coarser scaled 
DEM (i.e. 15 m) was constructed by using 
photogrammetric techniques (INEGI 2013a) 
whereas the higher resolved DEM (i.e. 5 m) was 
based on an aerial LiDAR campaign (flight on 
January 20, 2010) (INEGI 2013b). Two different 
study area delineations (Larger L and smaller S) 
were defined because only the 15 m DEM covers 
the entire study area (Figure 1). In detail, the entire 
study area extends over 163 km² (region L15) while 
the sub-region covers 70.3 km² (region S5). 

Summarizing, region L is larger and region S 
represent a sub-region of L (Figure 1). Data set L15 
relates to the 163 km² large region, 662 mapped 
landslides and a DEM resolution of 15 m. The data 
set S5 relates to the mentioned sub-region (70.3 
km²), 449 landslides and the 5 m DEM (Table 1). 
The third data set, namely S15, covers the same 
extension as region S5 (70.3 km²), but is based on 
a coarser DEM resolution (i.e. 15 m).  

Comparisons of the models based on the data 
set L15 and S15 allowed to scrutinize the effect of 
study area delineation by keeping the modelling 
resolution constant (i.e. 15 m) (Gordo et al. 2017; 
Steger and Glade 2017). The influence of raster 
resolution was elaborated by confronting modelling 
results based on the identical study area 
delineation, but on different modelling resolutions 
(S5: 5 m vs. S15: 15 m). 

Within this study, candidates of frequently 
used explanatory variables were analysed prior to 
select or dismiss them for further analyses (Table 
2). The two different DEMs served as a basis to 
derive slope angle, slope aspect, general curvature, 
plan curvature, profile curvature, Topographic 
Wetness Index (TWI) (Beven and Kirkby 1979), 
Stream Power index (SPI) (Moore et al. 1991), 
Convergence Index (CI) (Olaya 2004), relative 
slope position (RSP) and catchment area within the 
SAGA GIS software (Conrad 2006). Furthermore, a 
reclassified lithology layer as well as the variables 
vertical distance to streams (VDTCHN), distance to 
streams, and distance to springs were produced. 

Slope angle is the most frequently used 
predictor in statistical landslide susceptibility 
modelling and commonly considered as the main 
static explanatory variable of landslide occurrence 
(Costanzo et al. 2012; Reichenbach et al. 2018). 
Information on the altitude of an area, as directly 
represented by the DEM, can be seen as a proxy for 
altitude-dependent variation in weathering 
conditions (Costanzo et al. 2012). The general 
morphometric form of an area may be linked to the 
variability in overland water flow and soil moisture 

Table 1 Study area extent, pixel size and number of 
landslides (see also Figure 1). 

Data set Extent (km2) Pixel size 
(m) 

Landslides 

L15 163 15 662 
S5 70.3 5 449 
S15 70.3 15 449 
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conditions that in turn may influence soil 
properties. Proxys for hydrological influences are 
frequently represented by second order DEM 
derivatives, such as curvature, CI (Ayalew et al. 
2004; Olaya 2004; San 2014) or by variables such 
as the TWI or the catchment area (Dahal et al. 
2008; Costanzo et al. 2012; Catani et al. 2013). 
Slope aspect refers to the orientation of a hillslope 
and may represent effects related to the varying 
intensities of insolation (Catani et al. 2013; 
Guzzetti et al. 1999).  

The Euclidean distance to streams and the 
vertical distance to channels describe the proximity 
or remoteness to potential landslide influencing 
linear features. The streams of the study area have 
incised deep steep valleys and ravines into the 
pyroclastic ramp deposits. SPI represents an 
approximation of the erosive power and may be 
associated with potential slope undercutting. Field 
observations suggest that landslides are frequently 
at the top of these depth ravines. Hence, RSP can 
be a suitable explanatory variable as it indicates the 

relative position of each cell at a hillslope (e.g. 
ridge, middle slope, valley). Field surveys 
suggested an increasing landslide occurrence in 
closer proximity to springs. Besides higher water 
availability, locations closer to springs could also 
be indicative of the existence of faults covered by 
pyroclastic deposits. Thus, the proximity variable 
distance to springs was included as a potential 
variable candidate. 

Lithology is a frequent proxy for the parent 
material. Within this study, some lithology classes 
were merged into a unique class in case of similar 
geotechnical properties (Table 2). The lithology 
layer is based on a 1:50,000 geologic map 
published by the National Geological Service of 
Mexico (Servicio Geológico Mexicano, SGM) 
(Salinas-Rodríguez and Castillo-Reynoso 2011). 

Petschko et al. (2014) pointed out that land 
cover may often not be considered as static in time 
and therefore not suitable to link with historical 
landslide data (i.e. unknown temporal occurrence). 
In some cases, specific land cover units can even be 

Table 2 Data summary by scale, type and producer 

Potential explanatory variables Type Producer 

Topographic 

Slope Numerical (degrees) SAGA GIS 
Elevation Numerical (meters above sea level) INEGI 
Aspect Categorical: North, East, South and West.  SAGA GIS 
General Curvature 

Numerical (dimensionless) SAGA GIS Plan Curvature 
Profile Curvature 
Relative slope position Numerical (0-1) SAGA GIS 
Convergence index Numerical (percent) SAGA GIS 

Hydrological 

Vertical distance to streams Numerical (meters) SAGA GIS 
Catchment area Numerical (square meters) SAGA GIS 
Topographic Wetness 
Index Numerical (dimensionless) SAGA GIS 

Stream Power Index Numerical (dimensionless) SAGA GIS 

Distance to springs Numerical (meters) 
SAGA GIS and 
field surveys. 

Distance to streams Numerical (meters) SAGA GIS 

Geological Lithology units 

Categorical (rock type) 
(1) Basalt-andesite 
(2) Sedimentary hard rock (conglomerate, limestone, 
Limonite) 
(3) Tertiary igneous hard rock (andesite-basalt from 
Teziutlán formation, and granite) 
(4) Falls deposits (ash-pumice-lapilli), colluviums and 
alluvium 
(5) Pumice flow unwelded (QptPu)  
(6) Pumice flow unwelded (QptlgTr-uw) 
(7) Pumice flow welded (QptlgTr-w) 
(8) Schist* 

SGM and field 
surveys. 

Notes: *Schist rock unit is not present at 5 m extension area and consequently not included in the S5 and S15 
models. INEGI is the acronym for National Institute of Geography and Statistics of Mexico, and SGM is National 
Geological Service of Mexico. 
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linked to a systematic under- or overrepresentation 
of mapped landslide information (e.g. incomplete 
mapping in forested areas). An inclusion of land 
cover as a variable may therefore lead to biased 
statistical relationships (Steger et al. 2017). Since 
both arguments may be valid for the present study, 
the conducted analysis did not consider currently 
observable land cover conditions.  

2.3 Exploratory data analysis and variable 
selection 

The selection of explanatory variables is an 
important step in landslide susceptibility modelling 
(Costanzo et al. 2012). Within this study, variable 
selection was performed heuristically, supported by 
an exploratory data analysis.  

An initial evaluation of the Individual 
Classification Power (ICP) revealed the ability of 
each variable to discriminate observations of the 
binary response. The ICP relates to model 
predictions (score between 0-1) which are based on 
classifiers trained separately for each single 
variable (i.e. one model per predictor). The Area 
Under the Receiver Operating Characteristic 
(AUROC) curve (Hosmer and Lemeshow 2000) 
was used as a metric to evaluate the ICP (Zweig and 
Campbell 1993; Goetz et al. 2015). In summary, the 
AUROC curve plots all positive true rates 
(sensitivity) against associated false positive rates 
(1 – specificity) for each possible probability 

threshold. The presented AUROC scores are based 
on the R package “ROCR” (Sing et al. 2009). An 
AUROC of 1 depicts that the respective single-
variable model enabled a perfect separation of 
landslide presences and absences while a value of 
0.5 points to a random classification. In the case 
two or more variables represented a similar 
landslide influencing factor (i.e. curvature and 
convergence index), we opted to include only one 
in order to decrease redundancies and ensure a 
parsimonious and interpretable model. In this 
context, also the ICP was taken into account for 
variable selection/rejection (i.e. the respective 
variable had a lower mean ICP than a variable that 
stands for a similar landslide explanatory variable). 
GLM regression coefficients provided insights into 
the direction of modelled associations between 
landslide occurrence and single continuously 
scaled predictor variables from a single-predictor 
perspective. Positive trends (i.e. “+” in Table 3) 
indicated that the modelled likelihood of landslide 
occurrence increases with an increasing predictor 
value (e.g. increasing slope angles) while negative 
trend (i.e. “-“ in Table 3) depicts the opposite 
tendency. Variables that showed a geomorphically 
unreasonable association to landslide occurrence 
were rejected from subsequent modelling. 

2.4 Classification and model validation 

Three different binary soft classification 

Table 3 Results of individual classification power (AUROC values). +/-, trend of association based on regression 
coefficients. GLM, logistic regression; GAM, general additive model regression; SVM, support vector machine; RSP, 
relative slope position index; SPI, stream power index; TWI, topographic wetness index; VDTCHN, vertical distance to 
channel. 

Variables 
L15 (15 m) S15 (15 m) S5 (5 m) 

GLM GAM SVM Trend GLM GAM SVM Trend GLM GAM SVM Trend 
Slope 0.538 0.579 0.607 + 0.504 0.578 0.621 + 0.643 0.643 0.658 + 
Lithology 0.717 0.717 0.659  0.710 0.710 0.744  0.694 0.694 0.661  
Aspect 0.556 0.556 0.552  0.557 0.555 0.590  0.547 0.547 0.540  
Catchment area 0.484 0.514 0.543 + 0.506 0.560 0.515 - 0.501 0.513 0.495 + 
CI 0.542 0.542 0.583 - 0.550 0.550 0.629 - 0.595 0.597 0.609 - 
Curvature 0.499 0.522 0.537 - 0.490 0.509 0.55 + 0.526 0.546 0.59 - 
Elevation 0.620 0.633 0.675 - 0.672 0.672 0.694 - 0.672 0.672 0.703 - 
Plan curvature 0.490 0.537 0.564 + 0.517 0.517 0.571 - 0.554 0.554 0.567 + 
Profile curvature 0.504 0.544 0.428 + 0.501 0.531 0.581 - 0.497 0.612 0.619 + 
Distance to streams 0.595 0.595 0.625 + 0.64 0.64 0.671 - 0.579 0.580 0.620 + 
RSP 0.593 0.612 0.611 - 0.633 0.633 0.646 - 0.601 0.628 0.625 - 
SPI 0.506 0.515 0.525 - 0.518 0.534 0.542 + 0.414 0.596 0.581 - 
Distance to spring 0.521 0.607 0.62 - 0.540 0.564 0.644 + 0.549 0.595 0.593 + 
TWI 0.525 0.548 0.595 + 0.507 0.545 0.594 - 0.564 0.57 0.571 + 
VDTCHN 0.580 0.580 0.589 - 0.646 0.646 0.658 - 0.533 0.558 0.553 + 
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techniques were used to model landslide 
susceptibility for the three data sets (L15, S5 and 
S15) leading to nine models in total. For this 
purpose, we opted for three differently flexible 
classifiers in order to find out if a more flexible 
algorithm would favour more reliable spatial 
predictions for the study site. Thus, we confronted 
classifiers based on a linear structure (i.e. 
Generalized Linear Model; GLM) with a 
moderately flexible semi-parametric algorithm (i.e. 
Generalized Additive Model; GAM) and a 
comparably flexible machine learning technique 
(i.e. Support Vector Machine; SVM).  

GLM are based on a linear model structure 
and allow tackling two-class classification 
problems using a combination of scalar and 
categorical predictors. A GLM with a logistic link 
function (also referred to as binary logistic 
regression) is the most frequently used approach to 
model landslide susceptibility (Brenning 2005; 
Goetz et al. 2015; Reichenbach et al. 2018). The 
presented GLMs are based the R package “stats” (R 
Core Team 2016).  

GAMs are semi-parametric extensions of 
GLMs (Hastie and Tibshirani 1986). GAMs are 
more flexible than GLMs and allow to account for 
non-linear relationships between the binary 
response and scalar predictor variables by applying 
empirically fitted smoothing functions (Hastie and 
Tibshirani 1990; Wood 2006). Several studies 
highlight that GAMs are suitable for mapping 
landslide-prone terrain (Park and Chi 2008; 
Brenning 2008; Goetz et al. 2011; Vorpahl et al. 
2012; Petschko et al. 2013; Goetz et al. 2015; 
Youssef et al. 2015; Steger et al. 2016a). The GAMs 
were fitted using the “gam” R package (Hastie 
2009). 

Machine learning algorithms are usually more 
flexible than parametric or semi-parametric 
approaches and frequently applied for pattern 
recognition and classification. SVMs are popular to 
delineate landslide susceptibility while producing 
coherent spatial prediction patterns (Goetz et al. 
2015; Steger et al. 2016a). A SVM is a maximum-
margin classifier that enables non-linear 
discrimination between classes (e.g. landslide 
presence and absence) by transforming 
explanatory variables (i.e. the features) into a 
higher-dimensional feature space (Vapnik 1998; 
Hong et al. 2015). Within this higher dimensional 

feature space, data points can be separated linearly 
using a hyperplane whose position maximizes the 
“margin” between the observations (Kotsiantis 
2007). SVM hyperparameter tuning (C and sigma) 
was conducted via internal cross validation using a 
systematic grid search. SVMs were based on the R 
package “kernlab” (Karatzoglou et al. 2004) while 
parameter tuning was based on “mlr” (Bischl et al. 
2016). 

Modelling results obtained by GLMs, GAMs 
and SVMs were transferred to each pixel of the 
study area to spatially predict landslide-prone 
areas. The final maps were then visualized by 
classifying the obtained susceptibility scores into 
quintiles in Quantum GIS (QGIS Development 
Team 2009) to ensure a systematic visual 
comparability (Hussin et al. 2016). The classes 
were grouped into very low (saturated green 
colour), low (clear green colour), medium (yellow 
colour), high (orange colour), and very high (red) 
likelihood of landslide occurrence.  

The capability of a landslide susceptibility 
model to “foresee” landsliding can be estimated by 
confronting predicted susceptibility scores with 
model independent test data (i.e. predictive 
capability) (Chung et al. 1995). Modelling results 
were evaluated by confronting the obtained 
classification rule (i.e. spatially predicted 
susceptibility scores) with previously sampled 
landslide presence/absence data via the AUROC. 
The elaboration of the predictive capability 
requires a splitting of the available data into 
training and test data. Performance estimates that 
are based on multiple partitions of training and test 
sets are less dependent on (random) variability 
associated with specific data partitions and enable 
to estimate the robustness of calculated metrics 
(e.g. via the interquartile range). For this study, 
data partitioning was based on a k-fold cross 
validation procedure implemented in the R 
package “sperrorest” (Brenning 2012). Each of the 
nine models has been evaluated by repeatedly 
splitting the initial data into multiple training and 
test sets. More precisely, the presented 
performance estimates (i.e. AUROCs) are based on 
50 repetitions and 10 folds per repetition leading to 
500 AUROCs for each of the nine models. More 
details on k-fold cross validation in the context of 
landslide susceptibility modelling can be found in 
Steger et al. (2016b). The inter-quartile range (IQR) 
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of obtained AUROCs provided insights into 
predictive performance variabilities (i.e. ~ 
uncertainties). Lower IQR indicates robust model 
performances and vice versa (Goetz et al. 2015). 
Additionally, an estimate on the degree of model 
overfitting was obtained by confronting fitting and 
predictive performances (i.e. median training set 
AUROC minus median test set AUROC). 

3    Results 

3.1 Variable selection 

The results of the initial exploratory data 
analysis (Table 3) eased to select a common set of 
explanatory variables for subsequent statistical 
modelling. The results depict that the widely used 
predictor slope angle showed a positive 
relationship (trend) to landslide occurrence within 
all single-predictor GLMs and an ICP of > 0.64 for 
all classifiers at a resolution of 5 m. At 15 m 
resolution, the ICP for the predictor slope angle 
was < 0.63 for the SVM classifier and < 0.6 for the 
parametric and semiparametric models (GLM, 
GAM). GLMs pointed to negative trend between 
landslide occurrence and the elevation of the area 
with ICPs between 0.62 (GLM, data set L15) and 
0.70 (SVM, data set S5). The topographic variables 
aspect and TWI showed maximum ICPs of 0.59 
(SVM, data set S15) and 0.595 (SVM, data set L15) 
respectively. The ICP associated with the RSP was > 
0.59 and < 0.65 while the associated relationship 
was constantly estimated to be negative (lower 
slope positions are more likely affected by 
landsliding). Comparing identical data set and 
classifier combinations (e.g. SVM, data set L15), 
RSP constantly showed higher ICPs than the other 
variable which relates to the relative hillslope 
position (Vdtchn). Thus, RSP was favoured over 
VDTCHN for subsequent modelling. The proximity 
variables, distance to streams and distance to 
spring were associated with ICPs > 0.57 and > 0.52, 
respectively. We opted to dismiss the SPI variable 
due to its conceptual similarity with the distance to 
stream layer and low ICP values. 

The curvature variables (general, plan and 
profile curvature), depicted contradictory trends in 
the estimated direction of association from one 15 
m data set (L15) to the other (S15). Only the CI 
variable constantly depicted concave shaped areas 

as more likely affected by landslide occurrence 
among all data sets. Also due to its comparably 
high ICP values (compared with the curvature 
variables), CI was favoured for successive 
modelling. The parametric and semi-parametric 
models (GLM, GAM) trained with the categorical 
variable lithology revealed particularly high ICPs 
of > 0.71 for low raster resolutions (i.e. 15 m) and > 
0.69 for the 5 m models. The holistic interpretation 
of the previously described explanatory variables, 
in combination with experiences made during 
extensive field trips, led to the selection of the 
following predictor combination: slope angle, 
aspect, lithology, RSP, elevation, CI, distance to 
streams, distance to springs and TWI (Figure 3). 

3.2 Model evaluation 

Median AUROC scores (Figure 4) calculated 
on the basis of k-fold cross validation for all 
multiple variable models revealed an acceptable to 
excellent discrimination of model independent test 
cases (i.e. predictive performance) according the 
general rules of Hosmer and Lemeshow (2000). 
Predictive performance scores were > 0.76 and < 
0.81. A confrontation of classification techniques 
highlights that SVMs persistently outperformed the 
GLMs and GAMs produced with identical input 
data sets. In this context, GAMs performed second 
best while GLMs performed worst from a 
predictive performance point of view. Surprisingly, 
no substantial systematic difference in model 
performance was observed when confronting 
models generated on the basis of different data sets 
(L15 vs. S5 vs. S15; colours in Figure 4). Median 
AUROCs associated with the GLMs were slightly 
higher for the data set S15 (0.782) in comparison to 
L15 (0.759) and S5 (0.781). All GAMs performed 
equally well with median test set AUROCs > 0.779 
and < 0.791. SVMs performed better for L15 (0.817) 
than for S15 (0.791) and worst for the higher 
resolution data set S5 (0.794). 

The box plot sizes (i.e. the vertical distance 
between the 1st and the 3rd quartile in Figure 4) can 
be interpreted as an indicator of prediction 
performance variability, i.e. uncertainty. In this 
context, all nine models showed rather similar 
variability in predictive performance uncertainty 
with IQRs ranging from 0.0506 (SVM, L15) to < 
0.0670 (SVM, S5). 
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Figure 3 Visual impression of selected explanatory variables (lithology is shown in Figure 2). Convergence index 
(here visualized according two classes) was included as continuously scale variable. TWI, Topographic Wetness Index; 
RSP, Relative slope position. (-To be continued-)  
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Figure 3 Visual impression of selected explanatory variables (lithology is shown in Figure 2). Convergence index 
(here visualized according two classes) was included as continuously scale variable. TWI, Topographic Wetness Index; 
RSP, Relative slope position.  
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The confrontation of obtained fitting 
performance scores (training data) and predictive 
performances (test data) allowed to gain insights 
into the degree of model overfitting (yellow 
triangles and right y axis in Figure 4). This analysis 
revealed that the most flexible and quantitatively 
best performing (i.e. predictive performance) 
classifier, namely SVM, exhibited the highest 
degree of model overfitting. The less flexible 
models, GLM and GAM, depicted a considerably 
lower tendency to “overlearn” the training data. In 
numbers, the discrepancy between median training 
and test AUROCs for the SVMs were 0.053 (L15), 
0.060 (S15) and 0.063 (S5) while GLMs and the 
GAMs were associated with values from 0.019 to 
0.026. 

3.3 Susceptibility maps 

The spatial prediction patterns associated with 
all landslide susceptibility maps are exemplarily 
depicted within Figure 5 for a landslide prone area. 
The superimposed landslide initiation zones and 
buildings outlines allow a visual confrontation with 
estimated susceptibility scores and provide a first 
impression of the relative exposedness of building 
infrastructure to landslide occurrence. The 
examples also highlight that the produced maps 
show a general spatial agreement of larger 
predicted susceptibility patterns. However, a more 
detailed evaluation also reveals some differences 

between the maps because of different raster 
resolutions, classification algorithms and study 
area delineations.  

The more detailed representation of 
topographic detail within all models based on the 
data set S5 is also reflected by a locally more 
differentiated pattern of predicted susceptibility 
scores. However, even if the respective maps may 
give rise to the impression of more detailed 
modelling results, associated predictive 
performances (Figure 4) did not provide 
quantitative evidence for a higher ability of the 
models to “foresee” future landsliding. The 
comparably high influence of lithological 
differences on the models based on GLM and GAM 
was reflected by abrupt changes in predicted 
landslide susceptibility within the southwest 
portion of the area, where sedimentary rocks are 
located next to the ignimbrite unit. The area 
characterized by sedimentary rocks (Chignautla hill) 
was estimated to be relatively unsusceptible to 
landsliding. In contrast, the maps based on SVM 
seemed to be less influenced by this categorical 
variable, but more reliant on topographical 
predictors (Figure 6). The observed higher portion 
of areas where very high and very low susceptibility 
values were situated in close proximity to each 
other went frequently hand in hand with abrupt 
changes in the topographical data, which is also 
influenced by the applied modelling resolution (i.e. 
smoother topography in case of lower resolution). 

 
Figure 4 Box plots of k-fold cross validation based AUROC scores for all nine models. Left y axis shows AUROC 
scores, right y axis and yellow triangles indicates the degree of model overfitting (difference between median test set 
AUROC and training set AUROC).  
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4    Discussion 

One aim of this study was to make effective use 
of available data on landslide occurrence and 
environmental data sets and to explore state-of-
the-art modelling procedures in order to achieve a 
meaningful assessment of landslide-prone terrain. 
However, also within this study, the utilized data 
sets cannot be considered perfect. The complexity 
of the phenomenon under study, the spatially 
varying persistence of geomorphic landslide 
features and the limitations inherent in the 
adopted landslide mapping procedure (see section 
2.4) inevitably influenced the spatial 
representativeness and accuracy of applied 
landslide information (Guzzetti et al. 1999; Glade 
and Crozier 2005; van Westen et al. 2008; Che et al. 
2012).  

It is supposed that the resulting limitations of 
landslide inventory data also affected the presented 
landslide susceptibility assessment (Ardizzone et al. 

2002; Fressard et al. 2014). The influence of minor 
to medium positional errors of landslide data is 
expected to decrease with a coarser modelling 
resolution (Steger et al. 2016b). This is another 
argument why the utilization of larger cell sizes (in 
our case 15 m instead of 5 m) might not necessarily 
favor less meaningful analysis results. In fact, also 
obtained predictive performances did not reflect a 
superior ability of the 5 m models to predict out-of-
model landslide observations. The present study 
highlighted that finding an optimal pixel resolution 
for landslide susceptibility modelling is not a trivial 
task. It contributes to previous research, which 
showed that higher DEM resolutions do not 
necessarily improve subsequent modelling results 
(Lee et al. 2004; Catani et al. 2013; Legorreta-
Paulín et al. 2010; Palamakumbure et al. 2015; 
Trigila et al. 2015). A geomorphology oriented 
interpretation of the results indicated that 
emphasis should be placed to find a balance 
between topographic detail (i.e. DEM) and coarser  

 
Figure 5 Classified (quintiles) landslide susceptibility maps at La Aurora neighbourhood. 
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Figure 6 Comparison of predictive surface of landslide susceptibility maps. 
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scaled thematic information (e.g. Lithology) 
(Petschko et al. 2014; Steger et al. 2016a).It is 
assumed that the produced models based on a 
lower spatial resolution (15 m pixel size) are likely 
to relate more accurately to the topographic 
circumstances before slope failure (pre-failure 
morphology) and thus are more suitable to 
describe susceptible terrain which was not yet 
affected by slope instability. In contrast, modelling 
with higher resolutions bears the danger of training 
the models towards a too detailed description of 
past landslide morphology (i.e. performing 
landslide detection instead of spatial prediction) 
(van Den Eeckhaut et al. 2006; van Westen et al. 
2008; Petschko et al. 2014; Steger et al. 2016b).  

Recent landslide susceptibility studies 
highlighted that a change in the study area 
delineation can result in rather dissimilar 
prediction patterns within the identical sub-region 
and divergent model performance estimates 
(Gordo et al. 2017; Steger and Glade 2017). The 
conducted visual confrontation of landslide 
susceptibility patterns that were based on different 
study area extents (but identical raster resolution 
and classifiers) only partly confirmed these 
previous observations. Compared to these previous 
studies, differences were not as evident, also 
because the enlargement of the areal extent (i.e. 
from data set S15 to L15) was not associated with 
an inclusion of a high portion of unsusceptible (e.g. 
flat) and easy to classify terrain. In fact, observed 
similar predictive performance estimates among 
the models associated with the data sets L15 and 
S15 provided quantitative evidence that the 
classification task (i.e. discriminating landslide 
presences from absences) has not been facilitated 
substantially by simply changing the study area 
extent.  

Another point worth further consideration 
relates to the selection of a suitable set of 
explanatory variables. Land cover was a-priori 
excluded from modeling procedure to avoid a 
direct propagation of an expected land-cover 
related landslide mapping bias (cf. section 2.2) into 
the final modeling results (Steger et al. 2017). 
Within this study, environmental factors were 
chosen heuristically (Kavzoglu et al. 2015) in order 
to take advantage of extensive field experiences 
(Murillo-García and Alcántara-Ayala 2017) and to 
reduce the danger of obtaining systematically 

distorted modelling results (Steger et al. 2016a). 
Despite a careful evaluation of input data, lack of 
detailed information on soil properties poses a 
major drawback of this study, given that the 
importance of near surface underground 
conditions observed during field surveys. It is 
expected that the included lithology layer can just 
partly be seen as a useful proxy for subsurface 
conditions, even though this variable contributed 
substantially to “predict” test set data (i.e. the 
AUROC increased from 0.684-0.766 to 0.759-
0.817 by including lithology). 

Other selected thematic variables, such as the 
distance to spring or the distance to streams, are as 
well known to not fully represent the influence of 
linear and punctual water supply. However, field 
surveys as well as a positive influence of the 
present spatial data sets on predictive performance 
estimates supported their inclusion within the 
models. 

K-fold cross validation indicated that the 
models performed “acceptably well” to “excellent” 
(Hosmer and Lemeshow 2000) to spatially 
discriminate independent test data, with higher 
performances scores for more flexible modelling 
algorithms. However, it is also known that 
predictive performance estimates “solely” depict 
the degree of match between the predicted 
probability scores and independent test data 
(Chung and Fabbri 2003; Guzzetti et al. 2006). The 
sole evaluation of predictive performances of 
models associated with identical input data 
suggests that GLMs were outperformed by the 
GAMs while SVMs constantly perform best.  

However, the inspection of the calculated 
model overfitting scores also highlights that an 
increasing flexibility of the modelling algorithm 
was accompanied by an increasing degree of model 
overfitting. “Overlearning” might be a particular 
problem in the context of omnipresent error-prone 
data sets, due to the higher potential to model not 
only geomorphic plausible relationships, but also 
input data flaws (Steger et al. 2016b; Steger et al. 
2017). The holistic evaluation of the modelling 
results revealed that the selection of the “best” 
model for an area is a challenging task and should 
not be driven by the interpretation of a single 
performance metric (Rossi et al. 2010; 
Reichenbach et al 2018). Future analyses based on 
a spatial cross validation framework are expected 
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to allow deeper insights into both, model 
uncertainties and the relevance of predictor 
variables within a multiple variable modelling 
context (Schratz et al. 2018).   

In synthesis, the map produced with SVM for 
the data set L15 (Figure 7) was selected to be most 

suitable for the purpose of this study. This choice 
was strongly influenced by obtained predictive 
performance estimates, the covered areal extent 
(i.e. the map covers the entire study site) while 
simultaneously providing a slightly higher spatial 
differentiation of predicted susceptibility scores (i.e. 

 
Figure 7 Landslide susceptibility map for data set L15 based on the SVM classifier and underlain by a shaded relief 
image. 
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in comparison to GLM and GAM). The major 
drawback of this selection can be associated to the 
comparably high degree of model overfitting. Given 
that past landslide locations of the area are likely to 
be reactivated in the future, the detected model 
overfitting was not judged to be a major drawback 
in the context of this study. 

For the study area, elevation can be associated 
with lithology: highest elevations are in the 
Southwest (where the LHCV is located) and in 
Chignautla hill. In the Southwest portion, 
characterised by the presence of basalt lava flows 
and consolidated ignimbrite, number of landslide 
occurrence is low. Additionally, in Chignautla hill 
(composed mainly by sedimentary hard rocks) 
landslide occurrence is not that high either. In all 
the produced maps is clear that low and very low 
susceptibility values are predominate at the South 
and West areas. In contrast, in the North and 
Southeast sectors of the study area (with minor 
elevation values), where the ramp of 
unconsolidated pyroclastic deposits is situated (see 
Murillo-García and Alcántara-Ayala 2017), 
landslide occurrence is higher. Besides, the high 
capacity of water retention of the unconsolidated 
volcanic materials and soils of the pyroclastic ramp 
suggest that these materials are prone to landslides 
occurrence. Although the top of the pyroclastic 
ramp cannot be considered as a plain surface, in all 
maps the top of the pyroclastic ramp shows low 
and very low susceptibility values. In the other 
hand, landslides occur mainly at the slopes of 
ravines of the pyroclastic ramp. In all the nine 
susceptibility maps these slopes exhibit high and 
very high values. An issue to take into account, is 
that the urban growth of Teziutlán town 
(intensified in the second half of the 20thcentury) 
made that the slopes of the pyroclastic ramp where 
occupied to build new households (this is similar 
for Chignautla town). 

5    Conclusions 

A data-driven landslide susceptibility analysis 
was carried out for an area where sedimentary 
rocks are overlaid by a ramp formed by 
unconsolidated pyroclastic and fall volcanic 
deposits. Besides two different study area extents 
(L vs. S), two different DEMs with pixel sizes of 5 m 

(only available for the smaller S region) and 15 m 
were tested in order to produce three different 
modelling data sets (L15 15 m, S5 5 m, S15 15 m). 
Furthermore, three differently flexible binary soft 
classification algorithms were tested using logistic 
regression (GLM), general additive modelling 
(GAM) and support vector machine (SVM). 

The conducted expert-based selection of 
explanatory variables took also into account the 
results of an exploratory data analysis, such as the 
evaluation of a variables individual classification 
power. The selected explanatory variables were 
slope angle, aspect, lithology, relative slope 
position, elevation, convergence index, distance to 
streams, distance to springs and topographic 
wetness index. Each model has been evaluated by 
repeatedly splitting the initial data into multiple 
training and test sets within a k-fold cross 
validation framework. 

The final model selection was guided by the 
AUROC scores (i.e. highest median AUROC: 0.82), 
the covered areal extent (i.e. largest areal coverage) 
and the spatial pattern of the predicted landslide 
susceptibility scores. The results revealed that a 
higher modelling resolution does not necessarily 
favour better performing models. It was 
highlighted that differences in the modelling 
results (e.g. prediction patterns) were determined 
by an interplay of selected classification algorithm, 
study area delineation and pixel resolution. The 
most suitable model for the purpose of this study 
was produced with the comparably flexible SVM 
classifier. Finally, it is suggested that the selection 
of best models should not be based only on an 
interpretation of obtained model prediction skills, 
since many non-quantifiable aspects co-determine 
the explanatory power and usability of modelling 
results. 
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