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Abstract: In this study, Land Surface Temperature 
(LST) and its lapse rate over the mountainous 
Kashmir Himalaya was estimated using MODIS data 
and correlated with the observed in-situ air 
temperature (Tair) data. Comparison between the 
MODIS LST and Tair showed a close agreement with 
the maximum error of the estimate ±1°C and the 
correlation coefficient >0.90. Analysis of the LST data 
from 2002-2012 showed an increasing trend at all the 
selected locations except at a site located in the 
southeastern part of Kashmir valley. Using the 
GTOPO30 DEM, MODIS LST data was used to 
estimate the actual temperature lapse rate (ATLR) 
along various transects across Kashmir Himalaya, 
which showed significant variations in space and time 
ranging from 0.3°C to 1.2°C per 100 m altitude 
change. This observation is at variance with the 
standard temperature lapse rate (STLR) of 0.65°C 
used universally in most of the hydrological and other 
land surface models. Snowmelt Runoff Model (SRM) 
was used to determine the efficacy of using the ATLR 
for simulating the stream flows in one of the glaciated 
and snow-covered watersheds in Kashmir. The use of 
ATLR in the SRM model improved the R2 between the 
observed and predicted streamflows from 0.92 to 0.97. 

It is hoped that the operational use of satellite-derived 
LST and ATLR shall improve the understanding and 
quantification of various processes related to climate, 
hydrology and ecosystem in the mountainous and 
data-scarce Himalaya where the use of temperature 
and ATLR are critical parameters for understanding 
various land surface and climate processes.  
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Introduction  

Land surface temperature (LST) plays a vital 
role in understanding various global and regional 
land surface processes related to the earth system 
(Pitman 2003; Wan 1999). Assessment and 
monitoring of various land surface processes in a 
complex terrain, such as Himalaya, is hampered by 
the scanty network of hydro-meteorological 
observations (Romshoo et al. 2015; Rashid et al. 
2015). The problem is compounded by the 
logistical difficulties in conducting field 
measurements of hydrometeorological parameters 
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in the precipitous terrain in order to derive a 
spatially representative distribution of the 
hydrometeorological parameters (Hachem et al. 
2012; Romshoo and Rashid 2010). Remotely 
sensed hydrometeorological parameters are used 
routinely for assessing various hydrological (Koch 
et al. 2016; Romshoo et al. 2012; Wang et al. 2009) 
and climatological processes (Kumar et al. 2014; 
IPCC 2007; Zhang et al. 2015) at different spatial 
and temporal scales. Remotely sensed LST is of a 
major interest for a variety of environmental and 
ecological applications including vector-borne 
disease bionomics (Blum et al. 2015; Neteler 2010), 
biosphere processes (Field et al. 1998; Prince and 
Goward 1995), biogeochemical studies (Gu et al. 
2007; Running et al. 2004), agricultural 
applications (Weng 2003; Streutkhet 2002), 
energy budgeting of earth (Liu et al. 2014; Diak  
et al. 2004) and soil-vegetation-atmosphere 
transfer (SVAT) models (Hu and Brunsell 2013; 
Mostovovy et al. 2006).  

The meteorological observations in the 
sparsely instrumented mountainous Himalayan 
regions are unable to represent the spatial 
heterogeneity and are therefore spatially 
interpolated which leads to significant errors and 
often produce unrepresentative spatial patterns 
(Willmott and Robeson 1995). The accuracy of any 
interpolation technique depends upon the sample 
density and distribution regardless of the algorithm 
used (Apaydin et al. 2004; Hartkamp et al. 1999). 
The prediction errors generally range from 1°-3° K 
depending on the spatial and temporal scale and 
the interpolation algorithm employed (Vogt et al. 
1997; Anderson 2002). Also, the complexity 
associated with the correct estimation of Tair 
patterns increases with increased temporal 
resolution (Geiger 1965). Contrarily, the Earth 
Observing System (EOS) provides high spatial and 
temporal resolution surface kinetic temperatures 
with accuracies of 0.3°C for oceans and 1°C over 
land. Tair is estimated from LST using statistical 
approaches based on the regression technique 
(Jang et al. 2004; Zaksek and Schroedter 2009), 
Temperature-Vegetation Index approach (TVX), in 
which it is assumed that the temperature at top of 
the canopy cover is the same as that within the 
canopy (Czajkowski et al. 2000; Prihodko and 
Goward 1997) or the physically-based energy 
balance approach based on energy balance of 

atmosphere (Guzinski et al. 2013; Sun 2011). It has 
been shown that the relationship between the 
observed air temperature and the remotely sensed 
LST is statistically significant (Benali et al. 2012; 
Jain et al. 2013; Qin et al. 2002).  Therefore, in 
view of the physiographic and geomorphic setting 
of mountainous Kashmir Himalaya with a very 
sparse network of meteorological observations, 
high resolution satellite-derived LST maps would 
provide an excellent alternative for improved 
assessment of the land surface and atmospheric 
processes.   

The advances in space technology during the 
last few decades have provided us with a rapidly 
increasing number of satellite platforms with better 
sensor capabilities that provide various physical 
parameters essential to study complex physical 
processes of the earth system (Badar et al. 2013; 
Jensen 2007; Romshoo et al. 2002). The MODIS 
(MODerate-resolution Imaging Spectroradiometer) 
sensor is currently the optimal choice between 
temporal and spatial resolution and is an excellent 
data source for various local and global change 
research studies (Ishtiaque et al. 2016; Neteler 
2010). MODIS instrument was launched in 2000 
as a payload on the Terra satellite and a second 
MODIS instrument was launched on the Aqua 
satellite in 2002. MODIS enhanced the 
performance of AVHRR by providing both, the 
higher spatial resolution and greater spectral 
resolution data (Becker et al. 2010). MODIS and 
AVHRR provide daily LST images with a global 
coverage (Anderson et al. 2012).  

In absence of the actual temperature and 
precipitation lapse rates, it is a common practice 
among researchers in the mountainous Himalaya 
to use the standard lapse rates of the 
meteorological parameters to model various 
hydrological, climatological and glaciological 
processes (Adnan et al. 2016; Dar and Romshoo 
2012; Romshoo et al. 2015). However, the ATLR 
varies with time and space and is often found way 
off from the STLR of -0.65°C per 100 m altitudinal 
change (Panday et al. 2014; Thayyen and Dimri 
2014).  Assessment of the ATLR from the satellite-
derived LST data would, therefore, improve the 
quantification of the melt processes, streamflows 
and other land surface processes in the 
mountainous terrain that requires the use of ATLR 
(Blöschl 1991; Brubaker et al. 1996; Kattel et al. 2013). 
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1     Study Area 

Kashmir valley, spread over an area of 15,534 
km2, is located in the vicinity of the Karakoram and 
western Himalayan mountain ranges (Figure 1). 
Kashmir valley, surrounded by the Himalayan 
ranges, is a longitudinal depression in the great 
northwestern complex of Himalayan ranges. The 
valley has a strong relationship with the Himalayan 
complex, which exercises an all-pervading 
influence on its geological, tectonic and geographic 
setting. The geomorphic setting of the Pir Panjal 
and the Great Himalayan range has given the 
Kashmir valley an oval shape with its long diagonal 
parallel to the general direction of the bordering 
mountain ranges. The maximum length of the 
basin, from SE-NW, is ~190 km while as the 
maximum width from crest of the Pir Panjal to that 
of the Great Himalaya is ~120 km. In altitude, it 
ranges from 1067 m (Uri) to a maximum of 5274 m 
(Kolahoi Peak).  

Kashmir valley has a unique position in the 
Himalaya so it possesses an extensive body of 
evidence on the evolution of its surface features. 
The valley has undergone the alternations of glacial 
and fluviatile activity corresponding to the glacial 
and interglacial periods during the Pleistocene 

epoch (Raza et al. 1978). 
These processes have left 
indubitable imprints on the 
surface features of the 
valley (Rashid et al. 2017; 
Dar et al. 2017). The valley 
is situated in subtropical 
latitudes, but owing to the 
orographic features and 
snow-clad peaks, the 
climate over greater parts 
of the region resembles to 
that of the mountainous 
and continental parts of the 
temperate latitudes. The 
average winter and 
summer temperatures at 
Srinagar station range from 
5°C to 25°C while the 
annual precipitation is 660 
mm (Romshoo and Rashid 
2014). However, the 
precipitation increases as 

we move towards higher altitudes in the study area.  
Kashmir plains are predominantly under 
agricultural fields with sparse settlements, the 
mountainous landscapes are dominated by lush 
green coniferous forest, pastures and shrub lands 
(Rather et al. 2016). Areas above 3500 m above sea 
level (asl) are mostly rock exposures or under 
perennial snow packs and glaciers. 

2    Material and Methods 

2.1 Data Sets used  

LST 8-day composite data at 1-km resolution, 
downloaded from the MODIS satellite, GTOPO30 
Digital Elevation Model (DEM), observed air 
temperature, streamflows, snow cover and other 
ancillary data was used to accomplish the research 
objectives in this study. 11 years MODIS LST time 
series data (2002-2012) was processed using 
various image-processing techniques (Jensen 
2005). The orbital configuration of the two MODIS 
satellites makes it possible to get the LST Terra 
data during day and nighttime around 10:30–
12:00 A.M./P.M. local time and the LST Aqua data 
around 1:00–3:00 A.M./P.M local time. The latest 

Figure 1 The study area with the location of the six meteorological stations. 
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MODIS LST version (V 005) used in this study has 
a significant improved spatial coverage, stability, 
and accuracy when compared with the previous 
versions (Wan and Dozier 1996).  

The maximum air temperature (Tair) data, 
available at daily time step, from the six 
meteorological observatories, located in different 
land cover and altitude regimes (Figures 1,2, Table 
1), was used to validate the satellite-derived LST 
data from 2002-2012. The maximum daily 
observed temperature was used for comparison 
with the satellite-derived LST as the MODIS 
satellite overpasses the study area at around 11:00 
hrs (±2.5 hrs) and the maximum, temperature 
observations centers around 11.30 AM. We also 
used GTOPO30 DEM with a spatial resolution of 
~1 km for determining the ATLR over the Kashmir 
valley. Additionally, we used MODIS derived 8-day 
snow cover product with a spatial resolution of 
500m resolution for removing snow covered areas 
in our analysis.  

2.2 Methods 

2.2.1 MODIS LST data processing 

Medium spatial resolution satellite data are 
nowadays available almost real time at no cost 
from the MODIS satellite. In this study, an 

automated method for the extraction of LST and 
emissivity values from the MODIS, under clear-sky 
conditions, was used to generate surface 
temperature maps (Vancutsem et al. 2010; Wan  
et al. 2002). The MODIS LST is derived from two 
thermal infrared bands (TIR) operating at 10.78–
11.28 μm and 11.77–12.27 μm wavelengths. The 
emissivity values from these two bands are 
converted to LST (in K) using the algorithm given 
below: 
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where, Ts = LST, T31 and T32 are MODIS band 31 
and 32 brightness temperatures; ε31 and ε32 are 
MODIS band 31 and 32 surface emissivities; C, A1, 
A2, A3, B1, B2 and B3 are regression coefficients.  
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where, a is the regression coefficient for surface 
types, k is the index of the surface types, and θ is 

 
Figure 2 Land use and land cover map of Kashmir Himalaya with six meteorological stations. 
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the satellite viewing angle. 
The atmospheric effects are corrected using 

the split-window algorithm (Wan and Dozier 1996) 
considering that the signal difference in the two 
TIR bands is caused by differential absorption of 
radiation in the atmosphere (Wan et al. 2002). The 
algorithm also corrects for emissivity effects, 
assuming that it is known in each ~1 km2 pixel, 
using prior knowledge of the land cover type 
(Synder et al. 1998). The product aims at retrieving 
LST with an error less than 1°C (±0.7°C SD) in the 
range of -10°C to +50°C, assuming that the surface 
emissivity is known (Wan and Li 1997). Though, 
LST with errors lower than 1°C have been validated 
over homogeneous surfaces such as crop and 
grassland surfaces (Wan and Li 1997; Weng et al. 
2004) but the heterogeneity of the land cover 
might induce larger errors in the LST. The 
processing of the downloaded MODIS data was 
accomplished in the following two steps:  

Step1: Preprocessing of the satellite data 
involved the exclusion of LST values outside the 
permitted range of 220°K to 390°K. During the 
preprocessing, mainly the view angle, cloud cover 
and quality assurance aspects were checked. The 
images were first checked for the view angle as the 
view angles from 45°-69° can introduce 
appreciable error in the measurements of LST 
(Muster et al. 2015; Wan et al. 2002). Therefore, 
the pixels falling in this range were processed using 
the nearest neighborhood filtering technique 
(kernel size 3×3) that removes pixel outliers by 
substituting them with mean values of the 
neighboring pixels. Cloud detection and cloud 
masking are important preprocessing steps, 
because a major source of error in the retrieval of 
LST from thermal infrared satellite data is due to 
the cloud contamination (Wan 2010). Therefore, 
the detection and elimination of fully or partly 
cloudy pixels is necessary pre-processing step for 
the extraction of LST (Sun et al. 2005). The 
composite images with less than 25% cloud cover 

were selected for extraction of LST. However, in 
case the cloud cover exceeded 25%, 8-day 
composite MODIS LST images were used. The 
nearest neighborhood filtering technique was used 
after cloud masking. The errors in the remotely 
sensed LST due to cloud cover, view angle, altitude, 
snow cover etc. may accumulate up to about 3 K 
(Wan and Snyder 2012). To correct for the errors 
due to snow cover, MODIS 8-day 500 m spatial 
resolution snow-cover data was used (Wang et al. 
2008). 

Step 2: During the post-processing, MODIS 
LST images were re-projected to the desirable 
projection (UTM WGS 1984 Zone 43North). The 
study area was extracted from the MODIS scene, 
which covers a larger area of 1200x1200 km. After 
that, the attribute information of the image data 
was built by multiplying each pixel value with the 
respective scale factor (Wan 2007). The equation 
used for converting pixel values (PV) into 
temperature (°C) is given below: 

15.272)02.0( −= ×PVt               (5) 

where, t is the temperature of the pixel.  

2.2.2 MODIS LST data validation 

The time series of the satellite derived LST 
data was validated with the observed air 
temperature data (2002-2012). It is pertinent to 
mention here that the MODIS LST data is actually 
the temperature of land surface (skin temperature) 
while as the weather stations records temperatures 
at 2.5 m above the ground surface. To examine the 
statistical relationship between the measured 
maximum air temperature and the remotely sensed 
LST from MODIS, a simple linear regression 
method (R2) was employed. LST from 1 km MODIS 
LST under clear sky conditions was correlated with 
the observed air temperatures on weekly, monthly, 
seasonal and yearly basis. The Tair daily data from 
all the six stations corresponding to the satellite 
derived 8-day composite LST temperature was first 

Table 1 Details of meteorological stations of  six meteorological observatories

Station name Latitude Longitude Altitude (m) Land cover type 
Gulmarg 34o 3' 10.73'' N 74o 23' 56.18'' E 2660 Forest 
Kokernag 33o 35' 5.23'' N 75o 18' 13.89'' E 1939 Built up 
Kupwara 34o 31' 48.21'' N 74o 15' 38.71'' E 1633 Built up 
Pahalgam 34o 1' 54.03'' N 75o 19' 18.69'' E 2185 Built up 
Qazigund 33o 35' 34.15'' N 75o 9' 54.48'' E 1729 Built up 
SKUAST 34o 8' 52.85'' N 74o 52' 51.09'' E 1601 Agriculture 
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averaged for 8 days, for comparison using three 
approaches to determine the correlation: 1) MODIS 
LST was compared with the Tair observed data for 
the exact location/pixel where the station is located. 
The locations of stations were determined using 
high precision GPS with an accuracy of +10 m, 2) 
the MODIS LST temperature corresponding to the 
9 neighboring pixels was compared with the Tair 

observed data averaged for 8 days and 3) the best 
pixel among the 25 neighboring MODIS LST pixels 
in the vicinity of the station was compared with the 
observed 8-day averaged Tair observed data.  The 
best pixel out of the 25 pixels was assessed 
manually in GIS by making a mesh of 25 points (as 
shapefile) each centered at the centre of the pixel. 
ArcMap 10.1 module, extract multi values to points 
function (that extracts pixel values from multiple 
rasters), was used to extract LST value of each pixel, 
which was then compared with the observed data. 

2.2.3 Lapse rate and snowmelt runoff 
estimation 

After finding good correlation between the 
satellite-derived LST and observed air temperature, 
ATLR was also estimated using the MODIS-derived 
LST. In GIS environment, contours from the DEM 
at 1 km interval were generated at 1100 m, 2100 m, 
3100 m, 4100 m and 5100 m. LST variation along 8 
different altitudinal transects, located across the 
Kashmir valley, was analyzed for determining 
ATLR with each transect having at least three 
contours. Since the mountain aspect and land 
cover type have significant impact on the LST 
(Blandford et al. 2008; Kirchner et al. 2013), it was 
ensured that the pixels with same aspect (derived 
from DEM) and land cover type were selected for 
estimating the ATLR along a transect.  

Snowmelt runoff estimation from the glaciated 
basins is commonly based on the integrated use of 
remotely sensed data, DEM and 
hydrometeorological observations in a modeling 
framework. Snowmelt Runoff Model (SRM) is 
designed to simulate and forecast daily stream flow 
in montane basins of almost any size with elevation 
ranging from 305-7690 m asl, where snowmelt is a 
major runoff factor (Martinec 1975). The SRM 
model was run in the Lidder basin of the Kashmir 
valley to simulate the usefulness of ATLR in 
estimating streamflows. The overall structure of 
the model is described by the following equation: 

111 )1(
86400
10000.])(.[ +++ +−+Δ+= nnnnrnnnnnsnn kQk

A
PcSTTacQ

(6) 

where, Q=average daily discharge (m-3 s); c= runoff 
coefficient for snow (index sn) and rain (index rn); 
the degree-day factor, a, is stated as water 
equivalent (cm C-1 d-1); T = number of degree-days 
(°C d) which refers to the number of positive 
degree days (degrees above 0°C); ΔT=temperature 
lapse rate adjustment (°C d-1); S=ratio of the snow 
covered area to the total area; P=precipitation 
contributing to runoff (cm); A=area of the basin or 
zone (km2); k=recession coefficient; n=sequence of 
days during the discharge computation period and 
10000/86400= conversion from cm km2 d-1 to  
m3 s-1. T, S, and P are variables measured or 
determined each day. The runoff coefficients (Cr, Cs) 
take into account an estimate of evapo-
transpiration, sublimation of snow and ice, 
percolation to deep ground water from the basin. 
The Cr and Cs coefficients of the Jhelum basin 
encompassing Kashmir valley, based on calibration 
and validation of the four years discharge data 
(2007-2011), were used in the study (Sharma et al. 
2012). The model was calibrated for the 
hydrological 2007-2008 and the validation of the 
simulated discharge was done using the data of 3 
hydrological years (2008-2011). All the observed 
parameters that were input into the model were 
taken as initial/ base values for the calibration and 
then simulation was carried out for the next 3 years 
viz., 2008-2011. This was done to check the 
reliability of the calibrated values worked out for 
the year 2007-2008.  The recession coefficient (k) 
indicates the decline of discharge in a period 
without snowmelt or rainfall. Its value ranges 
between 0.9 to1 for various months and was 
derived from the equation:  

m

m

Q

Q
k 1+=                                 (7) 

where, m, m+1 are the sequence of days during a 
true recession flow period. 

Besides, the standard temperature lapse rate 
of -0.0065°C m-1, MODIS LST based ATLR was 
also used to simulate snowmelt runoff. ΔT and lag 
time, which are characteristics for a given basin, 
were taken from the literature (Sharma et al. 2012). 
The precipitation data from the Pahalgam station 
was used as input for SRM. The daily mean 
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temperature data was extrapolated to the 
hypsometric mean elevation of different zones 
using the standard lapse rate of -0.0065°C m-1 and 
the actual lapse rate determined from the MODIS 
LST images. A critical temperature value is 
specified to determine whether the measured 
precipitation is rain or snow and is generally above 
0°C (Charbonneau 1981). The critical temperature 
of 2°C was employed to distinguish snowfall and 
rainfall events as it has been found reliable 
elsewhere in the Himalayan basins (Aggarwal et al. 
2014). Since the basin elevation ranges from 1500 
to 5274 m, the Lidder basin was subdivided into 
four elevation zones. Snow depletion curves (SDC) 
were interpolated from the periodical snow cover 
maps to daily fractional snow cover values. The 
average daily runoff (Q) was calculated by linearly 
summing up the runoff contributions from each 
elevation zone, which were calculated separately 
before routing (Martinec et al. 2008; Eigdir 2003).  

3    Results and Discussion 

3.1 MODIS-derived LST and its validation 

The average difference between the observed 

and MODIS LST was within 1°C. Depending upon 
the approach for comparing LST with Tair, R2 varied 
between 0.88-0.92 (Figure 3). The R2 value 
between the observed temperature and LST of the 
exact pixel was 0.88 (Figure 3a). However, the 
relationship improved to 0.883 (Figure 3b) when 
the LST average of 9 surrounding MODIS pixels 
was compared with the observed temperature. The 
R2 was highest (0.92) when the LST of the best of 
the 25 neighboring pixels in the vicinity of the 
station was compared with the observed 
temperature (Figure 3c). Generally, it was observed 
that the LST of the winter months (December, 
January and February) showed weak correlations 
with the observed temperature for all the stations 
due to the presence of extensive snow cover over 
the land surface (Table 2). 

Trend analysis of the weekly, monthly, 
seasonal and annual LST data from all the six 
stations showed that the temperature in Kashmir 
Himalaya is increasing except at Qazigund (Figure 
4). It was generally found that the temperature in 
winter months is increasing significantly during the 
11-year observation period. Similar trends in the 
winter temperature have been reported from the 
region using long-term observation data (Romshoo 
et al. 2015; Rashid et al. 2015; Zaz and Romshoo 

Table 2 Validation of the MODIS-derived Land Surface Temperature (LST) with observatories station data 

Station 
Average Temperature (°C) Maximum Temperature (°C) Minimum Temperature (°C) 

R2 
Observed MODIS LST Observed MODIS LST Observed MODIS LST 

Gulmarg 11.87 11.85 28 28 -5.9 -6 0.98
Kokernag 18.5 18.2 31.05 32 -1.1 -4 0.97
Kupwara 20.5 19.2 35.01 33 0.7 0 0.97
Pahalgam 17.29 16.16 28 29 -3 -3 0.95
Qazigund 19.5 19.3 30.5 32 0.01 0.1 0.95
SKUAST 19.9 20.1 34.3 35 0 -1 0.98

 
Temperature (°C) 

Figure 3 Validation of the MODIS-derived Land Surface Temperature (LST) with the observed Tair data from all the 
six stations; a) with the exact pixel; b) with an average of the neighboring 5×5 pixels; and c) with the best pixel in the 
neighboring 5×5 window. 
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2013). The station-wise validation of 
the satellite-derived LST is provided in 
the Table 2 and is briefly discussed 
below.  

Comparison of the satellite-derived 
LST and the observed air temperature 
on daily basis from 2002-2012, for the 
six locations widely spread across the 
study area, is shown in the Figure 5(a-f). 
A close agreement was found between 
the two with the R2=0.98 for Gulmarg 
(Figure 5a). Figure 5b shows the 
comparison of the satellite LST and 
observed air temperature for the 
Kokernag station with R2=0.97. The 
comparison of the satellite-derived LST 
with the observed air temperature at Kupwara 
(Figure 5c) also suggests a close agreement with 
R2=0.97. There is an error between the observed 
minimum temperature (0.7°C) and LST minimum 
temperature (0°C) during the winters. Figure 5d 
shows a close agreement between the observed 
temperature and Satellite derived LST at Pahalgam 
with R2=0.95. The observed lowest temperatures 

and MODIS derived LST were found same. The 
correlation of the time series satellite-derived LST 
of Qazigund (Figure 5e) yielded a close agreement 
with R2=0.95 with the winter LST showing large 
disagreement. The time series of the satellite-
derived LST for the SKUAST station was compared 
with the observed air temperature at SKUAST 
(Figure 5f) and a close agreement was found 
between the two with R2=0.98. The observed 

 
Figure 5 Correlation of the Land Surface Temperature (LST) with the observed air temperature at six observed 
stations; a) Gulmarg; b) Kokernag; c) Kupwara; d) Pahalgam; e) Qazigund; and f) SKUAST.  

Figure 4 Temporal variation of the MODIS-derived Land Surface 
Temperature (LST)  at six locations from 2002-2012. 
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lowest winter temperature was 0°C and the 
corresponding MODIS LST was -1°C for the station 
(Table 2) showing a weak correlation. 

3.2 Importance of ATLR for estimating 
snow- and glacier-melt 

3.2.1MODIS LST-based lapse rate 

The altitudinal variability of LST-derived 
ATLR along 6 different transacts across the 
Kashmir valley (Figure 6), covering at least 3 
contours (2100-5100 m) is shown in Figure 7.  
Transect along Uri has a gradient from 1100-3100 
m and the Pahalgam transect crosses the three 
altitudinal gradients from 2100-5100 m asl. The 
rest of the transects cross the attitudinal gradient 
from 2100-4100 only. If and when there are more 
than two places falling in the same altitudinal 
transect, the temperature lapse rate variation was 
shown as minimum, maximum and average 
(Figure 7b, c).  The analysis of the data shown in 
the Figure 7 (a-d) shows that the temperature lapse 
rate varies in space and time along different 

transects due to the variable environmental setting 
(from 0.3°C -1.2°C per 100 m) against the STLR of 
0.65°C per 100 m change in altitude used 

Figure 6 Location of various temperature lapse rate 
transects chosen across different altitudes from 1100-
5100 m asl in the Kashmir valley. 

 
Figure 7 Altitudinal variability of LST-derived actual temperature lapse rate (ATLR) along different transacts in the 
Kashmir valley (from 0.3°C -1.2°C per 100 m); a) Uri (transect 6) having gradient from 1100-3100 b) Bandipora and 
Pahalgam (transect 3 and 4) having altitudinal gradients from 2100-5100 m amsl; c) Banihal and Shopian (transect 1 
and 5) having altitudinal gradients from 2100-5100 m amsl; and d) Baramulla (transect 2) having the attitudinal 
gradient from 2100-4100 only.  
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universally. The variation in lapse rate is a function 
of season, atmospheric conditions (stability of 
atmospheric column vis-a-vis temperature 
inversion), climate and land cover (Li et al. 2013). 
In the Lidder valley, it was found that the ATLR is 
higher in the altitudinal range of 3100-<4100 m 
than along the 2100-<3100 m and 4100-<5100 m 
altitude gradients (Figure 8). The overall lapse rate 
from 2100-<5100 m in the Lidder valley is 7.1°C 
km-1, which is 0.6°C higher than the STLR. Also, 
the weekly and monthly trends of the temperature 
lapse rate were analyzed which showed that the 
lapse rate is not uniform and varies with time and 
altitudinal gradient (Figure 8). The temperature 
lapse rate can go up as high as 12°C km-1 and can 
stay as low as 3°C km-1. Overall, the temperature 
lapse rate is higher along the 3100-<4100 m 
altitudinal gradient compared to the 2100-<3100 m 
gradient (Table 3).  

3.2.2 Temperature lapse rate and snowmelt 
runoff modeling 

The use of the STLR, in absence of the ATLR, 
in modeling the glacio-hydrological processes often 
leads to inaccurate stream flow estimates in the 
mountainous region. In order to demonstrate the 
usefulness of using the ATLR for snowmelt 
estimation in the mountainous Lidder catchment, 
Kashmir valley, SRM was used to estimate and 
compare the snowmelt runoff using the ATLR and 
the STLR. Figure 9 shows comparison of the actual 
hydrograph with the simulated hydrographs using 
the ATLR and STLR. The overall correlation 
between the measured and simulated discharge is 
high indicating that the calibrated parameters 
closely fit the real-world situation. However, there 
are a few minor disagreements as well particularly 
during 2010-2011 hydrological year. It is evident 
from the results that the use of the ATLR improves 
the estimation of the streamflow compared to the 
estimates using the STLR. The correlation 
coefficient between the observed and simulated 
streamflow improved from 0.92 for STLR to 0.97 
for the ATLR in Lidder. However, keeping in view 

 
Figure 8 Temporal altitudinal variability of actual temperature lapse rate (ATLR) in Lidder valley, Kashmir  from 
2100-5100m amsl from January to December. 
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the fact that there could be sometimes a large 
difference in the STLR and ATLR as observed 
elsewhere in the Kashmir valley, it is prudent to 
use the satellite-derived LST for estimating the 
temperature lapse rates for use in the glacio-
hydrological models for accurate snow-melt 
estimates in the ungauged mountainous 
catchments. Further, there is a need to validate the 
improvements reported in the glacier- and snow-
melt using the ATLR in this research by using other 
glacio-hydrological models based on energy 
balance or degree day approach (Arnold et al. 1996; 
Braithwaite and Raper 2007; Datt et al. 2008).  

3.3 Importance of satellite derived 
temperature lapse rate in Himalaya 

Using the temperature observations from just 
4 meteorological stations in Kashmir Himalaya, 

Zaz and Romshoo (2013) estimated the 
temperature lapse rates varying from -3.89°C km-1 
to 4.96°C km-1 which have high uncertainty due to 
the inadequate number of observation stations 
used in the estimation of the temperature lapse 
rate. Similar variations in the temperature lapse 
rate (-4.8°C km-1 to -7.6 °C km-1) were reported by 
Tahir et al. (2011) in the Karakoram region, again 
based on a few meteorological observatories. 
Thayyen et al. (2014) reported the temperature 
lapse rate of -2.8°C km-1 to -17.0°C km-1 for the cold 
arid region of Ladakh Himalaya and -1.9°C km-1 to 
-9.0°C km-1 for monsoon dominated Garhwal 
region in the Western Himalaya based on the few 
observed temperatures along a transect. The 
temperature lapse rates determined from the 
MODIS LST data in this study, based on 1-km 
resolution data, varied between -3.0°C km-1 to 
12.0°C km-1 due to the changes in the seasons, 
topography, land cover and climatic setting. It is 
believed that, instead of using the STLR of -6.5°C 
km-1 altitudinal change, the findings would go a 
long way in the operational use of the satellite-
derived temperature lapse rates for quantifying 
various hydrological and glaciological processes in 
the mountainous Himalaya. 

4     Conclusion 

In this research, a time series of MODIS 
satellite data was used for extracting the LST which 
was validated with the observed air temperature 
(weekly, monthly, seasonally and yearly time scales) 
from six meteorological stations in the Kashmir 
Himalaya. The analysis indicated statistically 
significant agreement, with R2>90%, between the 
satellite-derived LST and the observed air 
temperature. However, despite correction for the 
snow-cover, the satellite-derived LST showed some 
errors during winters. The findings provide 
confidence for the use of satellite-derived LST in 
mountainous Himalaya where the understanding 
and modeling of various land surface and 
atmospheric processes related to hydrology, 
climatology and glaciology is constrained due to 
lack of adequate observed meteorological data. 
However, it is important to validate the LST with 
observed data from adequate number of 
observatories to check its suitability for use in the 
process models. Further in the data-scarce regions, 

Table 3 Altitude range wise lapse rate as determined 
from MODIS LST data 

Month 
Altitude Range (m asl) 

2100-<3100 3100-<4100 4100-<5100 
Jan 6.5 8.4 6.4 
Feb 6 8.5 6.5 
Mar 7.4 8.5 5.7 
Apr 7 8.5 5.7 
May 6.6 8.7 6.7 
Jun 7.4 6.8 7.4 
Jul 7.4 6 6.5 
Aug 7.5 5.7 6.7 
Sep 7 7 8 
Oct 7 7.4 8.3 
Nov 7 6.6 7.3 
Dec 6.5 7.7 8.7 
Average 6.94 (+0.46) 7.48 (+1.06) 6.99 (+0.97)
 

 
Figure 9 Comparison of the observed hydrograph with 
the two simulated hydrographs using the actual 
temperature lapse rate (ATLR) and standard 
temperature lapse rate (STLR). 
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use of the standard temperature lapse rate of 6.5°C 
km-1 in glacio-hydrological models is often 
erroneous and might significantly affect the 
quantification of snow-melt and ice-melt in snow-
covered and glaciated regions like Himalaya. It was 
found that the ATLR varies significantly with time 
and space as compared to the constant STLR. 
Using the Snowmelt Runoff Model, it was observed 
that the use of the ATLR improved the estimation 
of streamflows (r=0.97) compared to estimates 
using the STLR (r=0.92). The satellite-derived LST 
has a good potential to replace the use of STLR in 
various land surface and atmospheric process 
models to improve the quantification of various 
land and atmospheric processes in the 
mountainous regions. 
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