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Abstract: A depth-averaged quasi single-phase 
mixture model is proposed for debris flows over 
inclined bed slopes based on the shallow water hydro-
sediment-morphodynamic theory with multi grain 
sizes. The stresses due to fluctuations are 
incorporated based on analogy to turbulent flows, as 
estimated using the depth-averaged k ε−  turbulence 
model and a modification component. A fully 
conservative numerical algorithm, using well-
balanced slope limited centred scheme, is deployed to 
solve the governing equations. The present quasi 
single-phase model using four closure relationships 
for the bed shear stresses is evaluated against USGS 
experimental debris flow and compared with 
traditional quasi single-phase models and a recent 
physically enhanced two-phase model. It is found that 
the present quasi single-phase model performs much 
better than the traditional models, and is attractive in 
terms of computational cost while the two-phase 
model performs even better appreciably. 

Keywords: Debris flows; Quasi single-phase mixture 
model; Stresses due to fluctuations; Well-balanced 

Notation: 

kc , TC = size-specific and total sediment concentration;

ekc  = size-specific sediment concentration at capacity; 

fC  = friction coefficient;  

rC = Courant number;  

Cμ , 1Cε , 2Cε , CΓ  = coefficients in the k - ɛ model;  

kd = the diameter of the kth size sediment;  

md  = mean sediment diameter; 

84d  = the particle size at which 84% of the sediment are 

finer;  

kD , TD = size-specific and total sediment deposition 

flux; 

kE , TE  = size-specific and total sediment entrainment 

flux; 

akf , skf , Ikf
 
= fraction of the kth size sediment in the 

active layer, substrate layer and the interface between 
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the active layer and substrate layer respectively;  

kF  = the areal exposure fraction of kth sediment on the 

bed surface;  

skfF , sskF  = the size-specific depth-averaged interphase 

interaction force and particle–particle interaction drag 
force, respectively;  
F  = vector of flux variables; 
g  = gravitational acceleration; 

zg = cosg γ ; 

h , sh , fh = debris flow depth, the thickness of the solid 

and fluid phases, respectively; 

ĥ , Ŵ , û = the normalized flow depth, channel width, 
and mixture flow velocity respectively; 

ski , fi = velocity differences; 

i , j  = spatial and time node index;  

sj  = friction slope; 
l  = the mixing length; 

1L  = norm to quantify the difference; 
M = coefficient in line with ψ ; 

n  = Manning roughness; 

n′  = Manning roughness corresponding to the grain 
resistance; 
k  = depth-averaged fluctuation kinetic energy; 
p  = bed sediment porosity; 

kP , kbP , bPε  = production terms; 

kq = size-specific transport rate at capacity regime; 

p kR , p0R
 
= particle Reynolds numbers to compute km

and 0m respectively; 

t  =time; 

RT , RskT  = depth-averaged stress due to fluctuations of 

the mixture flows and the size-specific solid phase;  

0T , AT  = depth-averaged stress due to fluctuations 

closed by k - ɛ model and modification component 
respectively; 

Tμ , skTμ  = depth-averaged viscous stress for the mixture 

flows and the size-specific solid phase, respectively;  

*u  = friction velocity;  

U , skU , fU  = depth-averaged flow velocity, size-

specific solid phase velocity, and fluid phase velocity, 
respectively;  

wU  = a characteristic velocity for the onset of dramatic 

weakening; 
U  = vector of conservative variables;  

s  = / 1s fρ ρ − ;  

GS , TRS  = gravitational term, stress term due to 

fluctuation; 

T 0S , TAS  = components of stress terms due to 

fluctuation; 

bS , fS , dS  = vectors of source terms; 

x  = streamwise coordinate; 

fx , *
fx  = computed and measured flow front location;  

km , 0m  = exponents of the closure for sediment 

deposition flux; 

bz  = bed elevation; 

α  = empirical coefficient in modification component; 
χ  = a material coefficient of order unity; 

γ  = bed slope angle;  

tΔ  = time step;  
xΔ  = spatial step;  

δ  = thickness of the active layer;  
ε = depth-averaged fluctuation dissipation rate;  
η = water level; 

kη = hiding and exposure factor;  

θ  = water content of the bed; 

kλ  = empirical parameter; 

maxλ = maximum celerity;  

0μ  = static friction coefficient;  

wμ  = thermally weakened friction coefficient; 

μ  = the tangent of the angle of repose of the dry 

granular material in absence of lateral confinement;  

sμ  = the coefficient of sliding friction; 

μν  = kinematic viscosity of water;  

tν = depth-averaged eddy viscosity; 

ξ  = elevation of the bottom surface of the active layer; 

ρ , 0ρ  = density of water-sediment mixture and the 

bed;  

sρ , fρ  = densities of solid and fluid phases 

respectively;  
σ  = modification coefficient; 

kσ , εσ  = coefficients in the k - ɛ model;  

τ  = shear stress at channel cross-section;  

bτ = bed shear stress for the debris flow;  

ckτ  = size-specific critical shear stress; 

bfτ , bsτ  = bed shear stress of the fluid and solid phases; 

bskτ  = bed shear stresses of the size-specific solid phase; 

bΦ  = the friction angle of the solid phase;  

kω = size-specific settling velocity;  

φ = empirical weighting parameter; and 

ψ = variables representing U , k  and ε . 
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Introduction  

Debris flows are fast landslide earth 
movements with highly concentrated mixtures of 
sediments and water (Ancey 2001; Takahashi 2007; 
Cardoso-Landa 2009), which commonly occur in 
mountainous areas around the world. Different 
triggering mechanisms contribute to the inception 
of debris flows (Cascini et al. 2013), and one of the 
most common causes is rainfall (Iverson 2000; 
Guadagno et al. 2005; Cascini et al. 2008; Jeng 
and Sue 2016). Debris flows generally happen 
when large quantities of poorly sorted sediments, 
agitated and saturated with water, surge down 
steep slopes in response to the gravitational effects 
(Iverson 1997). The entrainment due to scour of 
bed materials or collapse of stream banks may 
contribute to increasing debris-flow volume by 
even several orders of magnitude before deposition 
begins on flatter terrain downstream (Berti et al. 
1999; Santi et al. 2008; Berger et al. 2011; Iverson 
et al. 2011). They gain high speed and great 
destructive power, which are particularly 
dangerous for the life and properties throughout 
their trajectories. Examples of the catastrophic 
debris flow disasters reported in the recent decades 
are the 1999 Vargas State debris flow in Venezuela 
that killed more than 30 thousand people (Wei et al. 
2000), and the 2010 Zhouqu debris flow in China 
which caused 1765 death (Cui et al. 2013). Analysis 
and prediction are therefore of great importance 
for hazard assessment and guidance to authorities 
and people in coping with such disasters. 

Numerical simulations are key tools in 
studying the catastrophic processes of debris flows 
and in the prediction of disaster occurrence under 
complicated conditions. While fully three-
dimensional modelling may facilitate very detailed 
resolution of the phenomena, the excessively high 
computing cost makes it unrealistic to be applied to 
large-scale cases. Comparatively, depth-averaged 
models based on mass and momentum 
conservation feature a sensible balance between 
theoretical integrity and applicability and therefore 
have seen widespread applications. Most 
mathematical models can be clarified as the quasi 
single-phase mixture models (Takahashi 1991; 
Iverson 1997; Brufau et al. 2000; Denlinger and 
Iverson 2001; Pudasaini et al. 2005; Armanini et al. 
2009; Rosatti and Begnudelli 2013) and the two-

phase models (Pitman and Le 2005; Pelanti et al. 
2008; Pailha and Pouliquen 2009; Pudasaini 2012; 
Greco et al. 2012; Cozzolino et al. 2014; Bouchut et 
al. 2015; Di Cristo et al. 2016; D'Aniello et al. 2015; 
Meng and Wang 2016). The main difference 
between the two kinds of models is that the former 
is characterized by a single momentum equation 
for mixture flow, assuming the same velocity of 
fluid and solid phases, while the later has separate 
momentum equation for each solid phase, 
considering the different velocities for each phase. 
The two-phase model is attractive because it can 
explicitly reveal the relative motions and 
interactions between the fluid and solid phases. 
But accordingly, the increase in computing costs 
and also the demand for extra relationships to close 
the governing equations constrain its applications. 
Moreover, it is still unclear if they can perform 
considerably better than traditional quasi single-
phase models in terms of modelling accuracy (Cao 
et al. 2017). Although quasi single-phase models 
are widely used, most of them still suffer from 
some shortcomings. For example, some models 
were decoupled, neglecting the interactions 
between the flow, sediment transport and 
morphological evolution (Denlinger and Iverson 
2001; Liu and Huang 2006), which confined their 
applications to fixed bed cases; some were based 
on the capacity assumption that sediment 
concentration was assumed to be always equal to 
its transport capacity (Armanini et al. 2009; 
Rosatti and Begnudelli 2013), which may not be 
generally justified from physical perspectives (Cao 
et al. 2012; Cao et al. 2016). From mathematical 
perspective, the stresses due to fluctuations is 
derived by time-averaging the original full three 
dimensional momentum conservation equations. 
But most models were restricted to uniform 
sediment transport cases and generally ignored the 
effects of debris flows fluctuations (Shieh et al. 
1996; Brufau et al. 2000; Hotta et al. 2015). It is 
known that roll waves is a readily observed 
phenomenon in experimental debris flows by 
Iverson et al. (2010) and roll waves are ubiquitous 
in debris flows (Zanuttigh and Lamberti 2007; 
Balmforth and Liu 2004; Di Cristo et al. 2015). The 
research on roll waves of clear water by Cao et al. 
(2015) demonstrated that the effects of turbulent 
stresses are considerable in water roll waves as 
large-scale vortexes arise behind the shocks. 
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Physically, the solid and fluid phases are 
generally well mixed along the depth when debris 
flow is developed, and thus it is hard to identify a 
pure fluid layer over a solid-fluid mixture layer. But 
it is worth mentioning that more sophisticated two-
layer depth-averaged models have been recently 
proposed for better describing the rheological 
stratification in granular mixtures and immature 
debris flows (Armanini et al. 2005; Luca et al. 2009; 
Sarno et al. 2014; Sarno et al. 2017; Meng et al. 
2017). Comparatively, approximated models such 
as kinematic or diffusive wave one (Chiang et al. 
2012; Gregoretti et al. 2016; Rengers et al. 2016) 
along with their applicability criteria (Di Cristo  
et al. 2014; Di Cristo et al. 2018) are used to 
simplify complicated debris flow models for 
improving computational efficiency. 

It is well recognized that numerical modelling 
is fundamentally based on sound physical 
understandings. But debris flow dynamics involves 
a number of extremely complicated mechanisms, 
e.g. random interphase and particle-particle 
interactions, strong fluctuations of the fluid and 
solid motions, substantial mass growth due to bed 
erosion and particle segregation, which to date 
remain poorly understood (Hutter et al. 1994; 
Coussot and Meunier 1996; Iverson 1997). 
Fortunately, the last several decades have 
witnessed the great efforts taken by researchers to 
conduct their investigations by both field 
observations (Okuda et al. 1977; Rickenmann and 
Zimmermann 1993; Berti et al. 1999; Hürlimann  
et al. 2003; McArdell et al. 2007; Imaizumi et al. 
2016) and laboratory experiments (Di Silvio and 
Gregoretti 1997; Parsons et al. 2001; Mangeney  
et al. 2010; Hürlimann et al. 2015; Hu et al. 2016), 
which provide considerable insights into the 
physics of debris flows. Most notably, a series of 
experiments, including both fixed and erodible bed 
cases, conducted at large-scale U.S. Geological 
Survey (USGS) debris flow flume. A systematic set 
of observed data that are well-suited for validating 
mathematical models of debris flows were 
presented along with a detailed analysis on the 
theoretical aspects (Iverson et al. 1997; Iverson  
et al. 2010; Iverson et al. 2011).  

This paper focuses on the one-dimensional 
depth-averaged quasi single-phase mixture model 
with non-uniform sediment transport to simulate 
the debris flow evolution over inclined bed slopes 

under the framework of the shallow water hydro-
sediment-morphodynamic model (Cao et al. 2004, 
2017). On the basis of the work of Cao et al. (2015) 
about roll waves of clear water over steep slopes, 
the stresses due to fluctuations of debris flows are 
considered and analogous to turbulent flows. They 
are determined by the depth-averaged k ε−  
turbulence model along with a modification 
component. A fully conservative numerical 
algorithm (Xia et al. 2017), using well-balanced 
weighted surface depth gradient method (WSDGM) 
version of the slope limited centred (SLIC) scheme 
(Aureli et al. 2008), is deployed to solve the 
governing equations. The present quasi single-
phase model with four bed stresses closure 
formulas is evaluated by the experimental data of 
the USGS large-scale debris flows over both fixed 
bed (Iverson et al. 2010) and erodible bed (Iverson 
et al. 2011), and compared with the performance of 
the traditional quasi single-phase models by 
George and Iverson (2014) and Ouyang et al. (2015) 
and the two-phase model by Li et al. (2017a, b). 
The effects of stresses due to fluctuations of the 
quasi single-phase model and the sensitivities of 
the involved coefficients are also assessed. 

1    Governing Equations 

The depth-averaged quasi single-phase 
equations (QSPE) can be derived from the 
conservation laws under the framework of shallow 
water hydro-sediment-morphodynamics. And the 
detailed derivation of the depth-averaged 
governing equations is given in Supplementary 
(Appendix 1). For one-dimensional debris flows 
over an inclined erodible bed composed of non-
cohesive sediment with N size classes (dk denotes 
the diameter of the kth size sediment and k = 1, 
2, …, N), the governing equations comprise the 
mass and momentum conservation equations for 
the fluid-solid (water-sediment) mixture, the size-
specific mass conservation equations for the solid 
phase, the total mass conservation equation for the 
solid phase in the bed as well as the size-specific 
mass conservation equations for the solid phase in 
the active layer based on the widely used three-
layer structure (i.e., bed load layer, active layer and 
substrate layer) (Hirano 1971). They can be written 
as follows 
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where t  = time; x = streamwise coordinate parallel 
to bed slope with the angle γ ; h  = debris flow 
depth; U  = depth-averaged mixture flow velocity 
in x direction; bz  = bed elevation; kc  = depth-
averaged size-specific volumetric sediment 
concentration and T kC c=  = total sediment 
concentration; g = gravitational acceleration and 

coszg g γ= ; bτ  = bed shear stress; p = bed 
sediment porosity; fρ , sρ  = densities of fluid and 
solid phases respectively; ( )1f T s TC Cρ ρ ρ= − +  = 
density of fluid-solid mixture; ( )10 f s pρ ρ θ ρ= + −  = 
density of the bed, and θ  = water content of the 
bed ( pθ ≤ ); kE  = size-specific sediment 
entrainment flux and T kE E=  = total sediment 
entrainment flux; kD  = size-specific sediment 
deposition flux and T kD D=  = total sediment 
deposition flux; δ  = thickness of the active layer 
and 2 84dδ = , where 84d  is the particle size at 
which 84% of the sediment are finer; akf  = fraction 
of the kth size sediment in the active layer; 

bzξ δ= −  = elevation of the bottom surface of the 
active layer; Ikf  = fraction of the kth size sediment 
in the interface between the active layer and 
substrate layer; RT  = depth-averaged stress due to 
fluctuations of debris flows in the x direction; and 
Tμ  = depth-averaged viscous stress of debris flows 
in the x direction. 

As the erosion process plays a key role in flow 
dynamics and should be included in debris flow 
models, the present model is fully coupled, 
explicitly accommodating the mass exchange 
between the flow and the bed, as is shown on the 
right-hand side (RHS) of Eq. (1). Meanwhile, a 
non-capacity approach is used, which determines 
the size-specific sediment transport by 
incorporating the contributions of advection due to 

mean flow velocity and of the mass exchange with 
the bed (Eq. (3)).  

The depth-averaged two-phase model, 
according to Li et al. (2017a, b), takes into 
consideration the difference in velocity between the 
fluid and solid phases, as well as the mass and 
momentum conservation for the size-specific solid 
phase. Accordingly, besides the same mixture flow 
mass conservation equation (Eq. (1)), bed 
deformation equation (Eq. (4)) and active layer 
equation (Eq. (5)), the momentum conservation 
equation for the mixture and the mass and 
momentum conservation equations for the solid 
phase can be written as 

( ) ( )

2 2
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      (8) 

where sk ski U U= − , f fi U U= − = differences 
among the size-specific solid phase velocity skU , 
fluid phase velocity fU  and the mixture flow 
velocity U ; bskτ  = bed shear stress for the size-
specific solid phase; RskT  = depth-averaged stress 
due to fluctuations of solid motions; skTμ  = depth-
averaged viscous stress for the size-specific solid 
phase; and skfF  = the size-specific depth-averaged 
interphase interaction force; sskF  = the size-specific 
depth-averaged particle–particle interaction drag 
force, which is exerted on the kth size sediment by 
the other constituents of solid phase and =0sskF . 

It can be seen that the last term in the RHS of 
Eq. (6) indicates the different velocities among the 
size-specific solid phase, fluid phase and the 
mixture flow. The size-specific solid phase velocity 

skU in the second term in LHS (left hand side) of 
Eq. (7) is different from its counterpart U  in Eq. (3) 
which represents the mixture velocity. The 
additional momentum conservation equation for 
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size-specific solid phase (Eq. (8)) provides insight 
into the solid phase motions, establishing a 
sounder governing equation system from the 
physical perspective. 

2    Model Closures 

The present quasi single-phase model needs to 
be closed by introducing a set of relationships for 
the bed shear stresses, sediment exchange fluxes 
and stresses due to the fluctuations of debris flows. 
While the closure models for the depth-averaged 
two-phase model can be obtained by Li et al. 
(2017a, b). 

2.1 Bed shear stress 

Bed shear stress is rather complicated to 
model as it is related to the rheological properties 
of debris flows, which depend on various factors, 
such as sediment concentration, particle shape and 
grain size distribution (Imran et al. 2001). The last 
several decades have witnessed the development of 
different relationships to represent the boundary 
resistances for debris flows that are used by 
researchers, for example, Newtonian models (Hunt 
1994), Bagnold’s models (Armanini et al. 2009), 
Bingham models (O’Brien 1986), Herschel-Bulkley 
models (Laigle and Coussot 1997) and frictional 
models (Iverson 1997; Savage and Hutter 1989; 
Gray et al. 1999; Sarno et al. 2013). Here, for non-
cohesive sediments, the total bed shear stress for 
the debris flow is considered to be composed of bed 
shear stresses exerted on the fluid phase bfτ and 
solid phase bsτ  respectively, which reads 

b bf bsτ τ τ= +                                             (9) 

Four closure models for the bed shear stresses 
are employed to evaluate their effects on modelling. 
The notations are summarized in Table 1. 

In the Coulomb-Manning (CM) closure model, 
the Coulomb friction law is used to determine the 
solid shear stress (Savage and Hutter 1989; 
Egashira 2011), with a friction coefficient to 
express the collinearity of shear and normal 
stresses. Thus, the solid phase resistance can be 
obtained as 

tan sgn( )bs s z s b bg h m Uτ ρ Φ= 
            (10) 

where ( )1s Th h C= −  is the thickness of the solid 

phase; bΦ = the friction angle of the solid phase; 

and ( )( )21 /b bm z x= + ∂ ∂ . For the fluid phase 

resistance, the conventional empirical relation for 
the fluvial processes is used, which involves the 
Manning roughness n  

2 2

4/3bf f z f b
f

n U
g h m

h
τ ρ= 

                          (11) 

where f Th hC=  is the thickness of the fluid phase. 
In the Berzi–Larcan - Mixing length (BM) 

closure model, the friction slope sj , proposed by 
Berzi and Larcan (2013), is derived analytically 
under uniform conditions for debris flows. It is 
used to estimate the bed shear stress exerted on the 
solid phase. 

 bs s z s sg h jτ ρ=                                          (12) 

( )
( ) ( )

1/2
1/2 1/2

1/21/2 3/2

1

ˆ1 ˆ5 2 cos
ˆ ˆ2 1 cos 7 1

T
s

T

T

s
T

sC
j

sC

s s C u s h

sC Wh s

μ

χ θ μ
θ χ

=
+

 +  + + 
+ +  

  (13) 

where / 1s fs ρ ρ= − ; μ = the tangent of the angle 

of repose of the dry granular material in absence of 
lateral confinement; χ = a material coefficient of 

order unity; sμ = the coefficient of sliding friction; 

ˆ / mh h d= , ˆ / mW W d= , ˆ / mu U gd= = the 

normalized flow depth, channel width, and mixture 

flow velocity respectively; and ( )= /m k k Td c d C  

means sediment diameter. The bed shear stress 
exerted on the fluid phase is estimated by a mixing 
length approach (Berzi and Jenkins 2008) 

      ( ) ( )21 /bf f TC l dU dzτ ρ= −                   (14) 

( )

1/2
11 costan

1
T

s
T m

ghsCdU h s

dz sC W s d

θθ μ μ
χ

  +
= − −    +    

  (15) 

where l  = the mixing length and can be taken to be 

Table 1 Summary of the closure models for the bed 
shear stresses 

Notations Solid shear stress Fluid shear stress
CM Coulomb friction 

law 
Manning’s equation

BM Berzi–Larcan 
formula 

Mixing length approach

LM Lucas et al. formula Manning’s equation
RLM Revised Lucas et al. 

formula 
Manning’s equation



J. Mt. Sci. (2018) 15(5): 1071-1089  

 

 1077

roughly one-tenth of the mean diameter md  (Berzi 
and Larcan 2013). 

In the Lucas - Manning (LM) and Revised 
Lucas-Manning (RLM) closure model, Lucas et al. 
(2014) found an empirical relationship between the 
effective friction coefficient eμ and the flow velocity, 
which is analogous to the basic flash weakening 
theory (Rice 2006; Beeler et al. 2008), which is 
employed to estimate the solid phase resistance. 

sgn( )bs s z s e bg h m Uτ ρ μ=                          (16) 

( )
1 /

0 w
e w

w

U
U U

μ μμ μ−
= +

+
                         (17) 

where 0μ  = static friction coefficient; wμ  = 
thermally weakened friction coefficient; wU  = a 
characteristic velocity for the onset of dramatic 
weakening. According to Lucas et al. (2014), the 
complicated conditions could span a broad range 
for the possible values of the parameters 0μ , wμ  
and wU , in particular of wU . In the LM model, the 
constant empirical parameters suggested by Lucas 
et al. (2014) would be directly used. While in the 
RLM model, tan0 b= μ Φ  to express the static 
friction coefficient changing with bed conditions, 
and wU  is expected for the individual test case. The 
fluid shear stress for both LM and RLM closure 
model is estimated by Manning’s equation (Eq. (11)). 

2.2 Sediment entrainment and deposition  

Sediment entrainment due to fluctuations and 
sediment deposition by gravitational action are two 
distinct mechanisms involved in mass exchange 
with the bed, which are still poorly understood. 
Generally, the deposition flux can be computed by 
the local near-bed sediment concentration and the 
hindered settling velocity. And the entrainment 
flux is mostly based on the assumption that 
entrainment always occurs at the same rate as it 
does under capacity regime. Empirically, the size-
specific sediment entrainment and deposition 
fluxes are estimated as 

k k k ekE cλ ω=                                                  (18) 

(1 ) (1 ) cosk 0m m
k k k k k TD c c Cλ ω θ= − −         (19) 

where kω  = size-specific settling velocity computed 
by the formula of Zhang and Xie (1993); and kλ  = 
empirical parameter representing the difference 
between the near-bed sediment concentration and 

the depth-averaged sediment concentration. 
Physically, the water and sediments are generally 
well mixed along the depth of debris flows, thus kλ  
= 1 is used. The hindered effects on sediment 
settling in deposition flux come from the water as 
well as the sediments of other size fractions. 
According to Richardson and Zaki (1954),

0.14.45k pkm R−= , /pk k kR d μω ν= , 0.14.450 p0m R−= , p0R  is 
determined by the mean sediment diameter md , 
and  μν  is the kinematic viscosity of water. The 
size-specific sediment concentration at capacity ekc  
is calculated as 

/ ( )ek k kc F q hU=                              (20) 

where kq  = size-specific transport rate at capacity 
regime and the formula of Wu et al. (2000) is 
adopted. In the processes of the incipient motion 
and movement of non-uniform sediments, the 
coarse grains are easier to be entrained than their 
counterparts in uniform cases because they have 
higher exposure chance to flow, while fine grains 
are more difficult to be entrained as they are more 
likely to be sheltered by coarse grains, which is 
known as the hiding and exposure effect. Thus kF  
is the areal exposure fraction of kth sediment on 
the bed surface given by Parker (1991) 

( )
ak k

k

ak k

f d
F

f d
=


                          (21) 

According to Wu et al. (2000), each sediment 
size is transported as bed load and suspended load 
at the same time. Therefore, sediment transport 
rate of kth sediment can be determined as 

3

2.2 1.74
1.5

( 1)

0.0053 ( ) 1 0.0000262 ( 1)

k

s f z k

b

ck ck k

q

g d

n U

n

σ ρ ρ

τ τ
τ τ ω

−

   ′
= − + −   

   

 (22) 

where σ  = modification coefficient; 1/6 / 2050n d′ = = 

Manning roughness corresponding to the grain 
resistance; τ  = shear stress at channel cross-
section; 0.03 ( )ck k s f z kg dτ η ρ ρ= −  = size-specific 

critical shear stress, and kη  = hiding and exposure 

factor computed by Wu et al. (2000).  
In order to solve the Eq. (5), an empirical 

relation to evaluate Ikf  is needed to be introduced 
(Hoey and Ferguson 1994; Cui et al. 1996). 

0
(1 ) 0

sk
Ik

k T ak

f t
f

C C f t

ξ
φ φ ξ

∂ ∂ ≤
=  + − ∂ ∂ >

      (23) 
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where skf  = fraction of the kth size sediment in the 
substrate layer; φ  = empirical weighting 
parameter, and φ  = 0.7 is used according to Toro-
Escobar et al. (1996). 

2.3 Stresses due to fluctuations and 
viscosity 

To date, the generally applicable closure 
models for fluctuations of debris flows remain 
unavailable. Iverson et al. (2010) pointed out that 
roll waves are a ubiquitous, readily measured 
phenomenon in each of the USGS experimental 
debris flows and the research on roll waves of clear 
water by Cao et al. (2015) demonstrated that the 
effects of turbulent stresses are considerable in 
water roll waves as large-scale vortexes arise 
behind the shocks. The k ε−  turbulence model is 
valid for fully developed, high-Reynolds-number 
clear water flows in the turbulent regime (Rodi 
1993), which is not the case for debris flows. The 
high sediment concentration of debris flows may 
greatly affect the development of turbulence and 
trigger extremely complicated physical 
mechanisms that are still poorly understood. 
Generally, although the fluctuations of debris flows 
may differ from traditional turbulent motions, 
debris flows are far from laminar flows. Motivated 
by the work of Cao et al. (2015) in dealing with roll 
waves over steep slopes, the stresses due to 
fluctuations in the present model are therefore 
analogous to turbulent flows, and they are 
determined by the depth-averaged k ε−  
turbulence model (Rastogi and Rodi 1978) and an 
empirical Reynolds stress-like modification 
component (Ni 2010; Cao et al. 2015) to show other 
impacts on turbulence motions.  

R 0 AT T T= +                                                   (24) 

2 2= 2
30 t

U
T U k

x
ρ ρ ν ∂ ′= − − − ∂ 

           (25a) 

*2A

U
T hu

x
αρ ∂=

∂
                                        (25b) 

where k  = depth-averaged fluctuation kinetic 
energy; 2 /t C kμν ε=  = depth-averaged eddy 
viscosity; ε  = depth-averaged fluctuation 
dissipation rate; * /bu τ ρ=  = friction velocity; 
and α  = empirical coefficient that is of great 
impact on debris flows modelling. According to 

Rastogi and Rodi (1978), the depth-averaged k ε−  
turbulence model is used here, 

( ) ( )

( )t
k kb

k

hk hUk

t x

k
h hP hP h

x x

ρ ρ

νρ ρ ρ ρ ε
σ

∂ ∂+
∂ ∂
 ∂ ∂= + + − ∂ ∂ 

           (26) 

( )

( ) ( )

( )t
1 k 2 b

h hU

t x

h h C P C hP
x x k ε ε ε

ε

ρ ε ρ ε

ν ε ερ ρ ε ρ
σ

∂ ∂+
∂ ∂
 ∂ ∂= + − + ∂ ∂ 

        (27) 

( )22 /k tP U xν= ∂ ∂                              (28a) 

( )31/2 /kb fP C u h−
∗=                             (28b) 

1/2 3/4 4 2/b 2 fP C C C C u hε Γ ε μ
−

∗=              (28c) 

where kP  = the production terms from fluctuation 
due to the longitudinal velocity gradients; kbP , bPε  
= the production terms from non-uniformity of 
vertical profiles; and 2/f bC Uτ ρ=  = friction 
coefficient. The values of relevant empirical 
coefficients are listed in Table 2. 

Similarly, the depth-averaged viscous stress of 
debris flows can also be written as a relationship 
with depth-averaged kinematic viscosity μν , which 
is approximately equal to the viscosity for fluid 
phase.  

( )2 /T U xμ μρν= ∂ ∂                              (29) 

3    Numerical Algorithm 

In order to facilitate mathematical 
manipulation, Eqs. (4)-(5) with primary variables 

bz  and akf  are solved separately from Eqs. (1)-(3) 
and Eqs. (26)-(27) with primary variables 

kh U c k、 、 、  and ε , as Eqs. (4)-(5) are in essence 
ordinary different equations. Yet all variables are 
updated at each time step. 

The numerical algorithm employed in the 
present model is similar to Xia et al. (2017), which 
directly solve the original governing equations 
rather than first redistributing the water-sediment 
mixture density (Cao et al. 2004; Wu and Wang 
2008; Xia et al. 2010; Zhang and Duan 2011; 

Table 2 Coefficients in the depth-averaged k ε−  
model 

Coefficient Cμ 1Cε 2Cε  kσ  εσ CΓ

Value 0.09 1.44 1.92 1.0 1.3 3.6 
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Huang et al. 2014). Numerical fluxes are estimated 
by the well-balanced, WSDGM version of the SLIC 
scheme (Aureli et al. 2008). Detailed description 
and demonstration of the well-balanced property of 
the present model can be referred to Xia et al. 
(2017). Here, the numerical algorithm is just 
introduced simply. Firstly, Eqs.(1)-(3) and Eqs. 
(26)-(27) are written in a matrix form as 

b f dt x

∂ ∂+ = + +
∂ ∂
U F S S S                                      (30) 

/k
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ρ
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 
 
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k
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( )( )t
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x x kε ε ε ε
ε

ν ε ερ ρ ε ρ
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 ∂ ∂= + − + ∂ ∂ 
 (31g) 

where U  = conservative variables; F = flux 
variables; bS  = vector of gravitation and geometric 
terms; fS  = vector of friction terms and effects 
from mass exchange with the bed; and dS  = vector 
of other source terms including the stresses due to 
fluctuations, viscous stresses and the source terms 
in k ε−  model. 

3.1 Finite volume discretization 

An explicit finite volume discretization is 
employed along with a second-order Runge-Kutta 
method used for the source term fS  and an 
implicit discretization method implemented for the 
source term dS  

( )1/2 1/2
p j j j
i i i i bi

t
t

x + −
Δ− − + Δ
Δ

U = U F F S               (32a) 

pp p RK
i i ft+ ΔU = U S                                        (32b) 

1 1j pp j
i i dt+ ++ ΔU = U S                                        (32c) 

( ) ( )*1
2

RK p p
f f i f iS S = + S U U                        (33a) 

( )*p p p
i i f itS= + ΔU U U                                   (33b) 

where tΔ  = time step; xΔ  = spatial step; i  = 
spatial node index; j = time node index; and 1/2i+F  
= inter-cell numerical flux at 1/2ix x +=  computed by 
a well-balanced version of second-order SLIC 
scheme (Aureli et al. 2008). To facilitate the well-
balanced property on the inclined slope, the 
gravitation term is included in the biS  and the 
second component can be discretized as 

1/2 1/2 1/2 1/2

0

(1) (1)

2
0
0
0

L R
i i bi bi

x z

bi

z z
g g

x

+ − + −




 + −   − −  Δ = 





U U

S
 (34) 

where 1/2
L
i+U  and 1/2

R
i−U  = the reconstructed 

conservative variables; and 1/2 1( ) / 2bi bi biz z z+ += + .  
In Eq. (32c), the second-order terms in 1j

d
+S  

are discretized by 

1 1 1

1 2 1 2
1 2 1 2

1( )
j j j

pp pp pp
i i

i i i

M M M
x x x x x

ψ ψ ψ+ + +

+ −
+ −

 ∂ ∂ ∂ ∂= −  ∂ ∂ Δ ∂ ∂ 
  (35) 

where ψ  = variables representing U , k  and ε , 
and M = coefficient in line with ψ . The inter-cell 

values are calculated as linearized coefficients, i.e.,

1 2 1( ) 2pp pp pp
i i iM M M+ += + , 1 2 1( ) 2pp pp pp

i i iM M M− −= + , and 

1 1 1
1 2 1( ) ( )j j j

i i ix xψ ψ ψ+ + +
+ +∂ ∂ = − Δ ,

1 1 1
1 2 1( ) ( )j j j

i i ix xψ ψ ψ+ + +
− −∂ ∂ = − Δ . 

As for the first-order term in 
1j

d
+S  related to k , 

it is discretized with a linearization of hρ  as  

( ) ( )
1

1 1
1 11 1

2 1( )
3 3
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pp ppj j

i ii i
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hk h k h k
x x

ρ ρ ρ
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∂  = − ∂ Δ
 (36) 

The bed deformation and bed surface material 
composition are updated by the discretization of 
Eqs. (4) and (5) as follows  

1 ( )
1

RK
j j T T i
bi bi

D E
z z t

p
+ −

= + Δ
−

                 (37) 
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1 1( ) ( )
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Ik i
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f f D E
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t t p

δ δ ξ ξ+ +− −  − 
+ =  Δ Δ − 

(38) 

Despite the stability of the implicit 
discretization method, the numerical scheme for 
the homogeneous hyperbolic system is explicit and 
the time step is specified according to the Courant-
Friedrichs-Lewy (CFL) condition max/rt C x λΔ = Δ , 

where maxλ  = the maximum celerity computed from 

the Jacobian matrix /∂ ∂F U ; and rC  = Courant 

number and a value of 0.95 is adopted in this paper. 

3.2 Wet-dry front 

The treatments of wet–dry interfaces are of 
great importance in numerical modelling and 
needs to be carefully handled in order to satisfy the 
well-balanced property of the numerical algorithm. 
Most well-balanced models are in the horizontal 
coordinate system or under the assumption of mild 
slopes, while the present model the is based on the 
inclined coordinate and takes the effects of bottom 
slope into consideration, which contributes to a 
different relationship derived from Eq. (2) that 
needs to be satisfied under stationary-flow cases 
( 0U = , 0 0h h= ≠  ), i.e., / tanxη γ∂ ∂ = , where 

bh zη = +  = water level. If the water level in a wet 
cell i  is lower than the bed elevation of its adjacent 
dry cell 1i +  (i.e., 1 1tani bi ix zη γ η+ ++ Δ < =  in the 
inclined coordinate), then the water level of the dry 
cell and inter-cell bed elevation are both set to be 
the water level of the wet cell temporarily only 
when computing the numerical flux, which transfer 
to the present coordinate is 1 tani i xη η γ+ = + Δ  and 

1/2 tan / 2bi iz xη γ+ = + Δ . Similarly, if the water level 
in a wet cell 1i +  is lower than the bed elevation of 
its adjacent dry cell i  (i.e., 1 tani bi ix zη γ η+ − Δ < =  
in the inclined coordinate), then 1 tani i xη η γ+= − Δ  
and 1/2 1 tan / 2bi iz xη γ+ += − Δ  are obtained. It can 
be proved to satisfy the well-balanced property 
from mathematical derivation in the same way as 
Xia et al. (2017). The model is verified by cases of 
the irregular topography and the ideal dam-break 
flood to show its capabilities of preserving 
quiescent flow and dealing with wet-dry front on 
steep slopes, as can be seen in Supplementary 
(Appendix 2 and 3). Besides, to avoid the 
instabilities in numerical simulations due to the 
occurrence of very small water depth, the 

computed water depth lower than the threshold 
depth ( 51 10−× m) is set to be zero.  

4     Model Comparison: USGS Debris 
Flows Experiments 

Two categories of debris flow experiments are 
described in detail by Iverson et al. (2010) (fixed 
bed cases) and Iverson et al. (2011) (erodible bed 
cases). They recorded the unsteady, non-uniform 
debris flows from initiation to deposition at the 
USGS debris-flow flume. The measured flow-front 
velocity, flow thickness and bed deformation are 
used to compare the performance between the 
quasi single-phase model and the two-phase model 
(Li et al. 2017a, b), and to evaluate the influences of 
different closure models for bed shear stress on 
modelling debris flows.  

The flume is a rectangular concrete channel 95 
meters long, 2 meters wide, and 1.2 meters deep. 
Longitudinal distances in the flume are referenced 
to the 2-m high vertical headgate that is used to 
retain static debris prior to its release. Throughout 
most of its length, the flume bed slope is uniformly 
31˚, an angle typical of terrain where natural debris 
flows originate. At x = 74 m, the flume bed begins 
to flatten (Figure 1). The flow-front positions were 
tracked by playing videotapes frame by frame and 
recording the times at which the fronts reached 
reference stripes painted at 5-m intervals on the 
flume bed (Iverson et al. 2010). Measurements of 
flow thickness were made by laser flow-thickness 
sensors installed on crossbeams mounted above 
the bed at three cross sections, nominally located at 
x = 32 m, 66 m, and 90 m. Besides, the flow 
thickness at x = 2 m obtained by ultrasonic sensor 
was also presented. At the location x = 13 m, 23 m, 
33 m and 43 m, erosion sensors were installed in 
the bed sediments, buried at depths of 2-10 cm, to 
detect the bed deformation (Figure 1b).  

The subset of the fixed bed (FB) experiment 
(SGM rough bed, Iverson et al. 2010) and the 
subset of the erodible bed (EB) experiment 
(Experiment C θ =0.25, Iverson et al. 2011) are 
reproduced here. The initial debris flow was 
released by the sudden opening of the two-piece 
steel headgate. They moved across the smooth bed 
from x = 0 to 6 m with basal friction angle 28º and 
then the rough bed from x = 6 m with basal friction 



J. Mt. Sci. (2018) 15(5): 1071-1089  

 

 1081

angle 40º. Both of the debris in the FB and EB were 
composed of sand-gravel-mud (SGM) and the 
detailed grain-size distribution of the sediment 
mixture is given in Table 3. Although the two 
experiment subsets had some similar settings, each 
subset had different conditions. Specifically, in the 
EB, SGM mixture that covered the sloping flume 
bed from x = 6 m to 53 m was 12 cm thick, having 
volumetric water content θ  = 0.25 and sediment 
bed porosity p = 0.48, while the FB featured the 
bare concrete bed. 6 m3 of water-saturated 
sediment mixture was released from the headgate 
in EB, while approximately 10 m3 of mixture was 
used in the FB. Other detailed experimental 
elements for FB and EB are outlined in Table 4. 

The present study focuses on the simulation of 

the debris-flow evolution along the one-
dimensional flume. Therefore, the computational 
domain includes the uniformly sloping flume and 
the adjacent runout pad that is assumed to have 
the same width as the flume. Some of the initial 
experimental conditions can be obtained from 
Table 4 and Figure 1, while the initial velocities and 
fluctuation kinetic energies and dissipation rates 
are set to be zero. The numerical simulations are 
performed within the time period before the 
forward and backward waves reach the 
downstream and upstream boundaries, thus the 
boundary conditions can be simply set according to 
the initial status.  

The densities of fluid and solid phase are fρ  = 
1100 kg/m3 and sρ  = 2700 kg/m3 (Iverson et al. 
2010). In the CM, LM and RLM closure models, 
the Manning roughness n  for smooth bed ( sn  = 
0.012) and rough bed ( rn  = 0.018) are rectified 
using observed data from FB. In the BM model, 
coefficient μ = 0.5, χ = 0.6, sμ = 0 in Eq. (13) are 
used following Berzi and Larcan (2013). In the LM 
closure models, 0μ  = 0.84, wμ  = 0.11, wU  = 4 m/s 
are suggested by Lucas et al. (2014). In the RLM 
closure models, wμ  = 0.11, wU  = 5 m/s for FB and 
2 m/s for EB respectively. The empirical coefficient 
α = 1.6 in the modification term (Eq. (25b)) and 
the modification coefficient σ  = 2.0 in Eq. (22) are 
determined by the measured thickness of FB at 
sections and the observed scour depth of EB 
respectively. The spatial step is set to be 0.05 m 
and CFL condition is satisfied.  

Table 3 Grain-size distributions of SGM mixtures

No. d (mm) Percent (%) No. d (mm) Percent (%)
1 0.0046 3.92 9 2.83 8.31
2 0.03 3.52 10 5.65 6.05
3 0.088 3.0 11 8.63 5.0
4 0.177 6.4 12 10.27 6.3 
5 0.4 6.0 13 12.34 6.02
6 0.42 6.4 14 14.67 6.05
7 0.71 8.85 15 18.7 7.95
8 1.41 6.25 16 26.45 9.98

Note: SGM= Sand-gravel-mud. 

Table 4 
1L  norm of the QSPE-RLM model with tuned 

α  and wU  for fixed bed 

Values of the coefficients 
α  

wU  

1.12 1.6 2.08 3.5 5.0 6.5
1L  (%) 3.48 2.56 3.12 8.43 2.56 3.37

 
Figure 1 Schematic flume geometry of (a) fixed bed case and (b) erodible bed case along with instrumented cross 
section at x = 32 m (adapted from Iverson et al. 2010, 2011). 
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4.1 Fixed bed experiments 

It is noted that in fixed bed cases, the sediment 
entrainment flux vanishes in governing equations 
because the bed was made of rigid material and 
was locally non-erodible. Figure 2 shows the 
computed flow front position of debris flows by 
QSPE model with four bed shear stress closure 
relationships of Table 1 and its comparison with 
simulations by the two-phase model (Li et. al. 
2017a) along with the measured data. It can be 
seen that the front advances faster than measure 
data using QSPE-BM model, and the deviations 
become farther with front propagation. The 
resistance formula derived analytically under 
steady and uniform conditions ignores the effects 
of the bed roughness. In contrast, the front 
positions computed by CM and LM models move 
much slower than the observed data, which 
demonstrates the predicted bed shear stresses are 
considerably overestimated. Despite the same 
resistance formula used by the QSPE-CM model 
and Li et al. (2017a), the different results from the 
two models are understandable. The latter one 
based on the two-phase flow theory incorporates 
interphase and particle-particle interaction forces 
and stresses due to the fluctuations of the solid 
motions, and it shows a good performance on front 
tracking. The parameters in the LM model is fitted 
by the landslide simulations of Lucas et al. (2014), 
thus may not be generally viable for the present 
debris flow case. However, according to Lucas et al. 
(2014), variations of the parameters are expected 
for each case individually. In the RLM model, the 
reasonable modification of the parameters leads to 
a better agreement between the results by the 
QSPE model and the measured. 

Figure 3 illustrates the predicted flow 
thicknesses by the QSPE models (Table 1) 
compared with observed data, and the available 
computed results by Li et al. (2017a), George and 
Iverson (2014) and Ouyang et al. (2015) are also 
included in Figure 3. Apparently, simulations by Li 
et al. (2017a) agree with the experimental data best 
at all selected sections, showing its advantage of 
physically extended model. Results from QSPE-
RLM model are also in good agreement with the 
observed by tuning the critical parameter wU . 
Comparatively, models of George and Iverson 
(2014) and Ouyang et al. (2015) perform poorly. At 

Figure 2 Flow front position of FB (Fixed Bed) 
computed by the QSPE-CM, QSPE-BM, QSPE-LM and 
QSPE-RLM models along with results from two-phase 
model by Li et al. (2017a) and measured data.  

Figure 3 Flow thicknesses of FB (Fixed Bed) at 
selected sections computed by QSPE models, Li et al. 
(2017a), George and Iverson (2014) and Ouyang et al. 
(2015) along with measured data. 
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x = 2 m, the flow reaches at about t = 0.8 s, 
followed by a steep rising stage up to its peak of 0.6 
m. But the flow front by George and Iverson (2014) 
reaches well ahead of the measured data and their 
peak values of the flow thicknesses are much lower 
than observed. Unfortunately, in Figure 3a (x=2m) 
the results by Ouyang et al. (2015) are not available 
in their paper. The QSPE models with CM, BM and 
RLM perform similarly, showing a slightly 
differences in peak flow thickness, while the peak 
value decreases when LM relationship is used. The 
differences among the simulations by models 
enlarge gradually as the debris flow propagates 
(Figure 3 a-c), and become obvious at x = 66 m, 
where the underestimated shear stress by BM 
model causes the early front arrival and 
overestimated bed resistance predicted by CM and 
LM models leads to the late front arrival as 
compared to the measured. This is in accordance 
with the phenomenon present in Figure 2. It is also 
noted that although both CM and LM relationships 
are tend to overrate the bed shear stress, they have 
a different effect on the waveform. The LM model 
contributes to a flatter waveform than the CM 
model does. 

4.2 Erodible bed experiments 

The bed erosion of a volume of 12 cm thick 
SGM mixture from x = 6 m to 53 m should be 
carefully considered in terms of the restrictive 
conditions, i.e., the non-erodible constraint when 
bed elevation reaches the level of concrete flume 
bed.  

Figure 4 compares the debris flow front 
propagation predicted by the QSPE models of 
Table 1 and Li et al. (2017b) with the measured 
data, and Figure 5 illustrates their computed flow 
thicknesses along with the results by Ouyang et al. 
(2015) at selected sections. The predictions of 
Ouyang et al. (2015) illustrate the advanced front 
arrival and lower peak thicknesses at selected 
sections as compared to the measured data. Similar 
to the results of front profiles for fixed bed, the 
overestimated bed shear stress by CM and LM 
closure models lead to the delayed computed fronts 
(Figure 4) and the flow thicknesses show the 
farther deviations from the observed (Figure 5). 
The QSPE-BM and QSPE-RLM models seem to 
have a good performance in tracking debris flow 

front (Figure 4). However, the QSPE-BM model 
has difficulty in modelling the flow thickness at x = 
66 m, showing a bimodal pattern of thicknesses, 
which is not the case as the measured data 
indicates (Figure 5). The QSPE-RLM model 
performs relatively better despite a slightly higher 
peak flow thickness at x = 32 m and a slightly lower 
peak thickness at x = 66 m. Comparatively, the 
simulations by Li et al. (2017b) agree best with the 

Figure 4 Flow front position of EB (Erodible Bed) 
computed by the QSPE models with four closure 
relationships along with results from two-phase model 
by Li et al. (2017b) and measured data.  

 

Figure 5 Flow thicknesses of EB (Erodible Bed) at 
selected sections computed by QSPE models, Li et al. 
(2017b) and Ouyang et al. (2015) along with measured 
data. 
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measured data as compared to the other models. It 
demonstrates that two-phase formulation is 
superior for debris flow modelling as the relative 
motion and interphase interactions of the fluid and 
solid phases can be resolved. 

Figure 6 shows the bed profiles from the 
QSPE-CM, QSPE-BM and QSPE-RLM models 
along with the measured data, and the simulations 
by Li et al. (2017b) are also included. The QSPE-
CM model performs poorly compared to the 
measured, which indicates that the CM closure 
formula is not suitable for the QSPE model to 
simulate the debris flow. In comparison, the 
scouring speed computed by Li et al. (2017b) is in 
good agreement with the limited measured data, 
and the QSPE-BM and QSPE-RLM models also 
perform relatively well. 

4.3 Discussion 

Despite the superiority of the two-phase model 
(Li et al. 2017a, b) in its accuracy, the present 
QSPE model is still attractive as long as the proper 
bed shear stress relationship is chosen. The present 
QSPE model incorporates the effects of stresses 
due to fluctuations, which is believed to be crucial 
to the debris flow modelling. This subsection, using 
QSPE-RLM model in relation to FB test case, 
evaluates the effects of stresses due to fluctuations 
and assesses the sensitivities of the coefficients 
involved in the modification component of 
fluctuations stresses and the LM closure model. 

Besides, the CPU runtime is compared between the 
two-phase model and the present QSPE-RLM 
model. 

4.3.1 Effects of stresses due to fluctuations  

The present QSPE-RLM model, the 
fluctuation stresses of which are incorporated and 
estimated by the depth-averaged turbulence model 
and a modification component, is compared with 
the QSPE-RLM model without RT  (noted as QSPE-
RLM-TR=0) or AT  (noted as QSPE-RLM-TA=0) to 
demonstrate the effects of RT , 0T  and AT  (Eq. (24)) 
on modelling. Figures 7 and 8 show the computed 
front positions and flow thicknesses at selected 
sections from QSPE-RLM models without RT  or 

AT , compared with those from complete QSPE-
RLM model and the measured. It can be seen that 
involving the stresses due to fluctuations greatly 
improves the performance in modelling debris 
flows. It is found that the fluctuation stresses 
modelled only by k ε−  turbulence model  (i.e., 
QSPE-RLM-TA=0) leads to slightly decrease in the 
peak thicknesses at sections (Figure 8), while 
adding modification component increases the peak 
thicknesses, which consequently improves the 
model performance, especially at x = 2 m (Figure 
8a). From a physical perspective, this is justified 
because the stress term due to fluctuation TRS  
( /TR RS hT xρ= ∂ ∂ ) in the momentum conservation 
Eq. (2) is by no means negligible compared with 

 
Figure 6 Temporal variations of EB (Erodible Bed) 
profiles computed by the QSPE-CM, QSPE-BM QSPE-
RLM models and Li et al. (2017b) with measured data.

Figure 7 Flow front position of FB (Fixed Bed) 

computed by the QSPE-RLM model without  RT  or AT ,  

compared with complete QSPE-RLM model and 
measured data.
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the gravitational term sinGS hgρ γ= . This effect is 
similar to that of the longitudinal gradient of 
normal turbulent stress on roll waves in shallow 
clear-water flows on steep slopes (Cao et al. 2015). 
It is also indicated that the additional modification 
component mainly affects the beginning of debris 
flow evolution ( 4t ≤ s in Figure 7 and x = 2 m in 
Figure 8a). It is critical to flag out that the 
appearance of oscillations exists in the computed 
results by the QSPE-RLM model without RT  or AT , 
which however may not be construed as physically 
reasonable. The stresses due to fluctuations are 
physically existed and considerable (Iverson et al. 
2010; Cao et al. 2015) and can be derived 
mathematically by time-averaging the original full 
three dimensional momentum conservation 
equations. The high sediment concentration of 
debris flows may greatly affect the development of 
turbulence, thus only using k ε−  turbulence 

model is not suitable to close the fluctuation 
stresses as it is valid for fully developed, high-
Reynolds-number clear water flows in the 
turbulent regime (Rodi 1993). In order to provide 
insight into the contributions of the stresses due to 
fluctuations consisting of 0T  and AT  in Eq. (24), 
the spatial distribution ratios of /T 0 GS S  
( /T 0 0S hT xρ= ∂ ∂ ) and /TA GS S  ( /TA AS hT xρ= ∂ ∂ ) 
at specific instants from QSPE-RLM model are 
present in relation to FB, as shown in Figure 9. In 
accordance with the previous computed results, 
both T 0S  and TAS  have great effects on the early 
stage of debris flows (Figure 9a), the modification 
component term TAS  which is negative and 
contrary to T 0S . Compared to the gravitational 
term GS , after t = 2 s, the values of T 0S  and TAS  
are negligible from the trough to the peak of the 
debris flow, whereas both are considerable around 
the debris flow front (Figure 9 b, c). 

4.3.2 Sensitivity analysis 

It is interesting to evaluate the sensitivity of 
the simulations of present complete QSPE-RLM 
model to coefficients α  involved in the 
modification component of stresses due to 
fluctuations (Eq. (24)) and the coefficient wU  in 
RLM closure relationship (Eq. (17)). Thus in the 
QSPE-RLM model, α  and wU  are tuned by 30% 
in relation to FB, and 1L  norm of flow front 
location is deployed to quantify their impacts on 
debris flow modelling, which is defined as 

1 * */ 100%f f fL x x x= − ×  ,  where fx  = computed 
flow front location; *

fx  = measured flow front 
location. Figure 10 compares the computed flow 
front positions using different α  and wU  by the 
QSPE-RLM model for FB. Interestingly, α  mainly 
affects the first half of the debris flow (Figure 10a), 
while wU  has an impact mostly on the latter part 
(Figure 10b). Echoing Figure 10, a larger α  leads 
to a relative slower front speed, but the changes 
decreased with time and its effects are almost 
negligible after about t = 6 s. While the decreased 

wU  contributes to the smaller bed resistance and 
accordingly, flow front propagates faster. The 
values of 1L  norm in relation to the tuned values of 
α  and wU  in Table 4 provide quantitative insight 
into their effects on flow front location. They are 
appreciable but limited. And it also suggests that 
the simulation with the calibrated α  and wU agree 
well with the measured data in FB. 

Figure 8 Flow thicknesses of FB (Fixed Bed) at 
selected sections computed by the QSPE-RLM model 

without RT  or AT , compared with complete QSPE-

RLM model and measured data.  
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4.3.3 CPU runtime 

In order to compare the 
computational cost of the present 
complete QSPE model and the two-
phase model by Li et al. (2017a, b), the 
CPU runtime of the two kinds of 
models for FB and EB cases relative to 
that of the QSPE-RLM model for FB 
are listed in Table 5. It indicates that 
the erodible bed case takes more CPU 
time than fixed bed case as the former 
involves the bed evolution equation 
which shows the mass exchange 
between the flow and the bed. The CPU 
time of two-phase model is 
approximately 22% for FB and 25% for 
EB longer than that of quasi single-
phase mixture model, which is mainly 
affected by the number of the size 
groups of the solid phases. For N size 
sediment classes, the two-phase model 
(Eqs. (1), (6-8), (4-5)) have additional 
N momentum conservation equations 
for size-specific solid phases as 
compared to its counterpart (Eqs. (1-
5)). Besides, to closure these size-
specific momentum equations, 2N 
equations for solving the solid 
fluctuation are introduced (Li et al. 
2017a, b). Thus, it is predicable that 
the CPU runtime of the two-phase 
model increases inevitably, especially 
in natural large-scale debris flows that 
characterized by a broad particle size 
distribution.  

5    Conclusions 

Based on the shallow water hydro-
sediment-morphodynamic theory, a depth-
averaged quasi single-phase mixture model is 
proposed for debris flows. A fully conservative 
numerical algorithm with well-balanced slope 
limited centred scheme is used to solve the 
governing equations. Appropriate bed stresses 
estimation of RLM model plays a central role in 
accurately reproducing debris flows. The complete 
QSPE-RLM model has superiority over the 
traditional QSPE models of George and Iverson 

(2014) and Ouyang et al. (2015). It facilitates a step 
forward in debris flow modelling under the 
framework of quasi single-phase mixture flow 
theory for its inclusion of the stresses due to 
fluctuations. Although the two-phase model by Li 
et al. (2017a, b) performs relatively better than the 
present QSPE model, the QSPE model is still 
attractive as the CPU runtime of the two-phase 
model increases inevitably with the number of the 
size groups of the solid phases. 

Figure 9 The ratios of stress terms due to fluctuations to the 
gravitational term along with the flow thicknesses at several instants 
computed by QSPE-RLM model in relation to of FB (Fixed Bed). 
 

 
Figure 10 Sensitivities of the computed flow front positions by QSPE-

RLM model to coefficients α  and wU  in relation to of FB (Fixed Bed). 

 
Table 5 Relative CPU runtime of QSPE-RLM model and the two-
phase model by Li et al. (2017a, b) 

Model FB  SGM Rough Bed EBθ =0.25
QSPE-LMR 1.0 1.05
Two-phase model (Li et al. 2017a,b) 1.22 1.31

Notes: FB=Fixed Bed; EB=Erodible Bed. 
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Further studies are necessary to delimit the 
uncertainty from the estimations of bed resistances, 
mass exchange with the bed as well as the closure 
models for stresses due to fluctuations. Interphase 
and particle-particle interactions remain 
unresolved by the present QSPE model, which 
characterizes the need for physically enhanced two-
phase models. Meanwhile, in order to apply the 
model to natural debris flows, extension to two 
dimensions is also warranted in future research. 
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