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Abstract: Rainfall induced landslides are a common 
threat to the communities living on dangerous hill-
slopes in Chittagong Metropolitan Area, Bangladesh. 
Extreme population pressure, indiscriminate hill 
cutting, increased precipitation events due to global 
warming and associated unplanned urbanization in 
the hills are exaggerating landslide events. The aim of 
this article is to prepare a scientifically accurate 
landslide susceptibility map by combining landslide 
initiation and runout maps. Land cover, slope, soil 
permeability, surface geology, precipitation, aspect, 
and distance to hill cut, road cut, drainage and stream 
network factor maps were selected by conditional 
independence test. The locations of 56 landslides were 
collected by field surveying. A weight of evidence 
(WoE) method was applied to calculate the positive 
(presence of landslides) and negative (absence of  

 
landslides) factor weights. A combination of analytical 
hierarchical process (AHP) and fuzzy membership 
standardization (weighs from 0 to 1) was applied for 
performing a spatial multi-criteria evaluation. Expert 
opinion guided the decision rule for AHP. The Flow-R 
tool that allows modeling landslide runout from the 
initiation sources was applied. The flow direction was 
calculated using the modified Holmgren’s algorithm. 
The AHP landslide initiation and runout susceptibility 
maps were used to prepare a combined landslide 
susceptibility map. The relative operating 
characteristic curve was used for model validation 
purpose. The accuracy of WoE, AHP, and combined 
susceptibility map was calculated 96%, 97%, and 98%, 
respectively. 
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Introduction  

Landslides hit Chittagong Metropolitan Area 
(CMA), Bangladesh almost every year, particularly 
during the monsoon period (June–September). 
Most recently on 13 June 2017, a series of 
landslides killed at least 160 people in various hilly 
districts in Chittagong division. On 19 July 2015, 
three people were killed because of a landslide in 
Lalkhan Bazaar area (Figure 1), Chittagong. Flash 
flooding triggered by heavy rainfall caused this 
landslide. The main causes of landslides in CMA 
are associated with hill cutting and development of 
housing blocks on risky hill-slopes violating the 
existing urban master plan (Ahmed 2015a). 
Notably, on 11 June 2007, eight days of continuous 
rainfall (610 mm) triggered landslides in different 
parts of CMA and caused 128 casualties and at least 
100 injuries. Ninety people were killed on 26 June 
2012 due to rainfall-triggered (8 days of 889 mm) 
landslides in CMA. Large to small-scale landslide 
disasters are gradually becoming evident in CMA. 
It is necessary to address landslide disaster risk 
reduction (DRR) strategies in CMA. Preparing a 
scientifically valid landslide susceptibility map 
could be considered as the first step.  

Even being located in a high-risk zone for 
earthquakes (Steckler et al. 2016), landslides are 
primarily caused by torrential rainfall in CMA. Also, 
being the second largest city in Bangladesh, a 
compact mono-centric urban area is attracting 
huge numbers of people in search of livelihoods. 
CMA is surrounded by the Bay of Bengal to the 
west, and the remaining land area is not plain. 
Land prices are extremely high and out of reach of 
middle to lower-income people because of 
overwhelming population pressure with severe 
land scarcity and people looking for economic 
opportunities. Land grabbers are systematically 
approaching to destroy the hills in CMA by 
promoting business in selling plots and flats. They 
are also making full use of the marginalized people 
who are migrating to the city in search of better 
livelihood opportunities or who have lost their 
lands in river erosion or who are victims of other 
disasters in different parts of the country (e.g. 
drought, sea-level rise, riverbank erosion, river 
flooding and flash floods, or cyclones). The 
disaster-hit people are forced to live in hazardous 
locations in the city. By-law, only the government 
owns the hills in Bangladesh, and it is not possible 
to build houses on the hill slopes. The landlords 

 
Figure 1  Landslide devastation on 19 July 2015 in Chittagong Metropolitan Area. Source: Fieldwork, July 2015. 
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strategically guide the migrating urban-poor to 
those hills by providing illegal housing and other 
utility facilities for living temporarily. Later the 
local authorities fail to evacuate them on 
humanitarian ground. By this way, informal 
settlements start growing on the hills, and later a 
group of powerful people cut the hills gradually. 
After years, when the hills disappear, there is no 
other way than permitting multi-storied buildings 
in the newly created flatlands converting from the 
hills. This is the overall hill cutting scenario in 
CMA over the past few decades (Ahmed and Dewan 
2017; BUET-JIDPUS 2015). Although landslides 
hazards are mostly natural events but vulnerability 
at community scale (Alexander 2000) is primarily 
triggering landslide disasters in Bangladesh. At this 
background, the aim of this research article is to 
prepare landslide susceptibility maps (LSMs). It 
would help to demarcate the susceptible zones to 
landslides in CMA. The context is set to hill cutting 
in highly urbanized areas in a developing country. 
This context is unique and needs attention in the 
perspective of landslide susceptibility mapping 
(LSM) and landslide DRR. 

1     Study Area 

CMA is located in the Chittagong district 
(Figure 2a), sharing a boundary with the Hindu 
Kush Himalayan region. CMA is situated between 
approximate 22°06' and 22°34' N, and 91°40' and 
92°2' E. Karnafuli River runs from the east towards 
south-west, and the Halda River runs from north to 
south direction and joins the Karnafuli River before 
it flows into the Bay of Bengal (Figure 2b). CMA 
accommodates about 5 million people in 
approximate 720 km2 area (BBS 2012). The 
development control authority of CMA is known as 
Chittagong Development Authority (CDA). The 
annual average temperature of Chittagong district 
is 32.5°C (maximum) and 13.5°C (minimum).  

Chittagong is different regarding topography, 
from the rest of Bangladesh, being a part of the 
hilly regions that branch off from the Himalayas. 
This eastern offshoot of the Himalayas, turning 
south and southeast and enters Chittagong district. 
The range loses height as it approaches CMA and 
breaks up into small hillocks scattered all over the 
town. This range appears again on the southern 

 
Figure 2 (a) Location of Chittagong Metropolitan Area (CMA) in Chittagong district, and (b) location of CMA. 
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bank of the Karnafuli River and extends from one 
end of the district to the other. The highest peak in 
the district has an altitude of 351 meters above the 
mean sea level. The beautiful hills and hillocks in 
the city of Chittagong are gradually leveled up and 
reduced in height for the construction of houses 
(Osmany 2014). The soils of the hills in CMA are 
primarily composed of sand (about 20%-65%), silt 
(15%-30%) and clay (36%-82%) (Ahmed and Rubel 
2013; BUET-JIDPUS 2015). 

The geosynclinal basin in the southeast of 
Bangladesh (that covers the study area) is 
characterized by the huge thickness (maximum of 
about 20 km near the basin center) of clastic 
sedimentary rocks, mostly sandstone and shale of 
Tertiary age. The huge thickness of sediments in 
the basin is a result of tectonic mobility or 
instability of the areas causing rapid subsidence 
and sedimentation in a relatively short span of 
geologic time. The anticlines form the hills, and the 
synclines form valleys as seen in the topography of 
the eastern regions of Bangladesh. The intensity of 
the folding is greater towards the east, causing a 
higher topographic elevation in the eastern 
Chittagong hill tracts (Imam 2015). 

The annual average rainfall is about 2900 mm 
(BBS 2012). The pre-monsoon season is from 
April-May, and the monsoon season is from June 
to October which is warm, cloudy and wet. After 
analyzing the rainfall pattern (1950-2013) in 
Chittagong district, the following statistics (average) 
were calculated (Ahmed and Dewan 2017): 

 Monthly maximum 1-day precipitation = 
236 mm. 

 Monthly maximum consecutive 5-day 
precipitation = 490 mm. 

 Number of heavy precipitation days 
(precipitation ≥10 mm) = 61 days. 

 Number of very heavy precipitation days 
(precipitation ≥20 mm) = 41 days. 

 Number of days above 50 mm = 18 days. 
 Consecutive wet days = 15 days.  
It is likely to rain heavily (≥20 mm) for at least 

41 days and to rain for 15 consecutive days in CMA 
during the monsoon. The gradual upward trends of 
population pressure, indiscriminate hill cutting 
and deforestation, rapid urbanization in the 
physically vulnerable hills, and the likeliness of 
increasing the heavy precipitation events are 
posing serious threats of landslides in CMA. 

2    Materials and Methods 

2.1 Theoretical framework 

To begin with, it is important to determine the 
potential locations of landslides (i.e. landslide 
initiation zones), and the probable post-failure 
movement (i.e. runout) of the slide (Zahra 2010; 
Petrascheck and Kienholz 2003). A landslide is 
defined as a movement of a mass of soil or earth 
down a slope. Susceptibility is defined as a 
quantitative or qualitative assessment of the 
classification, area or volume, and spatial 
distribution of landslides that exist or potentially 
can occur in an area (Fell et al. 2008). Runout is 
the maximum travel distance of a landslide 
(Couture 2011). Infrastructure and facilities mostly 
tend to be located in the toe of a slope that is 
vulnerable to displaced mass (Willenberg et al. 
2009). It is essential to know where, how far and 
how fast a landslide could travel once mobilized 
(Dai et al. 2002). 

Determining the spatial and temporal 
probability of a landslide is growing interest among 
researchers (Rickenmann 2005; Kappes et al. 2011; 
Soeters and van Westen 1996). Beguería et al. 
(2009) mentioned that a landslide system is 
theoretically divided into three components – 
initiation zone, travel zone, and deposition zone. 
Spatial distribution of these zones is important in 
LSM. This study aims to identify the probable 
landslide initiation zone of CMA and the associated 
spatial distribution of runout from the mass 
movement of the initiation zone. With the 
advancement of geographic information system 
(GIS) and remote sensing (RS) techniques and 
availability of datasets – LSM has become popular 
(Ahmed 2015b). Both data-driven statistical (i.e. 
weights of evidence, logistic regression, multiple 
logistic regression) and weight based techniques 
such as artificial hierarchy process (AHP), 
weighted linear combination (WLC), and ordered 
weighted average (OWA) are also being 
implemented for LSM (Fan et al. 2017; Du et al. 
2017; Regmi et al. 2016; Meten et al. 2015; Bai et al. 
2013). 

Zahra (2010) summarized various runout 
modeling techniques grouped into three 
mainstream approaches as identified by Chen and 
Lee (2004), namely– empirical approach, physical 
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scale modeling, and dynamic modeling. There 
exists several models for debris flow propagation 
assessment, empirical mass change (Dai et al. 
2002), empirical angle of reach method (Prochaska 
et al. 2008), analytical lumped mass model (Chen 
and Lee 2004), numerical distinct element method 
(Wong and Ho 1996), and numerical continuum 
models (Dai et al. 2002; Chen and Lee 2004). A 
continuum numerical approach includes 
conservation equations for mass, momentum, 
energy, and dynamic motion of displaced mass 
along with the rheological models (Dai et al. 2002) 
where the estimation of an appropriate rheological 
model is a difficult part (Zahra 2010). On the 
contrary, physical based models are used for both 
large, deep, complex and shallow landslides where 
model parameters are derived from field 
measurement, and high data volume is required 
(Brunsden 1999). However, among the 
sophisticated techniques that are available for 
debris flow propagation assessment (Pirulli and 
Mangeney2008; Hungr 1995;Iovine et al. 2005), 
few are suitable for regional-scale level analysis 
(Van Westen et al. 2006; Berti and Simoni 2007). 
The main limitations of these sophisticated models 
are high volume and detail data requirement. 
Horton et al. (2013) mentioned that process 
modeling is not suitable for regional-scale 
assessment due to the complex nature of the 
phenomenon, the variability of local controlling 
factors, and uncertainty of modeling parameters. A 
simplified approach that is not highly parameter 
dependent is suitable for regional-scale runout 
modeling. In this study, a distributed empirical 
model is selected for the runout susceptibility 
analysis of CMA using a digital elevation model 
(DEM). A Similar method was successfully applied 
in different case studies to provide a substantial 
basis for landslide susceptibility assessment at a 
regional scale (Horton et al. 2013). This study is 
also going to apply a combined approach 
incorporating both knowledge and data driven 
techniques for landslide susceptibility modeling.  

2.2 Landslide inventory mapping 

Information on past landslides is required for 
model running and validation purposes. Van 
Westen et al. (2008) mentioned the importance of 
a comprehensive landslide inventory to quantify 

both landslide hazard and risk. Past landslide is 
useful for LSM which can be seen as the 
opportunity (Rahman and Kausel 2012) to learn 
the lesson for the future. Previously, only few 
landslide locations (point data) of CMA were 
documented (Ahmed and Rubel 2013). There was 
no complete landslide area (polygon) based 
inventory. An initiative of BUET-Japan Institute of 
Disaster Prevention and Urban Safety (BUET-
JIDPUS) prepared and published a detailed 
landslide inventory of 56 landslides of the study 
area through field survey in July–August 2014 
(Rahman et al. 2016; Ahmed et al. 2014). The 
published inventory is considered for this study 
which covers the historical landslide locations, 
landslide width, length, mechanism, damage, and 
landuse pattern (Rahman et al. 2016; Ahmed et al. 
2014). A total of 56 landslides were identified using 
a Global Positioning System (GPS) device (Figure 
3a). The landslide locations were divided into two 
sets based on random selection– 50% of those were 
categorized as training landslides and the second 
half was considered as a test dataset. Training 
dataset is used as an input factor for data-driven 
WoE analysis, and test dataset is used for the 
validation of the LSM outcomes. 

2.3 Hill cut mapping 

The context of this study is hill cutting, 
urbanization, and associated landslides. Until now, 
works published on landslides in Chittagong city 
(Chisty 2014; Mia et al. 2016; Rahman et al. 2016; 
Ahmed and Rubel 2013) mentioned extensively on 
uncontrolled hill cutting activities and rapid 
urbanization as the primary causes for recent 
landslides. Those works did not consider hill 
cutting map as a factor. A hill cutting map for CMA 
was prepared to incorporate in LSM for better 
understanding the overall landslide situation. 
Satellite images were analyzed to identify hill 
cutting from 1990-2010. Hill cutting activities were 
historically accelerated due to urbanization and  
deforestation (Ahmed 2015a). It is assumed that 
land cover type converted from hill forest (or hills 
covered by dense vegetation) to urban areas were 
primarily due to hill cutting.  

Landsat 4–5 thematic mapper images dated – 
31 October 1990 and 23 November 2010 (row 136, 
and path 44 and 45) were downloaded from the 
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global visualization viewer of the United States 
Geological Survey (USGS). The images were then 
projected using WGS-1984 datum and UTM Zone 
46 North coordinate system. Images were collected 
from the late autumn because this season is 
generally cloud free and trees are not in the leaf-off 
condition in the context of local climate. A 
supervised image classification method was applied 
to classify images into six broad land cover classes 
namely – built-up areas (urban and rural), hill 
forest, shrub land, crop land, bare soil, and water 
body (Ahmed et al. 2013; Ahmed and Ahmed 2012).  

To minimize the misclassification of asphalt 
surfaces, water bodies were extracted separately 
through band addition and threshold estimation 
techniques of near infrared and mid-infrared band 
of Landsat TM. A water layer mask was applied to 
improve the land cover maps (Rahman and Di 
2017). A post classification change detection 
method was applied to identify the changes of land 
cover classes. After analyzing the context, only the 
change from hill forest to an urban area (1990-
2010) was considered for hill cutting mapping. Hill 
cutting activities over the past twenty years are 

shown in red color (Figure 3b). Distance to the hill 
cutting is considered as a significant factor for 
landslides in CMA with an assumption – the 
likelihood of landslides is higher nearer to hill 
cutting areas. 

2.4 Other landslide causative factors 

Altitude zones, slope angle, slope aspect, 
geological unit, soil permeability, land cover, and 
distance to fault, road cut, stream, and drainage 
network were identified as other landslide 
causative factors. Fault and lineament, soil 
permeability, and surface geology layers were 
collected from the Geological Survey of Bangladesh. 
A Soil permeability map was classified with five 
different ordinal classes based on infiltration 
capacity – rapid, mixed moderate, moderate, slow, 
and very slow (Figure 4a). A surface geology map 
(Figure 4b) was classified into six nominal classes 
namely beach and dune sand, Boka bill formation, 
Dhing Formation, Dupi Tila formation, Tipam sand 
stone, and valley alluvium and colluvium. A land 

 
Figure 3 (a) Landslide inventory map, and (b) hill cutting map of Chittagong Metropolitan Area (CMA) (1990- 
2010). 
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cover map (Figure 4c) with six distinctive classes 
was prepared from 2010 Landsat satellite image. 
The land cover map was validated using a 
Chittagong city guide map collected from CDA 
(Ahmed and Ahmed 2012; Ahmed 2015a). 

A DEM image (dated 29 November 2013) was 
extracted from the Advanced Spaceborne Thermal 
Emission and Reflection Radiometer-Global Digital 
Elevation Model (ASTER-GDEM) web-portal. The 
ASTER-DEM image was used to produce altitude 
(Figure 5a) and slope map (Figure 5b). An aspect 
map is also generated from DEM that is a major 
factor for landslides because surface oriented to the 
sun is dried out easily after rain events. In general, 
aspect is the horizontal orientation of the surface 

and represents the direction of a slope. The aspect 
map of CMA was divided into standard eight 
directional orientations (Figure 5c).  

Landslides in CMA are also influenced by 
factors such as distance to existing drainage 
(Figure 6a), road cut (Figure 6b), stream network 
(Figure 6c), hill cut (Figure 7a), and fault line 
(Figure 7b). Distances to these linear features are 
either proportionally or inversely related to 
landslide susceptibility. The distance was 
calculated using the Euclidian distance technique. 
A daily-observed precipitation data (1960–2010) 
collected from the Bangladesh Meteorological 
Department (BMD) was used to prepare the 
average annual precipitation map (Figure 7c). 

Figure 4 (a) Soil permeability, (b) surface geology, and (c) land cover map of Chittagong Metropolitan Area (CMA). 
 

Figure 5 (a) Altitude, (b) slope, and (c) aspect map of Chittagong Metropolitan Area. 
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2.5 Landslide susceptibility modeling  

Both knowledge driven spatial multi-criteria 
evaluation and data driven bivariate statistical 
methods were applied for landslide initiation 
modeling. An empirical runout modeling was 
applied to determine the susceptible area to runout. 

2.5.1 Conditional independence test 

In the case of weights of evidence (WoE) 
modeling the application of conditional 
independence (CI) test is a prerequisite (Torizin 
2016; Bonham-Carter 1994). It confirms the CI of 

the dependent variables (Vijith et al. 2014). CI can 
be calculated using techniques such as chi-square 
test, Omnibus test, and new Omnibus test 
(Agterberg and Cheng 2002), etc. In this study, CI 
is evaluated by a pair-wise Cramer’s V that is a 
post-test to determine the strengths of the 
association after chi-square test has determined 
the significance (Cramér 1999). A chi-square test 
estimates whether there is any significant 
relationship between two variables (i.e. factor 
maps), but it does not tell the level of significance. 
Cramer’s V gives the information where the 
coefficient values range from 0 (small association) 
to 1 (strong association).  

Figure 6 Distance to (a) drainage network, (b) road cut, and (c) stream network map of Chittagong Metropolitan 
Area. 

Figure 7 (a) Distance to hill cut and (b) fault, and (c) average annual precipitation map of Chittagong Metropolitan 
Area. 
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2.5.2 Landslide initiation susceptibility 
modeling 

(a) Weights of evidence (WoE) 

Landslides in a particular geographical context 
are influenced by various geological, topographical 
and hydrological factors, etc. These factors need to 
be analyzed for identifying the possible areas that 
can be affected by landslides. Field experience and 
expert opinion are necessary to model landslide 
susceptibility for the knowledge driven approach. 
Results from data driven approach such as WoE 
can be a good indicator to put rational weights for 
these factors (Kayastha et al. 2012). The presence 
or absence of some factors might be favorable for 
landslides. Bayesian probability methods were 
proved to be effective in evaluating the importance 
of both presence and absence of a factor. The detail 
of the WoE method used in the article is explained 
in Bonham-Carter (1994). This process converts all 
the factor maps to weight maps. The landslide 
susceptibility score map was calculated by the 
arithmetic sum of all weight maps. The score map 
was classified into three classes – low, moderate, 
and high susceptibility based on the histogram 
analysis of the weight map.   

(b) Analytical hierarchical process (AHP) 

AHP is a technique to make decisions 
concerning a particular goal. AHP method is 
applied to derive the weights associated with 
attribute map layers (Saaty 1977; Kayastha et al. 
2013). AHP builds a hierarchy of decision criteria 
through pairwise comparison of each possible 
criterion pair. The details of AHP method used in 
this article is described in Saaty (1977) and Saaty 
(1980).  

Factor maps that are influential for triggering 
landslides were considered for LSM. These factor 
maps were grouped, standardized and weighted in 
a criteria tree. The factor maps were then given 
weights based on the importance of factor classes 
related to landslide occurrence. Expert opinion was 
used as a guideline for incorporating AHP and 
fuzzy logic (Zimmermann 1991; Bonham-Carter 
1994; Malczewski 2004). Fuzzy weighs from 0 to 1 
were assigned (Eastman 2012). After the 
standardization process, the first level of weights 
was assigned for each factor map from the broad 
factor groups. The second tier of weights was given 

based on the qualitative judgment of the 
importance of the landslide causative factors. 

In this study, all factor maps were grouped 
into five categories - hydrology, geology, 
topography, topography alteration, and land cover. 
Soil permeability, precipitation, distance to 
drainage and distance to streams were grouped as 
hydrological factors. Slope and aspect layers were 
considered as topographic factors. Distance to hill 
cut and road cut were considered as topographic 
alteration factors.     

2.5.3 Landslide runout modeling  

The runout modeling is the calculation of the 
spreading of the initiated failed mass. The location 
of a landslide initiation was calculated from the 
initiation susceptibility. The highest 5% of the 
initiation susceptible areas were considered (for 
maintaining higher accuracy and reliability) as a 
source of landslide initiation in runout modeling. 
The model used in this study was developed at the 
University of Lausanne, Switzerland, called Flow-R 
(Horton et al. 2013). The runout estimation is 
based on the probabilistic and energy calculation, 
which allows identifying the runout of the landslide 
from the initiation sources. The DEM and landslide 
initiation source maps were the inputs of the model 
to calculate landslide propagation based on the 
frictional laws and flow direction algorithms 
(Horton et al. 2013). The flow direction was 
calculated based on the modified Holmgren’s 
algorithm by changing the height of the central cell 
by a factor dh, which will change the gradients 
values (Holmgren 1994). 

2.5.4 Combined LSM and model validation 

The consistency of LSM was tested by 
landslide density, relative operating characteristic 
(ROC) curve and spatially agreed on area analysis 
techniques (Kayastha et al. 2013; Bijukchhen et al. 
2013). ROC analysis is useful for cases where it is 
possible to see how well the suitability map 
portrays the location of a particular category. The 
minimum value of an area under ROC curve (AUC) 
is 0.5, which means no improvement over the 
random assignment. The maximum value of AUC is 
1 that denotes perfect discrimination (Eastman 
2012). The step-by-step methodological flowchart 
is illustrated in Figure 8.  
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In summary, initially, twelve landslide 
causative factor maps were prepared to represent 
the context and nature of landslides in CMA. As 
independence of the factors is required for the 
WoE modeling, a conditional independence test 
was applied. The dependent factors were excluded 
from the subsequent analysis. In the next step, the 
landslide-training map was overlaid with the 10 CI 
passed factor maps to calculate the positive and 
negative weights, and contrast factors. The factor 
weight maps were prepared from the weight tables. 
All the weight maps were then combined to get the 
WoE susceptibility score map. The AHP 
susceptibility score map was prepared to apply the 
spatial multi-criteria decision-making tree. The 
experts gave the weights of importance for the AHP 
pairwise comparison. 

Both the susceptibility score maps were then 
converted to LSM based on the histogram 
characteristics and the cumulative function of the 
score. Top 5% score of the AHP susceptibility map 
was used as the landslide initiation source for the 
runout modeling. AHP LSM was chosen over WoE 
based on higher ROC value. The runout 
susceptibility was then converted to runout 
susceptibility class map. The AHP generated 
initiation, and runout susceptibility maps were 
incorporated to prepare the combined LSM. 

3    Results and Discussion 

3.1 Results from CI test 

The Cramer’s V ratio calculated for all the 
possible pairs of the selected dependent variables 
are given in Table 1. The Cramer’s V coefficient 
values >0.5 represents that the two variables are 
highly associated (Crewson 2016). In this case, the 
distance to fault and altitude maps showed 
Cramer’s V values >0.5 (Table 1). Consequently, 
these two variables were excluded from further 
analysis as they are showing conditional 
dependence with other variables. 

3.2 Results from WoE 

The importance of factor classes and contrast 
 

factors are summarized in Appendix 1. The positive 
contrast factor (Cw) indicates that there is a 
positive association between two variables 
(bivariate); i.e. the factor class and landslides. The 
negative contrast factor shows that there is a 
negative association between the factor class and 
landslides. WoE results show (Appendix 1) that 
most of the landslides fall in the precipitation class 
2870–2880 mm/year. CMA falls within 2870-
3000 mm annual rainfall range (Figure 7c), where 
the overall variation of rainfall is negligible on a 
local scale. Still, the precipitation map is 
considered for analysis, as the landslides in CMA 
are mostly associated with monsoon rainfall 
(Ahmed 2015a).  

North, northeast, west, south, and southwest 
aspect classes show positive contrast, which is 
highly associated with landslide occurrences as per 
data driven results. However, from the sun 
exposure perspective south-facing slope is more 
exposed to the sun and the north-facing slope is 
least exposed to the sun. North aspect is the most 
and south aspect is the least susceptible to 
landslides. Moving from south to north in both 
directions should gradually become more 
vulnerable to landslides. These aspects are covered 
by shades that take longer durations to dry out 
after consecutive days of rainfall. Middle slope 
zones were found more susceptible than the other 
slope conditions because people do not prefer to 
build houses at hilltops. Areas closer to hill cut, 
road cut and existing drainage network were found 
more susceptible to landslides, as these areas are 
vulnerable to landslides. The opposite result is 
found in the case of stream network – areas far 
from stream network were found more favorable 
for landslide occurrence (positive contrast) than 
areas closer to stream (negative contrast). Very low 
soil permeability class shows a higher positive 
contrast (8.31) as it fails to absorb and infiltrate 
surface runoff quickly. Dupi Tila (1.33) and Tipam 
sandstone (3.55) surface geological classes have 
positive contrast factor values indicating that these 
two geological classes are favorable for landslides. 
Built up area class shows a positive (1.26) contrast 
(Appendix 1). In CMA, most landslides occur in 
areas where residential housing has been constructed 
by cutting hills or disrupting the natural slope 
(BUET-JIDPUS 2015). 
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Figure 8 Methodological flowchart of the study. 
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3.3 Results from AHP 
 

The importance of the classes in each causative 
factor map is standardized by the fuzzy membership 
(Zimmermann 1991; Ahmed and Ahmed 2012). A 
discrete fuzzy membership value (from 0 to 1) for 
each categorical variable is given based on the local 
context and association with landslides, and expert 
opinion. It is observed that the probability of 
landslides increases with the decrease of distances 
to road cut and hill cut factors. In the case of the 
two hydrological factors - far from streams and 
closer to drainage network were found to be 
favorable for landslides. Consequently, a fuzzy 
membership value of 1 is assigned for the nearest 
distance to hill cut, road cut, and drainage 
(Appendix 2). The membership value is gradually 
decreased with the distance to these three factors 
and becomes zero at 400 m (where there is no 
influence for landslide occurrences). The areas 
closer to stream network is less favorable for 
landslides. A gradually increasing fuzzy 
membership value from 0–1 is assigned to the cells 
with values from 0–400 m for the distance to 
stream factor map (Appendix 2). The middle slope 
zone is found highly vulnerable to landslides. It is 
not possible to build houses on very steep slopes, 
and houses located in the foothill are comparatively 
less vulnerable. Consequently, the middle slope 
zones are assigned with the highest fuzzy 
membership value, and lower weights are assigned 
for both the gentle and steep slopes (Appendix 2). 
A fuzzy weight of 0.4 is assigned for the ‘2870-
2880 mm/year’ precipitation zone, and then the 
membership value is increased to 1 for the 
precipitation class ‘3000 mm/year’ (Appendix 2). 
The north-facing slopes (aspect) are highly, and the 

south facing slopes are less favorable to landslides 
(Robinson and Brown 2009). The fuzzy 
membership values are assigned accordingly 
(Appendix 2). Tipam and Dupi Tila formations are 
comprised of loose and less resistive sandstone 
layers and are accountable for maximum landslides 
(Ahmed and Rubel 2013). A full membership 
weight (1.0) is assigned to Tipam sandstone 
geological unit, and half membership weight (0.5) 
is assigned to Dupi Tila formation unit. Urban 
built-up areas are highly vulnerable to landslides as 
hill cutting for developing settlements are common 
in those areas. Fuzzy membership weights of 1, 0.8, 
and 0.6 are assigned to urban built-up areas, 
cropland, and shrub land respectively. Very slow, 
slow, and moderate soil permeability classes are 
respectively assigned with 1, 0.6, and 0.4 factor 
weights (Appendix 2). 

In the next stage, AHP pairwise comparison is 
applied to the factor maps. All the factor maps are 
initially grouped into five broad categories. To 
begin with, the eigenvalues and associated expert 
weights for the hydrological factor maps are shown 
in Table 2. It is obtained by setting the following 
criteria – permeability is moderately less important 
than drainage, permeability is moderately more 
important than a stream, permeability is strongly 
more important than precipitation, drainage is 
strongly more important than a stream, drainage is 
very strongly more important than rainfall, and the 
stream is moderately more important than rainfall. 
The overall consistency ratio for the hydrological 
factors is found to be 0.04 (Table 2). It indicates 
that the AHP analysis is statistically acceptable 
(Saaty 1977; Ahmed 2015a). Like the hydrological 
factors, AHP pairwise comparison has also been 
applied to topographic factors and topographic 

Table 1 Pair-wise conditional independence (CI) test values for Cramer’s V
Variables 1 2 3 4 5 6 7 8 9 10 11 12
Altitude (1) - 0.44 0.44 0.62 0.56 0.48 0.54 0.48 0.51 0.45 0.44 0.44
Aspect (2) - - 0.45 0.58 0.41 0.45 0.40 0.44 0.50 0.43 0.44 0.44
Drain (3) - - - 0.60 0.47 0.46 0.48 0.45 0.44 0.39 0.44 0.46
Fault (4) - - - - 0.69 0.62 0.60 0.59 0.59 0.65 0.57 0.65
Geology (5) - - - - - 0.47 0.49 0.47 0.45 0.49 0.44 0.48
Hill cut (6) - - - - - - 0.44 0.50 0.45 0.45 0.44 0.45
Land cover (7) - - - - - - - 0.45 0.48 0.50 0.45 0.46
Road (8) - - - - - - - - 0.45 0.45 0.44 0.44
Slope (9) - - - - - - - - - 0.44 0.45 0.44
Soil (10) - - - - - - - - - - 0.43 0.47
Stream (11) - - - - - - - - - - - 0.44
Rainfall (12) - - - - - - - - - - - -
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alteration factors (Table 3 and Table 4). Aspect is 
considered as moderately less important than slope 
within topographic factors. Hill cut is considered as 
moderately more important than road cut within 
topographic alteration factors. Since there are only 
two factors in both topographic and topographic 
alteration group; there is no possibility of 
inconsistency. The pairwise comparison is not 
required for land cover and geology factors, as they 
do not belong to any specific group. 

An AHP pairwise comparison is also 
conducted among the five broad categories (Table 5) 
that are given the name ‘first level criteria.' For the 
first tier, the groups are given weights based on the 
subjective judgment of the importance for 
triggering landslides. The judgments are per se - 
hydrology and geology are equally important, 
hydrology is moderately less important than 
topography, hydrology is strongly less important 
than topography alteration, hydrology is strongly 
more important than the land cover, and so on 
(Table 5). 

The AHP weighting is finally summarized into 
two weight groups: first and second level criteria 
(Table 6) based on Tables 2-5. The first group is 
associated with the broad five-factor groups (i.e. 
first level criteria), and the second group is linked 
to the relevant factors (i.e. second level criteria). In 
the AHP susceptibility analysis, values of each class 

of causative factors are taken from fuzzy 
membership, and then the factors are weighted in 
two levels. 

3.4 Landslide initiation susceptibility 
mapping 

At this stage, the positive and negative weights 
were calculated (Appendix 1) to produce the weight 
maps. The WoE based landslide susceptibility score 
map was then prepared by applying the arithmetic 
sum of the weight maps (Appendix 3a). The AHP 
susceptibility score map (Appendix 3b) is prepared 
by a spatial multicriteria analysis based on the 
given importance from the expert point of view. 
Both the WoE and AHP score maps were then 
classified into three susceptibility classes: low, 
moderate, and high by analyzing the histogram 
natural break and cumulative curve. Four modes 
were found in the WoE histogram distribution 
(Appendix 4a). Since the target is to classify 
susceptibility score maps in three nominal 
categories, the first two modal groups were 
categorized as low susceptibility at 5.32 cutoff score 
that covers 75% of the study area. The cumulative 
distribution also aided this classification. 75%, 20%, 
and 5% areas respectively were classified as low, 
moderate and high susceptible zones for WoE 
(Appendix 4a). For the AHP LSM, the cutoff values 
for the ‘low to moderate’ and ‘moderate to high’ 
susceptibility classes were chosen as 0.167 and 
0.46, respectively (Appendix 4b). Similar 
percentages of areas were classified for 
susceptibility zoning. By this way, the susceptibility 
score maps were converted to prepare the WoE 
(Figure 9a) and AHP landslide initiation 
susceptibility maps (Figure 9b).  

3.5 Combined susceptibility mapping 

The energy travel angle was set to 15° and 
energy initiation velocity was set to 15 m/s (Van 
Westen et al. 2014) for landslide runout modeling. 
After calculating the runout susceptibility scores, 
the runout susceptibility map was prepared (Figure 
10a). The runout susceptibility map and AHP LSM 
were combined (as AHP AUC > WoE AUC). The 
combined LSM was classified into three nominal 
classes: low, moderate, and high susceptible zone 
(Figure 10b). The presence of low susceptibility in 

Table 2 Pairwise comparison matrix and factor 
weights for the hydrological factors 

Factors Soil 
permeability D1 D2 Precipitation Eigen 

values
Soil 
permeability  1 1/3 3 5 0.262

D1  1 5 7 0.565
D2   1 3 0.118
Precipitation    1 0.055
Inconsistency ratio: 0.041 (acceptable) 
Notes: D1=Distance to drainage; D2=Distance to 
streams. 
 
Table 3 Pairwise comparison matrix and weights for 
the topographic factors 

Topographic factors Aspect Slope Weights
Aspect 1 1/3 0.25 
Slope  1 0.75 
 
Table 4 Pairwise comparison matrix and weights for 
the topographic alteration factors 

Factors Hill cut Road cut Weights
Hill cut 1 3 0.75
Road cut  1 0.25
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both susceptible maps was considered as low, high 
susceptibility in any map was considered as high, 
and remaining areas were considered as moderate 
susceptible zone (Appendix 5). The higher 5% areas 
of the AHP landslide initiation susceptibility score 

was selected for the landslide runout modeling. 
The combined landslide susceptibility map (Figure 
10b) was validated using the testing landslide 
locations (Figure 3a) and by applying the ROC 
method (Eastman 2012). 

Table 5 Pairwise comparison matrix and factor weights for the group/ first level factors
First tier criteria Hydrology Geology Topography Topography alteration Land cover Weights
Hydrology 1 1 1/3 1/5 3 0.100
Geology  1 1/3 1/5 5 0.116
Topography   1 1/3 5 0.243
Topography alteration   1 7 0.498
Land cover   1 0.042
Inconsistency ratio: 0.046 (acceptable) 

 
Table 6 Summary of weights from analytical hierarchical process (AHP) analysis 

First level criteria Second level criteria Second level weight First level weight

Hydrological factors 

Soil permeability 0.262

0.100 
Distance to drainage 0.565
Distance to stream 0.118
Precipitation 0.055

Geological factor Surface geology 1.000 0.116 

Topographic factors 
Aspect 0.250

0.243 
Slope 0.750

Topography alteration factors 
Distance to hill cut 0.750

0.499 
Distance to road cut 0.250

Land cover Land cover 1.000 0.042 
 

 
Figure 9 Landslide initiation susceptibility map based on (a) WoE, and (b) AHP. 
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3.6 Model validation and consistency 
analysis 

Figure 11 illustrates the validation results 
obtained from the ROC curve. The red line is 
indicating the prediction rate (i.e. validated by 
training landslides) and the green line indicates the 
success rate (i.e. validated by testing landslides). 
The higher accuracy of a success rate indicates the 
higher accuracy and better performance of a model. 
The accuracy of WoE, AHP, and combined LSM 
was calculated respectively as 96%, 97%, and 98% 
indicating a gradual improvement in modeling 
outcome (Figure 11). 

The high susceptibility zone should have the 
highest landslide density, sequentially decreased 
for the medium and low susceptibility zones. This 
is the general theory of landslide density 
calculation (Kayastha et al. 2013; Bijukchhen et al. 
2013). A total of 5%, 20%, and 75% areas were 
categorized as high, moderate, and low susceptible 
(Table 7). The percentages of landslide areas were 
found to be highest for the high susceptibility zone 

(82%–85%) followed by the medium (15%–17%) 
and low zones (<1%). This trend was also similar 
for the landslide density for the three different 
susceptibility zones. The total density (0.0002) and 
zone-wise density pattern were also found 
consistent for all the LSMs (Table 7). It 
authenticates that the three different LSMs as 
produced in this study are quantitatively similar. 

The spatially agreed areas between the two 
landslide susceptibility maps were calculated to 
understand the overall performance (Appendix 6). 
In the case of the WoE and AHP, and WoE and 
combined approximately 82% areas fell in identical 
susceptibility zones. The statistic was found higher 
(99%) for the AHP and combined LSMs. For the 
WoE and AHP comparison, 91% landslides were 
found in the agreed areas, of which 78% landslides 
were found in the agreed high susceptibility zone 
that covers around 4% of the study area. The AHP 
and combined methods presented highest 
agreement (around 96%), of which 80% landslides 
were found in high susceptible zone covering 
around 5% of the total area (Appendix 6). It proves 
that the predicted LSMs have high spatial 

 
Figure 10 (a) Landslide runout susceptibility interest zones, and (b) combined (initiation and runout) landslide 
susceptibility map of CMA. 
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agreement (Kayastha et al. 2013; Bijukchhen et al. 
2013). 

Based on the model validation results, it is 
affirmed that the LSMs as produced in this study 
are statistically consistent and identical, showing 
higher level of performance, and are scientifically 
valid. The datasets were mostly collected from the 
concerned public organizations in Bangladesh. A 
30m resolution DEM, and Landsat satellite images 
were used for analysis. It is admitted that the 
availability of higher resolution satellite images, 
improved datasets, additional resources and 
intense fieldwork for landslide inventory 
preparation, and sufficient ground-truth activities 
to deal with the uncertainties in weight valuation 
process could improve the overall results and 
reduce the existing minimal level of inconsistencies. 

4     Conclusions 

Rainfall induced landslides are gradually 
becoming a matter of serious concern for the 
communities living in the mountainous or hilly 
areas worldwide. The Chittagong hill districts are 
also highly vulnerable to landslides and associated 
flash flooding. Rapid urbanization, indiscriminate 
hill cutting and deforestation, global warming and 
lack of cultural/indigenous knowledge to deal with 
the hilly environment are aggravating landslide 
disasters. This scenario is evident in CMA. The aim 
of this research was to prepare a reliable and 
scientifically valid landslide susceptibility map to 
foster the landslide DRR activities.  

Ten-factor maps – land cover, slope, altitude, 
soil permeability, surface geology, hill cutting, 

 
Figure 11 ROC curves for (a) weights of evidence, (b) AHP, and (c) combined map. 
 
Table 7 Landslide density calculation for different susceptibility maps 

Methods 
Susceptibility zones 

Low Moderate High Total 

Weights of Evidence 
(WoE) 

Area (km2) 505.4 134.73 33.8 673.93 

Area (%) 75 20 5 100.00 

Landslide area (km2) 0.0011 0.029 0.1366 0.1667 

Landslide area (%) 0.66 17.40 81.94 100.00 

Landslide density 0.000002 0.00022 0.00404 0.0002 

Analytic Hierarchy Process 
(AHP) 

Area (km2) 505.07 135.02 33.84 673.93 

Area (%) 75 20 5 100.00 

Landslide area (km2) 0.00020 0.0287 0.1378 0.1667 

Landslide area (%) 0.12 17.22 82.66 100.00 

Landslide density 0.0000004 0.00021 0.00407 0.0002 

Combine 
(AHP and Runout) 

Area (km2) 505.06 133.56 35.31 673.93 

Area (%) 75 20 5 100.00 

Landslide area (km2) 0.0006 0.0252 0.1409 0.1667 

Landslide area (%) 0.36 15.12 84.52 100.00 

Landslide density 0.0000012 0.0001887 0.0040 0.0002 
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aspect, distance to existing drainage network, 
faults, road cut and stream network – were selected 
based on CI test. A WoE method was applied to 
calculate the positive (presence of landslides) and 
negative (absence of landslides) factor weights. 
Then a combination of AHP and fuzzy membership 
standardization (weights from 0 to 1) was 
implemented. The Flow-R tool, which allows to 
model landslide runout from the initiation sources, 
was applied. The flow direction was calculated 
using the modified Holmgren’s algorithm. The 
methods were chosen based on applicability in this 
particular context. The AHP initiation and runout 
susceptibility maps were combined for preparing 
the final landslide susceptibility map. The ROC 
curve was used for model validation purpose. A 
total of 5%, 20%, and 75% areas were respectively 

categorized as high, moderate, and low landslide 
susceptible zone.  

It is highly recommended to incorporate 
landslide susceptibility maps in existing master 
plans for a city like Chittagong that is surrounded 
by hills and dominated by highly marginalized 
communities. The outcome of this research would 
be helpful for the urban planners and concerned 
stakeholders to restrict the unplanned housing 
development in landslide prone areas. It can also 
facilitate to prepare necessary emergency and risk 
sensitive landuse plans, developing a Web-GIS 
based landslide early warning system, and to assist 
reducing the impacts of landslide disasters in 
Chittagong Metropolitan Area and other similar 
hilly communities in Bangladesh. 
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