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Abstract: Mountain hazards with large masses of 
rock blocks in motion – such as rock falls, avalanches 
and landslides – threaten human lives and structures. 
Dynamic fragmentation is a common phenomenon 
during the movement process of rock blocks in rock 
avalanche, due to the high velocity and impacts 
against obstructions. In view of the energy 
consumption theory for brittle rock fragmentation 
proposed by Bond, which relates energy to size 
reduction, a theoretical model is proposed to estimate 
the average fragment size for a moving rock block 
when it impacts against an obstruction. Then, 
different forms of motion are studied, with various 
drop heights and slope angles for the moving rock 
block. The calculated results reveal that the average 
fragment size decreases as the drop height increases, 
whether for free-fall or for a sliding or rolling rock 
block, and the decline in size is rapid for low heights 
and slow for increasing heights in the corresponding 
curves. Moreover, the average fragment size also 
decreases as the slope angle increases for a sliding  

 
rock block. In addition, a rolling rock block has a 
higher degree of fragmentation than a sliding rock 
block, even for the same slope angle and block volume. 
Finally, to compare with others’ results, the 
approximate number of fragments is estimated for 
each calculated example, and the results show that the 
proposed model is applicable to a relatively isotropic 
moving rock block. 
 
Keywords: Rock block; Rock fragmentation; Rock 
movement process; Crushing work ratio; Average 
fragment size.  

Introduction 

Among the dynamic processes of mountain 
hazards, such as rock avalanches and rock falls, the 
motion of rock blocks is a distinct phenomenon 
that is responsible for loss of life and damage to 
construction near the mountain (De Blasio 2011; 
Paluszny et al. 2016). Mechanical behaviors and Received: 8 February 2017 
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responses of the brittle rock blocks in these 
disasters have been widely studied by many 
researchers, and the dynamic fragmentation of 
rock blocks has become a focus of research papers 
that determined the evolution of motion of the rock 
blocks (Bowman et al. 2012; Vocialta and Molinari 
2015). As a precondition for dynamic 
fragmentation, the movement of rock blocks was 
studied first. Most of the studies aimed to 
determine the motion parameters of rockfalls, 
including the velocity and trajectory of free-falling 
blocks (Azzoni et al. 1992; Wyllie 2014), and other 
parameters relating to the movement of rock blocks, 
such as restitution coefficients or equivalent rolling 
friction coefficients (Chau et al. 2002; Giani et al. 
2004). Through analysis of the motion process, the 
basic data for impact prediction can be determined, 
including velocity, direction and point of impact. 

Rock fragmentation within an impacting load 
during motion of rock blocks is a complex process 
that involves several physical and mechanical 
mechanisms. The dynamic fragmentation of brittle 
materials including brittle rock is a consequence of 
the nucleation, growth and coalescence of 
microcracks (Zhang et al. 2004; De Blasio and 
Crosta 2014; Paluszny et al. 2016); initial or new 
cracks in a block propagate and finally coalesce to 
break the rock block into fragments. According to 
the complexity of rock fragmentation problem, 
some simplify assumptions are usually introduced, 
most of the studies consider the dynamic strength 
of rock materials and try to understand the rock 
fragmentation phenomenon through energy 
considerations (Grady and Kipp 1987; Zhang et al. 
1999; Iqbal and Mohanty 2007). Only a few models 
have been proposed to determine the 
fragmentation of moving rock blocks (Giacomini et 
al. 2009). Crosta et al. (2006) implemented an 
energy approach to detection of fragmentation 
within their three-dimensional rockfall analysis 
code HY-STONE. Greco et al. (1981) quantified the 
energy required to break blocks with a stone 
hammer and considered that when the impacting 
kinetic energy reached the required energy, a rock 
block divided into several fragments, and the 
remaining kinetic energy was distributed among 
the fragments in proportion to the volume of the 
fragments. Moreover, a discrete element model was 
also effectively used to simulate impact-induced 
rock fragmentation in a rock-fall fly-rock analysis 

(Wang and Tonon 2009, 2010, 2011). Although 
much effort has been expended and many study 
results have been presented, a valid theoretical 
model for the evaluation and prediction of 
fragment size of rock blocks after impact needs 
additional work. 

Among all of the studies of rock block 
fragmentation, the most notable and basic theories 
for the relation of fragment size and energy were 
conceived by Kick (1885) and Bond (1952); they 
explained the relation of work per volume and size 
reduction of rock blocks simply by using a 
proportional relationship. In this paper, these 
energy consumption theories are used to infer the 
average fragment size through considering the 
crushing work ratio in the theories as an energy 
determined by the impact energy. Then, according 
to the physical mechanics of rock block motion in 
rockfalls or avalanches, an appropriate theory is 
selected as the basis for the model of estimating 
average fragment size. Next, various forms of 
motion with different drop heights or slope angles 
for the rock blocks are analyzed using the proposed 
model, and the number of fragments is estimated 
based on the calculated average fragment size and 
finally compared with others’ results to verify the 
applicability of the proposed model. 

1    Theoretical Model 

1.1 Impact of rock blocks 

During a high-speed rock block motion 
process, a rock block may disintegrate into pieces 
due to the great force of impact. This 
fragmentation has a serious effect on the 
subsequent development of the disaster, which 
may evolve to a large-scale debris flow, and 
requires effective attention to prevent possible 
disasters. Therefore, clearly recognizing the 
fragmentation process and its results is important 
to the study of a rock fall disaster. In general, when 
the impact force on a rock block is greater than the 
maximum strength of the rock body, the block 
breaks. For a moving rock block, severe 
deformation resulting from compression may occur 
when it impacts a fixed obstruction on the slope at 
high speed. During this process, the kinetic energy 
of the rock block is constantly converted into strain 
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energy and generates fracture energy, which can 
break the rock block and produce new fracture 
surfaces. However, not all of the strain energy 
converted from kinetic energy may be distributed 
to the rock block. Based on collision theory, when 
an impact occurs, the strain energy from kinetic 
energy will distribute to the two impactors in a 
certain proportion determined by the elastic 
moduli and Poisson's ratios of the impactors. The 
proportion can be determined as follows: 

2
2

2
1

1

2

2

1

1
1

μ
μ

−
−

⋅=
E
E

U
U                                     (1) 

where U1 and U2 are the distributed strain energies 
of the two impactors, and E1 and E2 and μ1 and μ2 
are the elastic moduli and Poisson's ratios of the 
two impactors, respectively. 

For the moving rock block, the process of 
impact includes two stages as shown in Figure 1. 
First, the impact force increases constantly, 
starting with the contact of the rock block and the 
obstruction, and the kinetic energy begins to 
transform into strain energy (Figure 1b). When the 
deformation of the rock block reaches its maximum, 
the impact force is also at the maximum value 
(Figure 1c), and all of the kinetic energy of the rock 
is converted into strain energy because the 
obstruction is fixed on the slope. Second, the 
deformation of the rock block recovers to some 
extent, and a resilient velocity v is imparted to the 
rock block (Figure 1d). Based on this principle, the 
strain energy that is distributed to the rock block 
can be written as: 
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where m is the mass of the moving rock block and v 
is the velocity of the moving rock block before 
fragmentation. 

Next, the volume strain energy strength theory 
can be used to estimate whether fragmentation 
occurs during the impact, as in Liu (2003). The 
controlling equation is as follows: 
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where ρ is the density of the rock block and σc is its 
compressive strength. 

When the impact velocity is higher than the 
above calculated critical velocity, the distributed 
strain energy is greater than the maximum energy 
that the rock block can withstand. 

1.2 Estimation model 

1.2.1 Energy consumption theory 

Fragmentation of a rock block is an extremely 
complicated process that involves many 
mechanical mechanisms due to the block’s various 
internal structures, such as the distribution of 
cracks. It is very difficult to analyze the process and 
results of rock fragmentation under impact loading 
through analysis of only the force and stress 
evolution. To overcome this difficulty, energy 
analysis is widely applied to study the relationship 
between impact loading and fragment size. 

The crushing work ratio is an important 
parameter that denotes the work used to break a 
volume of rock in a fragmentation event. This ratio 
can reveal the relationship between energy and size 
reduction of a rock block and thus has interested 
many researchers for more than a century. Notable 
theories were conceived by Rittinger, Kick and 
Bond (Balaz 2008; Jankovic et al. 2010; Morrell 
2004). Rittinger (1867) proposed that the work 
done in crushing is proportional to the new surface 
area, which means that the crushing work ratio is 
proportional to the value of (1/d-1/D), if the size of 

 
Figure 1 Impacting process of brittle rock. 
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the rock is reduced to d from D. Therefore, the 
crushing work ratio can be written as: 

( )111 −=





 −= I

D
K

Dd
KW R

RR            (4) 

where KR is the Rittinger’s constant, which is 
related to the properties of the rock block, and I is 
the reduction ratio, which is determined by D/d. 

Kick (1885) proposed that for a homogeneous 
rock, the work input is proportional to the 
reduction in particle size; his theory rests on the 
proportionality of the required energy to the lost 
volume, and the crushing work ratio by this theory 
is changed as follows: 

IK
Dd

KW KKK lg1lg1lg =





 −=       (5) 

where KK is the Kick’s constant, which is related to 
the properties of the rock block. 

According to Bond, the formation of defects 
drives the consumption of energy, so he proposed 
that the crushing work ratio is inversely 
proportional to the value of d0.5 because of cracks 
hidden in the rock (Bond 1952, 1960). According to 
this theory, the crushing work ratio is determined 
as: 





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

 −=
Dd

KW BB
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                       (6) 

where KB is the Bond’s constant, which is related to 
the properties of the rock block, and it can be 
estimated by KB=10EB, where EB is the Bond’s 
crushing work index. The specific energy 
consumption data were fitted to these three models. 

Hukki (1962) evaluated these energy-size 
relationships stating that each of Rittinger, Kick 
and Bond theories might be applicable for different 
narrow size ranges. Ghorbani et al. (2010) had 
found that the specific energy consumption data 
were fitted to these three models and estimated 
their parameters based on some correlative 
experiments using hammer mill. A large amount of 
more researches on rock fragmentation using these 
three theories reveals that Rittinger’s theory may 
be used for finer grinding and applies to the 
condition of intensely smashed rock fragments 
with fragment size less than 0.5 mm. Kick’s theory 
is applicable for crushing and applies to the 
condition of roughly smashed rock fragments. Only 
Bond’s theory is applicable in the natural rock 

block fragmentation and applies to the condition of 
moderately smashed rock fragments. Furthermore, 
application of Kick’s and Rittinger’s theories has 
been met with varied success and is not realistic for 
consideration of size reduction. In spite of the 
empirical basis of Bond’s theory, it is the most 
widely used method for the sizing of fragment and 
has become more likely a standard. Furthermore, 
Gupta and Yan (2006) and Chandar et al. (2016) 
even carried out a systematic test to predict Bond's 
crushing work index using three types of rock and 
validating with fourth type of rock and to 
determine the grinding efficiency and also to 
calculate the energy requirement of rock when in 
fragmentation. According to many field 
investigations, the fragmentation of moving rock 
blocks under impact loading in actual landslide 
disasters always produces pieces with an average 
size of 5 mm to 500 mm. Thus, Bond’s theory may 
be considered the most suitable for fragment size 
analysis of moving rock blocks. 

1.2.2 Estimating model for average 
fragment size 

As the above section noted, when a rock block 
under impact loading is broken into fragments, the 
necessary work per volume is related to the change 
of dimension, with different equations based on 
various theories. Here, Bond’s theory is chosen to 
analyze the fragmentation of a moving rock block. 
Clearly, the average size can be determined by 
rearranging Eq. (6) as follows: 

( ) D
KDW

Kd
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+

= 2
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where WB is the work done per volume of the rock 
block and can be given as: 

V
WWB =                                              (8) 

where W is the total energy done on the rock block 
and V is the total volume of the rock block. Then, 
Eq. (7) can be transformed as follows: 

( ) D
VKDW

VKd
B

B ⋅
+

= 2

22

                (9)

 
As this equation implies, the determination of 

total energy (W) is an essential requirement to 
calculate the average size of rock fragments after 
fragmentation. In general, the fragmentation 
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process of a rock block includes two steps under 
dynamic loading. As shown in Figure 2, when 
impact loading affects the rock body, the interior 
microcracks may propagate until coalesce through 
the rock. In this stage, a part of the impact energy 
is consumed to accomplish the extension of the 
initial cracks. Then the residual impact energy 
which means that the total impact energy after 
deducting the consumed energy in the crack 
propagation of the first step continues to dissipate 
until the rock is completely broken. Only the 
second stage is consistent with the energy 
consumption theory. As the fragments generated 
from a complete rock mass in the fragmentation 
may have a certain speed after fragmenting, the 
impact energy may not be consume completely in 
the fragmentation and some parts of it had 
translated into the kinetic energy of generated 
fragments. So when using Eq. (9) to calculate the 
average size, the total work is not equal to the 
impact energy. Define absorptive energy is the 
consumed energy in the fragmentation which is the 
different value between the impact energy and the 
total kinetic energy of fragments after impaction. 
Then the total energy (W) has the same value as the 
residual absorptive energy (Wr), which is the 
absorptive energy after deducting the consumed 
energy in the first step, so that the total work in Eq. 
(9) can be expressed as follows: 

SEr WEWW −Δ==                       (10) 

where ΔE is the absorptive energy, which means 
the reduction of kinetic energy after the impact, 
and WSE is the surface energy, which means the 
energy consumed in the process of extending the 
initial cracks in the first stage of fragmentation. 
The latter can be determined as: 


=

=
n

i
iSE AW

1
2γ                                (11) 

where Ai is the area of new surface generated from 
the extension of crack i and γ is the surface energy 
per unit area of the rock block. This parameter is 
related to the fracture and other mechanical 
properties of the rock such as fracture toughness 
and elastic modulus (Mecholsky et al. 1974; 
Cherepanov 1979; Wu et al. 2010), and it can be 
determined as follows (Dai et al. 2011; Kopp et al. 
2014; Xie et al. 2015), 
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E
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where Kc is the fracture toughness of the rock block 
and E and μ are the elastic modulus and Poisson's 
ratio of the rock block, respectively. 

Then, Eq. (10) can be written as follows: 
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The reduction of kinetic energy (absorptive 
energy ΔE) is related to the impact form because 
the stress forms vary for different conditions, such 
as direct impact, oblique impact or impact with a 
rotational speed when the moving rock block rolls 
along the slope to impact against the obstruction. If 
the rock blocks directly impacts the obstruction 
with no rotational speed, the reduction of kinetic 
energy after fragmentation can be obtained from 
Eq. (14) as: 

( )[ ] ( )222222 1
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nn emvvevmvmmvE −=−=′−=Δ (14) 

where v is the velocity of the moving rock block 
before impact; v′ is the bulk velocity of all of the 
fragments generated from the moving rock block 
after fragmentation; and en is the normal 
coefficient of restitution of the rock block when 
impacted against the obstruction. 

If the moving rock block impacts the 
obstruction at a certain angle, the tangential stress 
must be considered. Figure 3 shows a schematic 
diagram of the moving rock block impacting a 
horizontal plane with an angle. The rock body is 

 
Figure 2 Fragmenting process of brittle rock under 
an impact loading. 

 
Figure 3 Impacting process of a rock block moving 
with an angle. 
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obviously under a tangential friction force as well 
as the normal impact force. Under this condition, 
the normal velocity after impact can be determined 
as: 

θsinvevev nnnn ⋅−=−=′                      (15) 

where θ is the angle between the impact surface 
and the impact direction. 

As in the previous analysis, the impact process 
in Figure 3 also consists of two stages (deformation 
stage and recovery stage). Based on the theorem of 
impulse, the normal impulses of the deformation 
stage and the recovery stage can be obtained as: 
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where In is the normal impulse of the deformation 
stage and I′n is the normal impulse of the recovery 
stage. 

Furthermore, the tangential impulses of the 
two stages can be given as: 

( )






⋅−=′=′=′
−==




θ
θ

τ

τ

sin)(

sin

fmvevfmdttFfI
fmvdttfFI

nn

  (17) 

where Iτ is the tangential impulse of the 
deformation stage; I′τ is the tangential impulse of 
the recovery stage; and f is the sliding friction 
coefficient between the rock block and the impact 
surface. 

To calculate the tangential velocity after 
impact, the theorem of impulse is used again here: 

θτττ cosmvvmII −′=′+                      (18) 

The tangential velocity after impact can be 
determined as: 






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θ
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Then, the reduction of kinetic energy can be 
changed into: 
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Eq. (14) and Eq. (20) give the reduction of 
kinetic energy after fragmentation of a moving rock 
block with no rotational velocity. However, if the 
moving rock block is approximately spherical and 
rolls along the slope before impact, it may have a 
high rotational velocity generated by the rolling 

movement, as shown in Figure 4. The kinetic 
energy consists of rotational kinetic energy and 
translational kinetic energy, and both of them must 
be considered when calculating the reduction of 
kinetic energy. Based on the theorem of moment of 
momentum, the angular impulse is equal to the 
variation value of angular momentum as follows: 

( ) ( )
( ) ( )nnn efmvRIIfR

RdttFfRdttfFJJ

+−=′+=

′+=−′ 
1sinθ

ωω          (21) 

where R is the equivalent radius of the rock block 
which is equal to the radius of a sphere which has a 
same volume with the rock block; ω is the 
rotational velocity of the rock block before impact, 
which is determined as ω=v/R for pure rolling 
movement; ω′ is the rotational velocity of the 
whole system after impact; and J is the rotational 
inertia, which can be determined as: J=2/5mR2. 

Furthermore, the rotational velocity of the 
whole system after impact can be given as: 

( )
R
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In reality, it is impossible for the rotational 
velocity of the whole system after impact (ω′) to be 
directed opposite to the initial rotational velocity 
(ω), which means that the value of ω′ obtained 
through Eq. (22) must satisfy ω′ ≥0. If ω′ is less 
than 0, the moving rock block loses all of the initial 
rotational kinetic energy; thus, Eq. (20) can be 
written as: 
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(23)

 

 
Figure 4 Impacting process of a moving rock block 
with a rotational velocity. 
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When the value of ω′ satisfies the condition ω′ 
≥0, the reduction of kinetic energy may be changed 
into the following expression:  
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Based on the analysis above, it is clear that the 
fragmentation of a moving rock block is a complex 
and varied process involving many conditions, such 
as the mechanical properties of the rock block and 
the obstruction, the shape of the rock block and the 
type of motion. If the moving rock block directly 
impacts the obstruction with no rotational velocity, 
the estimating model for average fragment size is 
computed by the simplest method using Eqs. (9), 
(13) and (14). If the moving rock block impacts the 
obstruction obliquely with no rotational velocity, 
the estimating model is changed to Eqs. (9), (13) 
and (20). Finally, when the moving rock block 
impacts the obstruction with a rotational velocity, 
the estimating model has two different forms. If the 
value of the rotational velocity of the whole system 
after impact (ω′) is less than 0, the estimating 
model consists of Eqs. (9), (13) and (23). On the 
other hand, when ω′ is greater than or equal to 0, 
the model uses Eqs. (9), (13) and (24). 

2    Results and Sensitivity Analyses 

In this section, the model proposed above is 
applied to analyze the fragmentation results of a 
moving rock block that falls from a great height or 
slides along a steep slope and dashes against the 
rigid ground surface. Furthermore, different 
motion forms and different conditions are 
discussed, such as the falling height and slope 
angle. 

2.1 Determination of velocity and trajectory 

Before the estimation, motion parameters 
including velocity, motion direction and position 
before the impact must be determined to provide 
the data input for the estimating model. All of the 
needed parameters can be obtained by the 
calculation model of velocity and trajectory for a 

moving rock block that has been proposed and 
widely used by researchers when studying the 
disaster of a rock fall (Broili 1973; Dorren 2003). In 
general, the motion forms of a falling rock block 
include free falling, elastic bouncing, rolling and 
sliding (Guzzetti et al. 2002; Song et al. 2006; 
Labiouse and Heidenreich 2009; Asteriou et al. 
2012). Figure 5 shows a schematic diagram of 
different motion forms, the motion characteristics 
of the rock block are determined by the shape of 
the slope and the rock block, as well as the initial 
motion state. Figure 5a represents a rock block 
avalanched from the top of a cliff and falling freely 
to the ground; the velocity before impacting on the 
ground under this condition can be calculated as: 

gHv 2=                                                 (25) 

where H is the falling height. 

Figure 5b shows a rock block sliding along the 
slope, with an obvious plane of contact between the 
block and the slope. Based on the kinematic 
principle, the velocity of the moving block before 
fragmentation can be obtained as follows (Giani et 
al. 2004): 







 −+=

θtan
122

0
fgHvv                       (26) 

where v0 is initial velocity and θ is the slope angle. 
If the rock block is airborne at the beginning, it 

bounces downward after hitting the slope. 
Therefore, this motion form includes flight and 
collision, and the velocity of flight can be 
determined as: 

Hgvv Δ+= 22
0                                     (27) 

where ΔH is the vertical falling height from the 
initial position to the calculated position. 

Undoubtedly, a determination of the trajectory 
during the bouncing stage that reflects the actual 
position of the rock block can effectively determine 
the impact point. In the flight stage (Figure 5c), the 

Figure 5 Four motion forms for a moving rock block. 
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movement trajectory equation can be expressed as 
Eq. (28). After colliding with the slope surface, the 
motion state of rock block inevitably changes, and 
the velocity after collision can be written as Eq. 
(29): 

2

0

0
0

0

0
0 2

1







 −−−+=
x

y
x v

xxgv
v

xxyy      (28)

 





=′
=′

0

0

τττ vev
vev nnn                                              (29)

 
where (x0, y0) are the initial coordinates of the rock 
block; (x, y) are the coordinates of the calculated 
point; v0x and v0y are the components of initial 
velocity in the x and y directions, respectively; en 
and eτ are the normal and tangential coefficients of 
restitution of the rock block; vn0 and vτ0 are the 
components of the initial velocity in the normal 
and tangential directions with regard to the impact 
surface, respectively; and v′n and v′τ are the 
components of velocity in the normal and 
tangential directions after collision, respectively. 

When the rock block is approximately 
spherical and rolls down the slope as shown in 
Figure 5d, velocity can be determined as follows: 

( )
22

2
2
0

tancos12
dR

RfgHvv
+

′−+= θθ     (30) 

where fʹ is the coefficient of rolling friction between 
the rock block and the slope surface and d is the 
radius of inertia of the rock block, which is 
determined by d2=2R2/5. 

2.2 Example analysis 

Combining the calculation method for 
kinematic parameters and the estimating model for 
average fragment size of a moving rock block can 
theoretically analyze the fragmentation of the rock 
block after colliding with the hard ground, either 
free-falling from a cliff (Figure 6a) or sliding or 
rolling along a slope (Figures 6b and 6c).  

Figure 6a shows a rectangular rock block 
falling freely from a great height and breaking into 
fragments after impacting the ground. Suppose the 
rock is a square block of granite with side length of 
1 m and two initial interior cracks. When striking 
the ground with huge impact energy, the two initial 
cracks inevitably extend throughout the whole rock 
block, assuming that the two inner cracks extend 
along the diagonals, which breaks the initial rock 

block into four parts, and each part receives a 
quarter of the residual absorptive energy in the 
subsequent fragmentation. Therefore, the area of 
new surface produced by impact is 2.83 m2 and 
D=0.78 m calculated by D=(1.5V/π)1/3 (where V is 
the total volume of the initial block). Some of the 
mechanical parameters of the rock block are taken 
from related research and listed in Table 1 (Hou et 
al. 2015a). Otherwise, the material of the slope and 
the ground surface is assumed to be a kind of hard 
granite which has same property with the natural 
slope of Changheba Hydropower Station in China, 
and its mechanical parameters and other 
correlation coefficients with the rock block are 
obtained by referring to related research (Hou et al. 
2015b) and listed in Table 2. To estimate the 
fragment size more accurately, the value of Bond’s 
constant is taken as 188.5 kW·h/t (Refahi et al. 

 

 

 
Figure 6 Schematic diagram of a rock block impacting 
on the ground: (a) free-fall; (b) sliding; (c) rolling. 
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2007). Then, fragmentation and average fragment 
size corresponding to different falling heights can 
be analyzed by the kinematic model Eq. (25) and 
the average fragment size estimating model Eqs. 
(9), (13) and (14) because of the direct impact. The 
calculation result is shown in Figure 7a, and it is 

clear that the curve of average fragment size 
declines from 0.542 m to 0.013 m as the drop 
height increases from 10 m to 200 m. In addition, 
fragment size decreases sharply as height increase 
from 10 m to 50 m and decreases slowly as the 
drop height increases further when exceeding 50 m. 

Results are very different if the rock block 
slides along the slope before the impact, as shown 
in Figure 6b. To compare this situation with the 
condition of free-fall, consider that the rock type 
and material of the rock block, the slope and the 
ground are the same as in the above example, and 
all of the needed parameters also have the same 
values. Various slopes with three different angles 
(70°, 45° and 30°) are analyzed for the study of a 
sliding rock block. For the condition of sliding, Eq. 
(26) can be chosen as the kinematic model and the 
average fragment size estimating model consists of 
Eqs. (9), (13) and (20); the calculation results are 
shown in Figure 7a. Undoubtedly, the change law 
of the average fragment size curve for a sliding rock 
block has characteristics similar to those of the 
free-fall rock block: it decreases with increasing 
slope height, and the rate of decrease also tends to 
be rapid from 10 m to 50 m and slow for greater 
heights, like the curve for free-fall. Moreover, the 
curves for sliding rock blocks are obviously higher 
than for free-fall and rise further as the slope angle 
decreases. In addition, the average fragment size of 
a rock block sliding down a 30° surface is 
somewhat different from the others, in that the top 
of the curve, for heights from 10 m to 17 m, 
stabilizes at approximately 0.78 m, which is equal 
to the initial average size after the original cracks 
propagate. This is because the calculated value of 
the average fragment size in this range is greater 
than the initial average size D, indicating that the 
residual absorptive energy after the initial crack 
propagation cannot break the rock into fragments. 
Figure 7b reveals further that, with the same drop 
height, the average fragment size decreases as the 
slope angle increases, which agrees with the data in 
Figure 7a. 

To explore the distinction between a rolling 
impact and sliding or free falling one, a spherical 
rock block rolling along the slope is considered 
here, and the average fragment size of the moving 
rock block after fragmentation is analyzed for a 
certain rotational velocity. To make the comparison 
more effective, consider that the volume of the 

Table 1 Mechanical parameters of the rock block 

Parameter E1 (GPa) μ1 σc (MPa) Kc 
(MPa·m1/2)

ρ 
(kg/m3)

Value 4.4 0.23 47 0.5 2574

Note: E1 is the elastic moduli of rock block; μ1 is the 
Poisson's ratios of rock block; σc is the compressive 
strength of the rock block; Kc is the fracture toughness 
of the rock block; ρ is the density of the rock block. 
 
Table 2 Mechanical parameters of the ground and 
other correlation coefficients 

Parameters 
Ground Correlation coefficients 

between slope and rock 
E2 (GPa) μ2 f en eτ

Value 3.6 0.2 0.4 0.3 0.92

Note: E2 is the elastic moduli of ground; μ2 is the 
Poisson's ratios of ground; f is the sliding friction 
coefficient between the rock block and the impact 
surface; en and eτ are the normal and tangential 
coefficients of restitution of the rock block when 
impacted against the obstruction, respectively. 

 

 

 
Figure 7 Average fragment size for free-falling and 
sliding rock blocks: (a) size-height curve; (b) size-angle 
curve. 
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spherical rock block is equal to the one in the above 
analysis (V=1 m3) and that there are two initial 
interior cracks. Then, its radius can be determined 
by R=(3V/4π)1/3; the result is R=0.62 m, and the 
area of newly produced surface after the initial 
cracks propagate is 2.42 m2. Based on these data, 
the dissipative surface energy in the process of 
initial crack propagation can be given as 65 kJ, and 
the fragment size before impact is 0.78 m, as 
determined by D=(1.5V/π)1/3, which is also same as 
the above. Then, we use the kinematic model Eq. 
(30) and the average fragment size estimating 
model of Eqs. (9), (13) and (23) or Eqs. (9), (13) 
and (24) to calculate the average fragment size of a 
rolling rock block along slopes with different angles 

and heights. The results are shown in Figure 8, 
along with data for a sliding rock block with the 
same slope angles. Obviously, the calculation result 
for a rolling rock block has a trend similar that for a 
sliding rock block, which means that the data 
values decrease as the slope height increases. 
Figures 8a, 8b and 8c correspond to different 
slopes with angles of 45°, 60° and 70°, respectively. 
Furthermore, it is clear that with the same slope 
angle and same volume, a rolling rock block has a 
greater degree of fragmentation than a sliding rock 
block, as implied by the fact that the curve for a 
rolling rock block is below that of the sliding rock 
block. This observation means that a rolling rock 
block has a much greater kinetic energy before 
impact. In addition, the three figures reveal that, as 
the slope angle increases, the curves of average 
fragment size of the rolling block and the sliding 
block are more compact and closer to the condition 
of free-fall.  

3    Discussions 

In the detailed analysis in the previous section, 
several impact events of a moving rock block under 
different conditions are described. Some general 
guidelines are revealed through a comprehensive 
analysis of all of the calculation results. However, 
to verify whether these generalizations are 
reasonable requires more research or comparison 
with other studies. The determination of average 
fragment size for a moving rock block or rockfall is 
an extremely difficult goal, and efforts are mostly 
focused on the fragment number to approximately 
reflect the extent of fragmentation with different 
drop heights or different impact angles. 

In studies of a moving rock block such as in a 
rockfall, the energy at impact is a key parameter, 
and the interior structure of the block and its 
impacting angle are two other relevant factors. 
Giacomini et al. (2009) conducted a series of tests 
to study the influence of impacting energy and 
impacting angle on fragmentation of a free-falling 
rock that impacts obliquely, using two types of 
hard ornamental stones named Beola and Serizzo, 
which are granitic orthogneisses having properties 
similar to the granite in the above calculated 
examples. Based on their exploration, the influence 
of the impacting energy and impacting angle shows 

Figure 8 Comparison of average fragment size curves of 
rolling and sliding rock blocks with different slope 
angles: (a) 45°; (b) 60°; (c) 70°. 
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that the number of fragments has a smoothly 
curved increasing trend with the increase of 
impacting energy and impacting angle. 

In our paper, only average fragment size is 
figured, which is difficult to determine but crucial 
in the study of moving rock blocks. As the fragment 
has different shapes but approximating a sphere 
especially for smaller ones, all the fragments are 
considered as sphere. Then, the number of 
fragments (which is abbreviated as “No. fragments” 
in Figure 9) generated during the impact can be 
approximately estimated as follows: 

3

6
d
VN

π
=                                             (31) 

where V is the total volume of the initial rock block 
and d is the average fragment size calculated above. 

Based on the calculation result in the previous 
section, the number of fragments for each situation 
can be computed. In Giacomini’s paper, the range 
of drop height in the fragmentation tests is from 10 
m to 40 m, which leads the impacting energy to 
distribute less than 1,000 kJ. Figure 9a shows the 
curves for estimating the number of fragments for 
the free-falling and sliding rock blocks, with the 
variation in drop heights used in the above 
calculation examples. The calculation results 
indicated that the curves have an exponentially 
increasing trend, and may increase very rapidly 
when the dropping or sliding height is more than 
80 m. To simplify the analysis, only heights less 
than 100 m are considered in the charts. Moreover, 
curves for smaller impacting angles, which produce 
fewer fragments, are below the ones for greater 
impacting angles. 

Furthermore, the impact energy for a free-
falling rock block can be determined as: 

mgHE =                                         (32) 

For a free-falling rock block impacting an 
inclined surface, the impact energy can be 
determined as: 







 −=

θtan
1 fmgHE                          (33) 

Figure 9b shows the curve for the number of 
fragments with the variation of impact energy for 
the condition of free-fall. The results of Giacomini 
et al. are also shown in the figure to support our 
research. The data are more consistent to some 
extent for a relatively lower impacting energy. 
Moreover, Figure 9c shows the comparison of 
theoretical result and Giacomini et al.’s result 
about the fragments number variation as the 
impacting angle increases for which the impacting 
energy is around 400 kJ. It is clear that there have 
a similar variation trend, obviously, fragments 
numbers increase with the angle growing. To some 
extend, values of the two results are close when the 
impacting angle is less than 60° as the calculation 
results indicated. In fact, rock blocks with different 
interior structures may have various effects on the 
change curve for the number of fragments, as 
Giacomini et al. (2009) revealed. For example, if a 

Figure 9 Variation in number of fragments with the 
change of height or impact energy: (a) Number of 
fragments with variation in height; (b) Number of 
fragments with variation in impact energy for free-fall 
and (c) Number of fragments with variation of 
impacting angle for an impacting energy around 400 kJ.
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rock has a large-scale inner structural surface, the 
corresponding curve may have an opposite trend to 
the above result. This is because the forced 
direction, which is seriously affected by both the 
impacting angle and the slope angle, has a great 
influence on the stress state of the rock block when 
under an impact loading, due to the direction of the 
structural surface. Therefore, for a relatively intact 
rock block with no large structural surface or a rock 
block with very little structural surface that can be 
considered as isotropic, the theoretical estimating 
model is reliable to a certain extent. 

4    Conclusions 

The following conclusions can be reached 
based on the calculated examples and discussion of 
the above analyses. It is helpful to use the energy 
consumption theory to establish a theoretical 
model for the estimation of average fragment size 
and number for the fragmentation of a moving rock 
block in a rock fall or avalanche. Through the 
analysis of different conditions of motion, some 
general principles can be found for how average 
size changes with variations in height and slope 

angle. First, for each motion form, including free-
fall, sliding and rolling, the average fragment size 
decreases as the drop height increases, and the 
change curves decline rapidly for lower heights but 
slowly as height continues to increase. Second, the 
chart of average fragment size vs. slope angle 
reveals that the average fragment size also 
decreases as the slope angle increases. Third, 
compared with the sliding block, the rolling rock 
block has a greater degree of fragmentation, even 
for the same slope angle and block volume. Finally, 
the calculated number of fragments and its change 
trend further support the applicability of the 
proposed model. 
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