
J. Mt. Sci. (2017) 14(5): 885-897                                   e-mail: jms@imde.ac.cn                                        http://jms.imde.ac.cn 
DOI: 10.1007/s11629-016-4320-9 

 885

Abstract: The automatic recognition of landforms is 
regarded as one of the most important procedures to 
classify landforms and deepen the understanding on 
the morphology of the earth. However, landform 
types are rather complex and gradual changes often 
occur in these landforms, thus increasing the 
difficulty in automatically recognizing and classifying 
landforms. In this study, small-scale watersheds, 
which are regarded as natural geomorphological 
elements, were extracted and selected as basic 
analysis and recognition units based on the data of 
SRTM DEM. In addition, datasets integrated with 
terrain derivatives (e.g., average slope gradient, and 
elevation range) and texture derivatives (e.g., slope 
gradient contrast and elevation variance) were 
constructed to quantify the topographical 
characteristics of watersheds. Finally, Random Forest 
(RF) method was employed to automatically select 
features and classify landforms based on their 
topographical characteristics. The proposed method 
was applied and validated in seven case areas in the 
Northern Shaanxi Loess Plateau for its complex and 
gradual changed landforms. Experimental results 

show that the highest recognition accuracy based on 
the selected derivations is 92.06%. During the 
recognition procedure, the contributions of terrain 
derivations were higher than that of texture 
derivations within selected derivative datasets. Loess 
terrace and loess mid-mountain obtained the highest 
accuracy among the seven typical loess landforms. 
However, the recognition precision of loess hill, loess 
hill–ridge, and loess sloping ridge is relatively low. 
The experiment also shows that watershed-based 
strategy could achieve better results than object-based 
strategy, and the method of RF could effectively 
extract and recognize the feature of landforms. 
 
Keywords: Landform recognition; Random Forest; 
Feature fusion; DEM; Loess landform 

Introduction 

Landforms are regarded as “one type of 
geomorphological objects” that divide the surface 
of the Earth into fundamental spatial entities. 
These entities define the boundary conditions for 
operative processes in geomorphology, hydrology, 
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ecology, and pedology (Evans 2012; Drăguţ et al. 
2012; Tang 2014). Landform quantification and 
recognition gained popularity worldwide because 
of their vital significance in elucidating the 
formation mechanism and spatial heterogeneity of 
landform evolution (Cheng et al. 2011; Jasiewicz  
et al. 2013; Martins et al. 2016). 

Previous approaches (Hammond 1964; Dikau 
1991; Hervás et al. 2009) of landform recognition 
fairly rely on field investigations and manual 
interpretations from topographic maps and aerial 
photographs. However, these recognition processes 
are time consuming, labor intensive, and subjective 
(Galli et al. 2008). Significant benefits of digital 
classifications were achieved since the 
development of remote-sensing data interpretation 
and the acquisition of high-quality digital elevation 
models (DEMs). 

Landform recognition and classification 
resemble human cognition to some extent; thus, 
scholars were inspired to transfer existing 
knowledge into machine-executable rule sets 
(Stumpf et al. 2011). Two main approaches of 
geomorphic feature extraction could be identified 
and summarized from previous studies, e.g. (1) 
pixel-based and (2) object-based techniques. Pixel-
based approaches consider terrain derivatives as 
main characteristics to distinguish landform types. 
Several terrain derivatives were calculated in these 
approaches based on neighborhood analysis to 
build their multidimensional feature space (Wang 
et al. 2009; Cao et al. 2011). And then, 
segmentation was implemented by using 
unsupervised classification method, such as 
ISODATA (Irvin et al. 1997; Tang et al. 2003; 
Stepinski et al. 2006). These methods are 
considered simple and produce clear geographical 
meanings. However, pixel-based method does not 
sufficiently consider the topological relationships 
of neighborhood, embeddedness, or shape 
information of different objects. 

Object-based image analysis (OBIA) became 
popular among scholars in the field of remote 
sensing in the past decade. Unlike traditional pixel-
based methods, OBIA satisfies the conceptual 
model of landform objects (Blaschke 2010), which 
is widely used in landform classification from 
DEMs, such as classification of landform elements 
and topography (Drăguţ et al. 2006; Drăguţ et al. 
2012), archaeological predictive mapping 

(Verhagen et al. 2012), landslide detection 
(Danneels et al. 2007), and land-unit delineation 
(Van Niekerk 2010). These applications 
demonstrate that OBIA is sensitive to 
morphological discontinuities for different types of 
data and test areas. However, significant shortages 
exist due to the geographical meaning of 
segmentation boundary appears to be consistently 
unclear. Scholars recently investigated the 
classification of landforms based on watershed 
units because of their clear geographical meanings 
in surface morphology and landform evolution 
(Huang et al. 1990; Caratti et al. 2004; Gooding 
2014; Liu et al. 2015). These studies suggested that 
this type of unit should be used for object selection 
in landform recognition and classification. 

Feature selection in multi-dimensional 
datasets is another important process in various 
fields, such as bioinformatics (Saeys et al. 2007) 
and hyperspectral remote sensing (Guo et al. 2008). 
Various methods, such as neural network classifier 
(Benediktsson et al. 1989), boosting (Freund 1996), 
and bagging (Breiman 1996), were proposed to 
improve the performance in classifying data and 
investigating the causal relationships of these data. 
These classifiers achieved good accuracy. However, 
large computational resources are needed for the 
aforementioned classifiers, and their results seem 
to overfit if training samples are insufficient and 
sensitive to any outlier in the training samples (Xu 
et al. 2014). Random Forest (RF) (Breiman 2001) 
is a well-known and an excellent ensemble method 
that analyzes feature selection and classification 
from multisource remote sensing and geographic 
data (Gislason et al. 2003; Pal 2005; Ham et al. 
2005). The results of landform recognition largely 
depend on the selection of various factors and a 
suitable classification procedure. The RF classifier 
uses predictions derived from an ensemble of 
decision trees. Thus, the RF classifier can be 
considered reliable because of the high 
dimensionality of landform data with nonlinear 
and complex interactions among variables. This 
classifier can be also successfully used to select and 
rank these variables with the greatest ability to 
discriminate between target classes (Belgiu et al. 
2016). 

The current study aims to investigate the 
applicability and performance of the RF classifier 
in feature selection, and to test the feasibility of 
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watershed-based strategy in Loess landform 
recognition. Small watersheds, which have highly 
homogeneous topographic characteristics, were 
derived as analysis units based on the data of 
Shuttle Radar Topography Mission (SRTM) DEMs 
in the Loess Plateau of China. Then, terrain 
derivatives and texture derivatives, which provide 
information on the physical attributes and image 
properties of landform objects, respectively, were 
extracted to quantify the watershed characteristics. 
Multi-dimensional derivation selection and 
landform recognition were accomplished 
automatically by taking advantage of RF.  

2    Study Site and Data 

2.1 Study site 

The Northern Shaanxi area, which is the core 
region of the Loess Plateau of China, was selected 
as the case area in the current study. The geo-
coordinates of the area are between E 107°28′ to E 
111°15′ and N 35°21′ to N 39°34′ based on the 
World Geodetic System 1984 (WGS84), with a total 

area of 80,606 km2. The elevation of the area 
ranges from 325–2375 m. The thickness of loess 
deposits in this area changes gradually from north 
to south with a range of approximately 50 m to 200 
m. The average temperature per year ranges from 
7°C to 12°C, and the average annual precipitation 
ranges from 200 mm to 500 mm. In addition, 
rainstorms are concentrated in the summer season, 
and the main vegetation cover consists of shrubs, 
grass, and wood forests. Dry land, accelerated soil 
erosion, and high sediment yield are serious 
problems in this area (Xiong et al. 2014; Zhu et al. 
2014). 

The landform of this area exhibits significant 
topographic variability, which corresponds to the 
different development stages and patterns of the 
Loess Plateau. Seven typical loess landform types 
were selected as sample areas based on the 
evolution and morphological characteristics. The 
loess landform types include: (1) loess terrace, (2) 
loess mid-mountain, (3) loess hill, (4) loess hill–
ridge, (5) loess ridge, (6) loess broken tableland, 
and (7) loess tableland. The distribution of the test 
areas is shown in Figure 1. 

Figure 1 Distribution of test areas in the Northern Shaanxi Loess Plateau, China. 
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2.2 Data 

The DEM used in the study was provided by 
the recently released SRTM DEM, which is an 
international project that obtains a DEM for a 
near-global scale from 56°S to 60°N 
(Nikolakopoulos 2006). In order to unify the 
resolution, all the DEMs were resampled using the 
nearest neighbor method. The final cell size of 
DEM is 30 m × 30 m. In addition, landform types 
were digitized from the 1: 1000000 Digital 
Geomorphology Mapping of China (Zhou et al. 
2009). 

3    Methods 

3.1 Recognition objects 

Recognition objects were determined to 
represent the different landform types, and these 
selected objects play a significant role in ensuring 
the quality and accuracy of the subsequent 
recognition process. Traditional methods obtain 
objects by dividing an entire test area into different 
rectangular blocks to guarantee that each sample 
has the same size (Tang et al. 2015). Numerous 
image segmentation algorithms based on object-
oriented strategy were proposed in past decades to 
obtain spatial entities with a maximized internal 
homogeneity and a minimized external 
homogeneity (Blaschke et al. 2001; Blaschke 2010). 
However, the geographical meanings of boundaries 
of different spatial entities that were obtained by 
these methods are always fuzzy. To avoid these 
results, small watersheds, which are natural 
geographical elements with high homogeneity, 
were selected as the recognition units in the 
current study. 

The maximum gradient single flow algorithm 
was adopted to derive watersheds (O’Callaghan  
et al. 1983). A previous study (Tang et al. 2015) 
determined that the area of a watershed 
significantly influences the stability of terrain 
statistical analysis and image texture analysis. After 
conducting preliminary experiments in 
combination with local hydrological information, 
threshold of 10000 was selected to delineate 
watersheds, and areas of the delineated watersheds 
that range from 30 km2 to 50 km2 were selected as 

samples for further analysis. These selected 
samples were segmented based on their 
morphologic and attributive characteristics. Thirty-
six watersheds of the seven landform areas (36×7 
in total) were selected to build the training and test 
datasets to ensure that the recognition results are 
unbiased. 

3.2 Feature extraction 

3.2.1 Terrain derivative extraction 

The terrain derivatives extracted from DEM 
are the most effective indexes to quantitatively 
describe landforms. Since Evans (1972) introduced 
an integrated system of geomorphometry, 
significant development was achieved in digital 
terrain analysis, particularly in developing new 
automatic algorithms to calculate terrain 
derivatives. Combined terrain derivatives can 
comprehensively indicate the morphological 
characteristics of landscape entities. However, 
multi-dimensional derivatives could result in 
redundant information because of the high 
correlation between each pair of derivatives. Thus, 
after conducting a pre-experiment on several 
sample areas, weak related terrain derivatives, e.g. 
elevation, slope, curvature, and slope of slope 
(SOS), are selected as basic derivatives for further 
landform recognition. The terrain derivatives’ 
confusion matrix is shown in Table 1. 

The statistical characteristics of terrain 
derivatives are significantly related with 
geomorphologic shapes and landscape 
development stages (Li et al. 2015). By conducting 
a statistical analysis of terrain derivative datasets, 
the central tendency, dispersion degree, and 
distribution shape of the derivatives were 
calculated, which can help identify internal 
homogeneity and external heterogeneity. Therefore, 
eight statistical indicators (e.g. maximum, 
minimum, average, standard deviation, skewness, 
kurtosis, amplitude, and entropy) of each terrain 
derivative of watersheds were calculated to 
construct their feature space. 

3.2.2 Texture derivative extraction 

Texture refers to the spatial arrangement of 
grayscale intensities in a selected region of a 
grayscale image. Terrain textures derived from 
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DEM can indicate the specific spatial arrangement 
of elevation values of an image on a macro scale. 
Since the 1970s, various scholars have adopted 
texture analysis method in landscape-pattern 
definition, image classification, and segmentation 
(Haralick et al. 1973; Ilea et al. 2011). 

Grey level co-occurrence matrix (GLCM), 
which was presented by Haralick (1973), has been 
widely used in image-texture analysis. Co-
occurrence matrix is the probability matrix of the 
transition from a pixel of i value to a pixel of j value 
by a certain θ orientation and d displacement. The 
principle is expressed as Eq.(1). 

P i,j,d,θ =#｛(x1,y1)(x2,y2)|f x1,y1  =i,f x2,y2  

 =j,| x1,y1 -f x2,y2 |=d,∠	x x1,y1 , x2,y2 =θ}    

(1) 
where # expresses the number of occurrences 
inside the window sizes where the intensity of pixel 
ranges from i to j, the first pixel is (x1, y1), and the 
second pixel is (x2, y2). 

Four important parameters (i.e. quantization 
levels-g, displacement value-d, orientation value-θ, 
and moving window size) must be considered when 
the co-occurrence matrix is determined for texture 
analysis. Based on previous study (Liu et al. 2012), 

g is set to 8 and d is 5. The mean value among all 
four directions were calculated with a 3×3 moving 
window. 

Various derivatives of GLCM are adopted to 
quantify surface textures. Considering the large 
computational burden and strong correlations 
among several GLCM derivatives, a subset of eight 
texture measures was selected for current studies 
(Ulaby et al. 1986; Liu et al. 2012). These measures 
are angular second moment (ASM), contrast, 
correlation, variance, inverse difference moment 
(IDM), sum of mean, entropy, and variance of 
subtraction. The detailed formulation of these 
measures can be found in previous research 
(Haralick et al. 1973). Aside from the original DEM 
image, texture derivatives of hill-shading and slope 
were also calculated to build the feature space. 
Hill-shading provides a visual enhancement effect, 
and the slope presents the topographic relief. The 
features used to identify landforms in the current 
study are shown in Table 2. 

3.3 Feature selection by random forest 

Terrain derivatives and texture derivatives 
depict the information of surface morphology from 

Table 1 The confusion matrix of terrain derivatives

Terrain 
derivatives 

Slope SC_depth Terrain 
relief 

Surface 
roughness 

Elevation ECV Hillshading SOS Curvature 

Slope 1.00         
SC_depth 0.94 1.00        
Terrain relief 0.96 0.97 1.00       
Surface 
roughness 0.40 0.49 0.49 1.00      

Elevation 0.11 0.07 0.11 0.05 1.00     
ECV 0.37 0.40 0.39 0.23 -0.33 1.00    
Hillshading 0.72 0.72 0.75 0.44 0.34 0.10 1.00   
SOS -0.16 -0.15 -0.16 -0.06 -0.05 -0.02 -0.10 1.00  
Curvature 0.05 0.08 0.03 -0.04 0.02 -0.02 0.02 -0.01 1.00 

Notes: SC_depth, Surface cutting depth; ECV, Elevation coefficient of variation; SOS, Slope of slope. 

Table 2 Overview of factures used in landform recognition 

Dataset Factors Count
Terrain derivatives 
 

Elevation (Max., Ran., Ave., Var., Std., Ske., Kur. and Ent.)*

32 
Slope (Max., Ran., Ave., Var., Std., Ske., Kur. and Ent.)
Curvature (Max., Ran., Ave., Var., Std., Ske., Kur. and Ent.)
Slope of slope (Max., Ran., Ave., Var., Std., Ske., Kur. and Ent.)

Texture derivatives 
 

Elevation (ASM, Con., Cor., Var., IDM, SOM, Ent., VOS) *
24 Slope (ASM, Con., Cor., Var., IDM, SOM, Ent., VOS)

Hillshading (ASM, Con., Cor., Var., IDM, SOM, Ent., VOS)

Notes: Max., Maximum; Ran., Range; Ave., Average; Var., Variance; Std., Standard deviation; Ske., Skewness; Kur., 
Kurtosis; Ent., Entropy; ASM, Angular Second Moment; Con., Contrast; Cor., Correlation; IDM, Inverse Difference 
Moment; SOM, Sum of mean; VOS, Variance of subtraction. 
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different aspects. Terrain derivatives reflect the 
formation mechanism and the physical properties 
of landscapes, whereas texture derivatives, which 
are auxiliary features, are used to enhance the 
description of the visual texture characteristics of 
landforms. In addition, the vector dimension of a 
training set can be increased by integrating 
derivatives under the fusion strategy and so as to 
improve the accuracy of automatic recognition. 
However, a simple superposition may lead to an 
excessive consumption of computation and storage 
space, thus resulting in additional data noise. The 
precision of recognition may decrease because of 
the limited samples. Consequently, adopting a 
reasonable derivative selection method is necessary. 
The major contribution derivatives of automatic 
landform recognition are determined in the current 
study by using wrapper variable selection 
procedure of RF based on the out-of-bag data 
error-estimate characteristics. 

The reliability of RF, which primarily works on 
ensemble decision trees, is verified in ecology, 
remote sensing, and morphometry, (Cutler et al. 
2007; Stumpf et al. 2011; Du et al. 2015). During 
the training process, the RF algorithm creates 
multiple CART-like trees. A bootstrapped sample 
of the original training data was trained by 
individual trees with a high variance. Each tree 
searches across the selected subset of the input 
variables to randomly determine a split. Each tree 
casts a unit vote for the most popular class during 
classification and assigns the respective class 

according to the majority of the votes. Variable 
assessment and selection were accomplished 
during the procedures. The RF algorithm diagram 
is shown in Figure 2. 

Based on the wrapper variable selection 
method, the characteristics were classified 
according to the measured contributions of 
variables. By adopting reversed-sequence searching 
strategy, the lowest scoring derivative was deleted 
successively and classification accuracy was 
calculated iteratively. The feature set with the least 
number of variables and the highest classification 
accuracy was chosen as the selection result. The 
overview of the processing steps is shown in Figure 
3. During sample selection, DEM and topography 
data were used to extract the watershed units. The 
terrain and texture derivatives were calculated and 
selected based on the variable importance 
measurement function of RF. Finally, landform 
recognition was carried out based on the optimal 
derivative dataset. 

4    Results and Analysis 

4.1 Parameters calibration 

Ensemble methods are generally considered as 
black-box type classifiers. Hence, the calibration of 
the parameters of the RF model is needed to 
achieve an optimal recognition effect. The number 
of available reference samples of each landform is 

 
Figure 2 Random Forest algorithm diagram. 
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36, and all samples are split almost evenly between 
the training and test samples by selecting each 
sample for test and the rest for training. Often, the 
‘N predictors’ value is automatically set to the 
square root of the number of inputs. In addition, 
the number of trees and the minimum value of the 
parent node (split variables) are two parameters 
that must be defined by users. Preliminary 
experiments of parameter calibration are executed, 
and the results are shown in Table 3. 

The result shows that the overall accuracy is 
insensitive to variable settings. The overall 
accuracy based on the original setting (200 trees 
and 2 split variables) was close to the most 
accurate result (200 trees and 3 split variables). 

This property is important because the classifier 
can be run without human guidance. Furthermore, 
time complexity analysis of the algorithm is 
unnecessary because of the small dimension of the 
feature set. After completing feature extraction and 
selection, recognition will be conducted by the 
classifier. 

Classification accuracy is used to estimate the 
proportion of correct recognition. About one third 
of the instances are left out of the training set and 
remain as out-of-bag sample (OOB). The 
classification decision is then made by averaging 
the class assignment probabilities calculated by all 
produced trees, and the membership class with the 
maximum votes will be the one that is finally 
selected (Rodriguez-Galiano et al. 2012). With the 
confusion matrix, the classification accuracy can be 
calculated as Eq.(2). 

Classification accuracy=
TP+TN

N
                 (2) 

Notes: TP is true positive, TN is true negative, and 
N is total sample. 

4.2 Recognition based on dataset of single-
class features 

First, recognition process was implemented 
based on the dataset of terrain derivatives and 
texture derivatives. This process aims to compare 
the difference of the recognition results between 
the two types of derivatives. The recognition results  

 
Figure 3 Overview of the processing steps. 

Table 3 Parameters calibration for the random forest 
classifier 

Trees Split 
variables 

Runtime 
(min: s) 

Test accuracy 
(%) 

50 2 00:02 88.80 
100 2 00:02 90.08 
200 2 00:03 90.48 
500 2 00:04 90.48 
50 3 00:03 88.80 
100 3 00:03 90.48 
200 3 00:04 91.20 
500 3 00:05 90.08 
50 4 00:03 87.20 
100 4 00:03 88.80 
200 4 00:05 89.29 
500 4 00:07 89.60 
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are presented in Table 4. 
The table indicates that high-accuracy and 

terrain-derivative datasets could be identified 
during the recognition process. The highest 
accuracy was observed in the slope gradient, with a 
value of 81.32%. The statistical characteristics of 
the slope gradient, which are important factors to 
describe the terrain-feature information, 
performed well in distinguishing landform types. 
By contrast, the accuracy, which is based on the 
dataset of curvature and elevation, is relatively low. 
This result demonstrates that the statistical 
characteristics of these two factors do not exhibit 
evident differences in spatial distribution. In 
addition, the recognition result, which is based on 
the full-factor dataset, possesses an accuracy of 
86.29%, which is higher than that of single-factor 
datasets.  

Recognition accuracy, which is based on 
single-class image texture derivatives, is relatively 
low and has the lowest value of 54.37%. The texture 
feature of the DEM image itself appears low. 
However, hill-shade image and slope gradient 
image, which are two types of derived data, can 
enhance the information of visual texture and 
terrain texture of the image from different angles. 
Hence, these images improve the diversity of 
quantitative results between different areas. Thus, 
a high-recognition accuracy was observed in the 
table. The recognition accuracy of the hillside 
dataset and slope gradient dataset is 60.32% and 
73.41%, respectively. 

4.3 Recognition based on dataset of selected 
derivatives 

Random forest offers a number of internal 
measures to estimate the importance of employed 
variables for the accuracy of a given classification. 
The importance of variables was estimated by 
looking at how much prediction error increases 
when OOB data for that variable is permuted while 
all others are left unchanged (Breiman 2002; 
Lombardo et al. 2015). Two datasets were 
integrated in the study to validate the recognition 
results. By adopting reversed-sequence searching 
strategy, the derivative collection with the least 
number of variables and the highest classification 
accuracy was screened. The best recognition 
accuracy achieved by the RF classifier is 92.06% 

with the best collection composed of 18 derivatives. 
The sequence of derivatives is shown in Table 4. 
Compared with the results conducted in Section 
4.2, it indicates that the recognition results using 
the selected fusion derivatives are better than the 
results based on the single-class features datasets. 

Table 5 suggests that the texture derivatives 
did not contribute as much as the terrain 
derivatives to the recognition process. The 
recognition accuracy of each landform type using 

Table 4 Recognition accuracy based on dataset of single-
class derivatives 

Dataset Factor Accuracy (%) 

Terrain 
derivatives 

Elevation 72.98 

Slope gradient 81.32 

Curvature 71.83 

SOS 76.16 

Full-factor 86.29 

Texture 
derivatives 

DEM 54.37 

Hillshade 60.32 

Slope gradient 73.41 

Full-factor 75.00 

Table 5 Best derivative sequence of recognition 

Sorting Name Data 
set 

Variable 
importance

1 Ave. slope TD1 100 

2 Var. slope TD1 84.92 

3 Var. curvature TD1 84.81 

4 Ent. slope TD1 63.44 

5 Ave. slope of slope TD1 62.05 

6 Ran. elevation TD1 57.51 

7 Ent. hillshading TD2 51.62 

8 VOS hillshading TD2 49.54 

9 Ent. slope TD2 45.87 

10 Var. elevation TD1 41.2 

11 Std. slope of slope TD1 40.01 

12 Std. curvature TD1 38.09 

13 Con. Hillshading TD2 28.74 

14 Max. slope TD1 27.94 

15 Ran. slope TD1 22.12 

16 Kur. slope TD1 18.92 

17 Var. elevation TD2 17.76 

18 Ave. elevation TD1 15.45 

Notes: Ave., Average; Var., Variance; Ent., Entropy; 
Ran., Range; VOS, Variance of subtraction; Std., 
Standard deviation; Con., Contrast; Max., Maximum; 
Kur., Kurtosis. TD1= Terrain Derivatives; TD2= Texture 
Derivatives. 
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different methods is presented in Figure 4. Based 
on geomorphic types, high accuracies could be 
observed in the landforms of loess terrace, loess-
broken tableland, and loess mid-mountain. This 
result indicates that evident and divisible terrain 
features exist in these landforms unlike other 
landforms. Loess mid-mountains, which have 
rough topography and large relief intensity, can be 
easily distinguished. Strong separability was 
observed in the flat and wide loess tableland area. 
However, under evolutionary stages, significant 
differences of gully incision situation exist on the 
edges of tableland. Thus, this landform can be 
easily distinguished from other landforms. The 
accuracy of the landforms of loess hill, loess hill–
ridge, and loess ridge, which are typical landforms 
in different evolutionary stages of the loess hill–
gully area, may be low. These results may be 
attributed to the presence of similar patterns 
between the complex landforms, which leads to 
similar distributions of the statistical 
characteristics of terrain derivatives and close 
arrangement rule of image pixels. 

5    Discussion 

Terrain and texture derivatives were extracted 
in loess small-scale watershed and RF classifier 
was adopted in the current study to select features 
and recognize landforms. The following sections 
must be elaborated considering the 
aforementioned analysis. 

5.1 Recognition results based on different 
segmentation strategies 

The optimal split variables (classification rules) 
were obtained by extracting and training the 
quantitative geomorphic feature set, and test 
samples were then identified. However, defining 
the recognition objects is the main step of the 
process. Considering the characteristics of the 
consistency the formation process and 
morphological variation of the loess landforms, 
watersheds were selected as analysis objects to 
identify the landform types. These watersheds 
could be regarded as natural geomorphological 
units and geomorphic evolution units. The multi-
resolution segmentation (MRS) algorithm, which is 
a part of OBIA, exhibited the highest sensitivity to 
the morphological discontinuities in DEMs. 
Further experimentation was conducted to 
compare the recognition results between the two 
strategies. 

A test area from Loess broken tableland with 
an area of 8000 km2 was selected. The image was 
segmented by using slope surface runoff simulation 
method and MRS method. The segmentation 
results are shown in Figure 5, and the recognition 
results carried by the RF classifier is presented in 
Table 5. 

Figure 5 indicates that DEM was divided into 
various spatial objects. Although the multi-
resolution segmentation method was designed to 
capture the spatial entities with maximized internal 
homogeneity and minimized external homogeneity, 

  
Figure 4 Recognition accuracy of each landform type. 
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the boundaries of these objects are fuzzy and 
irregular unlike segmented watersheds. Table 6 
shows that the accuracy of the recognition result 
with watershed-based strategy is higher than that 
with object-based recognition strategy. This result 
suggests that watershed-based segmentation 
provides more reliable and efficient spatial units 
for landform classification and landform data 
mining than object-based segmentation. 

5.2 Recognition results based on different 
classifiers 

The recognition accuracy obtained by the RF 
method was compared with the results of two other 
popular algorithms of machine learning, e.g. CART 
trees and TreeNet gradient boosting machine. 
These classifiers can consistently generate accurate 
models and estimate the importance of variables 
during the classification process (Timofeev 2004; 
Elish et al. 2009). The basic parameter settings and 
optimal derivatives of the dataset selection strategy 
were consistent with RF. Figure 6 shows the 

correlation between derivative quantity and 
recognition accuracy of these three methods. 

Figure 6 shows that recognition accuracy 
increases with derivative number. The highest 
recognition accuracy of the RF algorithm was 
observed at 18 to 22 derivatives, and the 
recognition accuracy gradually decreased 
afterwards. Thus, training dimensions improved 
because the derivative numbers were increased, 
whereas accuracy reduced when derivative 
redundancy was enlarged. The accuracy of TreeNet 
model is relatively high and exhibits a steady 
improvement. However, the highest accuracy was 
observed in the succeeding period, which indicates 
that the characteristics of TreeNet model in 
selecting effects are weaker than that of RF. Only 
20 derivatives contributed to the recognition 
progress. Thus, the accuracy of CART algorithm is 
relatively low and does not substantially change 
when the derivative number increases. The 
recognition effect of the CART algorithm is 
relatively poor, and TreeNet algorithm is stable and 
exhibits comparably high precision. However, the 
RF algorithm can obtain the highest accuracy, 
which can also effectively filter high-dimensional 
derivatives. In this work, Random Forest, TreeNet, 
CART model and their extensions for variable 
selection were implemented in Salford Predictive 
Modeler software suite (SPM Version 8.0). 

 
Figure 5 Image segmentation based on different strategies, (a) watershed segmentation, (b) multi-resolution 
segmentation. 

Table 6 Recognition results based on different strategies

Segmentation 
strategy 

Object 
number 

Wrong 
number 

Recognition 
accuracy (%) 

Object-based  216 41 81.02
Watershed-
based  

199 28 85.93 
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During the training process, RF can 
automatically select high-dimensional 
geomorphologic characteristics and obtain 
unbiased estimations of prediction error with high 
precision and efficiency without significant human 
intervention. Moreover, RF can also detect outliers, 
which can be very useful when some cases are 
mislabeled. Thus, RF can be extensively applied in 
geomorphic information extraction and 
geomorphic type classification due to its high 
efficiency and accuracy. 

6    Conclusion 

The current study discusses the process of 
automatic recognition of loess landforms using 
watershed-based strategy and measures the effect 
of feature selection and recognition accuracy by 
using Random Forest (RF) classifier. The results 
show that automatic recognition achieves a high 
accuracy based on integrated terrain and texture 
derivatives, which are selected by the RF classifier. 
These employed methods are also expected to be 
applied in further landform classification, not 
only for loess landform area but also for other 
landform areas. 

Terrain derivatives provide complementary 
 

and morphological characteristics of landform 
entities, while texture derivatives enhance above 
characteristics. In addition, terrain derivatives 
contribute more than texture derivatives during the 
process of recognition. Among the tested seven 
typical loess landforms during the experiment, 
loess terrace and loess mid-mountain, which have 
evident separable derivatives, obtained the highest 
accuracy. Distinguishing loess hill, loess hill–ridge, 
and loess ridge is difficult because some 
similarities can be observed between the 
morphologies of these landforms. Furthermore, the 
recognition accuracy of watershed-based 
segmentation strategy was higher than that of 
object-based recognition. RF obtained the best 
result in feature selection and landform recognition 
compared to that of two other machine-learning 
methods. 

However, the scale effect of watershed-based 
segmentation and landform feature selection must 
be further explored. Future research can focus on  
the following aspects: 1. Multi-source data, such as 
remote sensing data and geological exploration 
data, should be included to comprehensively 
describe terrain derivatives. 2. Combined 
characteristics of topographic elements should be 
determined to achieve automatic recognition based 
on landform patterns. 
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