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Preferential flow dominates the hydrological 
regime and affects slope stability, especially in 
steep forest watersheds in humid climate regions 
(e.g. Uchida et al. 2001; Anderson et al. 2009). 
Moreover, preferential flow has important effects 
on land degradation, soil erosion control, and on 
groundwater resource security (e.g. Hanson et al. 
2004; Zhao et al. 2016; Zhang et al. 2016). 
However, macropores (such as animal burrows, 
decayed root channels, fissures and interaggregate 
voids) are important factors influencing 
preferential flow (Capowiez et al. 1998; Mooney 
2002; Capowiez et al. 2011; Katuwal et al. 2015; Hu 
et al. 2015; Hu et al. 2016), even though they 
represent only a small fraction of the total soil 
volume (Lin et al. 1996; Alaoui and Helbling 2006; 
Holden 2009). Consequently, quantification of 3D 
macropores is essential to relate macropore 
characteristics to preferential flow behavior and to 
develop a reasonable mathematical model. 

Up to now, many efforts have been carried out 
to visualize and quantify macropores in forest soils 
using either dye tracers technique (Schlather and 
Huwe 2005; Bogner et al. 2008; Anderson et al. 
2009; Nobles et al. 2010; Zhang and Xu 2013; 
Laine-Kaulio et al. 2015), water break-through 
curve technique (e.g. Lu et al. 2014) or tension disk 
infiltrometer (Watson and Luxmoore 1986; Buczko 
et al. 2006; Holden 2009). However, these 
methods have limited ability to observe 3D 
macropore geometry and topology (e.g. Luo et al. 
2010). With advances in image processing 
techniques (software & algorithms), X-ray 
computed tomography (XRCT) has been used in 
recent years as a non-destructively method to 
quantify 3D geometry and topology of macropores 
in undisturbed soil cores (e.g. Hu et al. 2015; 
Pagenkemper et al. 2015; Bottinelli et al. 2016) or 
sieved and repacked soil samples (e.g. Jégou et al. 
2001; Capowiez et al. 2011) at a much higher 
resolution than the aforementioned methods. 
Several studies showed that XRCT is a very 
powerful technique to visualize and quantify soil 
macropore networks (e.g. Luo et al. 2010; Hu et al. 
2015; Katuwal et al. 2015; Hu et al. 2016). 

However, using XRCT, these studies mostly 
concentrated on agricultural (e.g. Mooney 2002; 
Pagenkemper et al. 2015; Bottinelli et al. 2016) and 
grassland soils (e.g. Bastardie et al. 2005; Martínez 
et al. 2010; Hu et al. 2015). For instance, Luo et al. 

(2010) visualized the 3D morphology of macropore 
networks in two types of undisturbed soil columns 
that were taken from cropland and pasture, and 
quantified macropore characteristics, including 
macroporosity, macropore network density, total 
surface area, macropore size distribution, length 
density, length distribution, node density, mean 
hydraulic radius, tortuosity, inclination, and 
connectivity. Four repacked soil cores collected in 
SE France were incubated with two kinds of 
earthworms (A. nocturna versus A. chlorotica). 
After six weeks, Capowiez et al. (2011) 
reconstructed and quantified the 3D geometry of 
earthworm burrow, including macroporosity, 
burrow length, median burrow diameter, vertical 
deviation, branching rate, the number of burrows, 
and then assessed the impacts of earthworm 
species on burrow characteristics. However, to date, 
as far as we known, detailed studies on the 3D 
geometry of macropores in undisturbed soil 
columns that were extracted from forest slopes are 
rare. Only Auclerc et al. (2013) investigated the 
earthworm burrow structural features (mean 
diameter, burrow number, burrow distribution by 
soil depth) of two species (Lumbricus terrestris vs. 
Aporrectodea caliginosa) in repacked soil columns 
from an acidic forest of the Vosges Mountains, NE 
France by using XRCT. In addition, several 
researchers concluded that land use is among the 
main factor influencing macropore characteristics 
(Zhou et al. 2008; Mooney and Morris 2008; Luo 
et al. 2010). As a consequence, quantification of 3D 
macropores in forest soils is essential. 

In Yunnan, Sichuan and Guizhou Province, 
China, extreme intense rainfall often trigger 
regional group landslides and debris flows in 
mountainous vegetated areas, which cause great 
losses of people’s lives and properties (Xu and 
Huang 2011). For instance, Touzhai valley (Yunnan, 
China) is one of the extreme susceptibility area of 
geological hazard (Yunnan Institute of Geological 
Environment Monitoring 2003; Zhang et al. 2016). 
The intense rainfall-triggered potentially unstable 
slopes were threatening the villages at the 
downstream of this valley. Consequently, using 
XRCT, the objectives of this study are to (1) 
visualize the 3D macropore networks in 
undisturbed soil columns taken from a forest 
hillslope in Touzhai valley and (2) quantify the 
characteristics of 3D macropores including 
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macropore density, equivalent circular diameter 
(ECD), circularity, macroporosity, macropore 
volume distribution, macropore wall area density, 
branch density, node density, macropore length, 
tortuosity, inclination (angle), and hydraulic radius. 
Furthermore, in order to better describe the 3D 
macropores in Touzhai valley, we compared them 
with those in agricultural (Luo et al. 2010; Katuwal 
et al. 2015) and grassland soils (Luo et al. 2010). 

1    Materials and Methods 

1.1 Study site 

The study site (27°34′N, 103°51′E) is located 
in Touzhai valley, approximately 30 km north-
northeast of Zhaotong city (Yunnan province, 
Southwest China) and located at an elevation of 
2250-2500 m above mean sea level (masl) (Figure 
1). This region has a typical warm and 
humid plateau monsoon climate with 
a mean annual rainfall of 1082.7 mm 
and an annual mean temperature of 
12.1°C and an annual mean relative 
humidity of 89% (35-year period 
from 1981 to 2015, data were derived 
from National Meteorological 
Information Center, China 
Meteorological Administration). The 
minimum, maximum and mean 
monthly precipitation are 38.8 mm 
(December), 185.9 mm (July) and 
90.2 mm, respectively. The monthly 
precipitation has an unimodal 
distribution (Figure 2). 

The vegetation at the site is a 
natural forest dominated by 
Rhododendron decorum Fr., 
Cyclobalanopsis glaucoides Schott., 
and Yushania Keng f. (Figure 1). The 
vegetation cover is nearly full at the 
site. Throughout the valley, residual 
soil depth ranges from 40 cm to 120 
cm underlain by Permian Emeishan 
basalt (P2β). The soil physical 
properties are presented in section 
1.5 (see below). The soil type is 
classified as Histosols according to 
the USDA Soil Taxonomy. The soils is 

a low acid soils with a pH between 4.7 and 5.5 and 
the dominating clay mineral is montmorillonite 
(Ren 2014). Rhododendron decorum Fr. belongs to 
evergreen broad-leaved forest (shrub) and is a 
shallow rooted plant. Cyclobalanopsis glaucoides 
Schott. is one of evergreen broad-leaved forest (tree) 
and the root morphology is heartroot (Zhou et al. 
2001). The root of Yushania Keng f. is fibrous root 
system. These plants prefer low acid to neutral soils. 
Furthermore, the main soil animal is earthworm 
(Pheretima tschiliensis). Pheretima tschiliensis 
belongs to Pheretima species, Megascolecidae, also 
known as deep-burrowing earthworm. Pheretima 
tschiliensis prefers low acid to neutral and moist 
organic soils and creates permanent vertical 
continuous burrows. However, the density of 
earthworm is low (about 4 to 5 individuals m-2). 
Details and additional information on valley 
characteristics and geological conditions can be 
found in Chen and Kong (1991) and Xu et al. (2007). 

Figure 1 (A) Study site (Touzhai valley) and sampling plots; (B) 
Rhododendron decorum Fr.; (C) Cyclobalanopsis glaucoides Schott.; 
(D) Yushania Keng f.; (E) Typic soil profile: the soil is Histosols 
according to the USDA Soil Taxonomy; (F) Earthworm (Pheretima 
tschiliensis). 

Figure 2 Monthly distribution of precipitation, temperature and 
relative humidity for study site (35-year period from 1981 to 2015). 
Date source: National Meteorological Information Center, China 
Meteorological Administration. 
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1.4 Image processing 

1.4.1 Pre-processing 

Figure 4 shows the overall procedures of image 
processing followed in this study. All images were 
manipulated using public domain software 
program ImageJ, version 1.51c (National Institutes 
of Health, USA) and VolView 3.4 computer 
software (Kitware Inc, USA). First, a grayscale 
image stack was reconstructed based on these 
slices. And then, the image stack was cropped to a 
region of interest (ROI) of 200 mm in width, 200 

mm in length from near the center of images, and 
25 mm of the soil at both ends of each column were 
cropped to avoid artifacts due to the uneven 
surfaces of the soil samples. As a result, soil 
columns 200 mm in width, 200 mm in length and 
450 mm in height (212×212×300 pixels) were used 
for following analysis. The soil columns are 
hereafter referred to as object soil columns (S1 and 
S2). Consequently, the object soil columns are 
representative of the depths 85 to 535 mm in the 
soil profile. 

After that, a 3D median filter with a 

 
Figure 4 The procedures used in present study for image processing and quantification of macropore networks. 
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neighborhood of two pixels was used to reduce the 
noise in the image stack (Luo et al. 2010). 
Hounsfield Units (HU) is linearly related to the 
bulk density of the soil (Schrader et al. 2007; 
Perret et al. 1999). Therefore, HU was often used to 
segment macropores (Langmaac et al. 1999; 
Katuwal et al. 2015; Rogasik et al. 2014). HU 
thresholding scheme as described by Hou (2015) 
was applied in this study. Briefly described, first, 
fresh roots and stones in soils were scanned with a 
medical scanner, the HU ranges of fresh roots and 
stones were determined using VolView 3.4 
computer software. For instance, in our case, the 
HU range was −594~248 HU for the roots and 
1379~3071 HU for the stones, respectively (Figure 
4). Second, soil core with a known diameter of 
macropores was scanned by the CT scanner, the 
minimum value of these ranges, namely, −594 HU, 
was used as the threshold value to calculate the 
macropore size based on image analysis using 
ImageJ 1.51c, and then compared it with the 
authentic size. If the difference between them was 
too large, another threshold value was selected 
until the difference was less than 1%. A value of 
−594 HU was selected as the threshold value in this 
study. The grayscale image stack was translated 
into binary images stack, the black areas indicated 
macropores and the white areas indicated dense 
areas. 

After segmentation, all macropores which 
touched the perimeter of the ROI (hereafter 
denoted as peripheral macropores) were 
eliminated since these macropores may be cut by 
the image boundary and their morphology not 
presented perfectly in the binary images. In this 
study, pores ≥ 1.066 mm in diameter were referred 
to as macropores. 

1.4.2 Visualization and quantification of 
macropore networks 

The variations in macroporosity, macropore 
number density, circularity and Equivalent Circular 
Diameter (ECD) with soil depth were analyzed by 
calculating these values for each slice (1.5 mm 
thickness) of the binary image of each object soil 
column. Exclusion of the peripheral macropores 
resulted in a reduction in macroporosity values for 
the soil columns by 27% to 33%. The difference in 
the two macroporosity with and without peripheral 
macropores was large. Therefore, only the 
circularity and ECD of each macropore were 

computed based on the binary image without 
peripheral macropores. Macroporosity (m3 m-3) is 
the ratio of the total volume of all macropores to 
the volume of the ROI. Macropore number density 
(number m-2) is the ratio of the number of 
macropores to the area of the ROI. The circularity 
and ECD of macropores were calculated based on 
the surface area of the macropore and its perimeter 
according to the following equations: circularity=4π 
(area/perimeter2), ECD=2(area/π)0.5. These values 
were obtained using the Analyze Particles plugin in 
ImageJ. 

 Macropore networks were visualized using the 
Volume Viewer plugin in ImageJ. The skeletons of 
macropore networks were generated using the 
Skeletonize 3D plugin (Doube et al. 2010). The 
skeleton of a macropore is its central line with a 
thickness of one voxel. We observed a few circular 
macropores in binary images, i.e., a few cavities in 
the object (Figure 2). Because this plugin runs 
based on a classical 3D thinning algorithm (Lee  
et al. 1994). Thus, these cavities must be filled 
using the Analyze Particles plugin prior to 
skeletonization of the macropores. If not, this 
method could overestimate the macropore length. 

After that, macropore density, macropore 
length density, branch density, macropore node 
density, mean macropore length, mean branch 
length, mean tortuosity, macropore vertical length 

 
Figure 5 A macropore skeleton network with ten 
branches and three nodes in a soil column. Black segment 
is branch. Black dot is end point, but it isn’t node. Blue 
dot, purple dot and red dot is junctions point, triple point 
and quadruple point, respectively and they are nodes. The 
actual length, straight-line length, vertical length, 
horizontal length and inclination of a branch are shown in 
this schematic diagram. 
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density, mean macropore vertical length, mean 
branch vertical length and mean angle for each 
object soil column were derived from 3D skeletons 
of the macropores using the Analyze Skeleton 
plugin (Doube et al. 2010). A macropore is a 3D 
network that is a set of branches that are 
interconnected by nodes (Figure 5). These 
terminologies have been detailedly introduced by 
Katuwal et al. (2015) and Luo et al. (2010), and are 
resumed in Table 1. The vertical length of a 
macropore branch represents the vertical 
continuity and is important to gravity flow (Luo  
et al. 2010). The inclination of a macropore branch 
was characterized by an angle (°) away from 
vertical direction (Figure 5). Thus, the smaller this 
angle, the more vertical the macropore network. 
Finally, 3D skeletons of the macropore networks 
were visualized using the 3D Viewer plugin 
(Schmid et al. 2010). 

 From the 3D binary image, the total volume 
and total macropore wall area (TMWA) of 
macropore networks systems were obtained using 
the 3D Object Counter plugin (Bolte and 
Cordelieres 2006) in ImageJ. Then, the overall 
macroporosity, TMWA density and mean 
equivalent hydraulic radius were calculated. Three 
terminologies are also summarized in Table 1. 

1.5 Basic soil physical properties 

After CT scanning, each column was divided 
into five soil layers at 10 cm depth intervals. For 
each soil layer, first, three undisturbed soil cores (5 
cm in diameter, 5 cm in height) were taken and 
then oven-dried at 80°C (for soils with organic 
matter content >10%) or 105°C (for soils with 
organic matter content ≤10%) to a constant weight 
to determine the soil bulk density (Nanjing 
Hydraulic Research Institute 1999). Afterwards, 
the remaining soils was oven dried (80°C or 105°C-
48 h), crushed and sieved to determine particle size 
distribution and organic matter content. The 
fraction of particles with a diameter of >0.075 mm 
was determined by wet sieving. The particle size 
(diameter<0.075 mm) analysis was performed 
using pipette method, where the rate of descent of 
the soil particles is used as a proxy for particle size 
(Sohrt et al. 2014). Organic matter content was 
determined by the potassium dichromate 
volumetric method (Zhou et al. 2009). Next, gravel 
(particle size > 2 mm) volume and weight was 
measured by water displacement in a graduated 
cylinder and by electronic balance, respectively. 
Then, the particle density of gravel was calculated. 
In addition, the particle density of fine grained soil 

Table 1 Various terminologies of 3D macropore network

Terminology Definition Unit
Macropore density The number of macropores in a unit volume number m-3

Macropore length density The total actual length of macropores in a unit volume km m-3

Macropore branch density The total number of all branches in a unit volume number m-3

Macropore node density The number of nodes (intersections where at least two 
macropore branches connect) in a unit volume number m-3 

The mean macropore length The ratio of the total actual lengths of all macropores to the 
number of macropores mm 

The mean branch length The ratio of the total actual lengths of all branches to the 
number of branches mm 

The mean tortuosity The ratio of the total actual macropore length to the total 
straight-line distance of all the macropores - 

Macropore vertical length density The total vertical length of all macropore branches in a unit 
volume km m-3 

The mean macropore vertical length The ratio of the total vertial lengths of all macropores to the 
number of macropores mm 

The mean branch vertical length The ratio of the total vertical lengths of all branches to the 
number of branches mm 

The angle of a branch It was calculated as: θ = arccos (vertical length/straight-line 
length) ° 

The overall macroporosity The ratio of the total volume of all macropores to the volume 
of object soil column m3 m-3 

The TMWA density The total macropore wall area (TMWA) in a unit volume m2 m-3

Mean equivalent hydraulic radius 
Assuming that all macropores are cylindrical, it was computed 
by the total volume and total actual length of the all 
macropores. i.e., r=[total volume/(total actual length×π)]0.5 

mm 
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(particle size ≤ 2 mm) was determined by 
pycnometer method. Finally, porosity of the soil 
columns was calculated from bulk density, particle 
densities for fine grained soils and for gravels 
(Legout et al. 2009). Measured results of the soil 
physical properties are summarized in Table 2. 

As shown in Table 2, organic matter decreased 
(varied from 16.69% to 2.09%) with depth (at a 
range of 60-560 mm). The soils have a high 
porosity (between 76.16% and 87.37%), a low bulk 
density (between 0.281 and 0.588 g.cm-3) and a 
high gravel content (between 26.97 and 42.76%). 
Furthermore, the topsoil have a high organic 
matter (>7%). 

1.6 Compared studies 

 Before illustrating the 3D geometry and 
topology of macroporess in the forest soils, it is 
important to mention that, up to now, there is little 
or no consensus for the definition of macropores 
(Noguchi et al. 1997; Feyen et al. 1998; Perret et al. 
1999; Pierret et al. 2002; Buczko et al. 2006; 
Allaire et al. 2009). Macropores have been defined 
differently by various investigators or it is not 
defined at al (Noguchi et al. 1997; Zhang et al. 
2012). A large number of the definitions of a 
macropore based on the ECD in soil literature were 
summaried by Beven and Germann (1982), Perret 
et al. (1999), and Zhang et al. (2012). They found 
that the lowest boundary of macropores varied 
from 30 to 10 000 μm and these definitions are 
conflicting. This is in part because different types 
of macropore have distinct geometries and in part 
because of the difference in resolution of CT 
scanner (Noguchi et al. 1997; Allaire et al. 2009). 
Therefore, it is more or less impossible to directly 

compare and discuss macropore characteristics 
between different investigators (Noguchi et al. 1997; 
Sheng et al. 2016). 

However, in this study, the definition 
proposed by Luxmoore et al. (1990) was followed. 
They considered that macropore includes all pores 
with ECD ≥1 mm. In present study, pores ≥ 1.066 
mm in diameter, were referred to as macropores. 
Consequently, the present study was only 
compared with Luo et al. (2010) and Katuwal et al. 
(2015) studies because the lowest boundary of 
macropores are comparable (0.75 mm for Luo et al. 
(2010), 1.2 mm for Katuwal et al. (2015)) and more 
detailed 3D macropore characteristics in 
agricultural and grassland soils were reported by 
Luo et al. (2010) and Katuwal et al. (2015). 

 The studied site of Luo et al. (2010) was 
located in the Ridge and Valley Physiographic 
Region of Pennsylvania. Cropland sites had 
conventional tillage and rotation cropping of corn 
(Zea mays L.) and soybean (Glycine max (L.) 
Merr.). Pasture sites were grazed by animals (cows 
and horses). The soil series are Hagerstown silt 
loam (Typic Hapludalfs) and Morrison sand (Ultic 
Hapludalfs). The parent material is limestone and 
sandstone, respectively. In cropland sites, 
Hagerstown silt loam soils have a high silt content 
(52%–68%) and a low rock fragment (>2 mm in 
size) content (<2%). Morrison sand soils have a 
high sand content (84%–88%), a high rock 
fragment content (20%–25%), a low organic matter 
content (<2%). However, in pasture sites, Morrison 
sand soils have a low rock fragment content (<5%). 
Six undisturbed soil columns (four for Hagerstown 
silt loam and two for Morrison sand, 102 mm in 
diameter and 350 mm in length) were randomly 
sampled from cropland sites and pasture sites in 

Table 2 Soil physical properties at the Touzhai valley

Soil 
column 

Depth 

(mm) 
Organic matter a 
(%) 

Porosity
(%) 

Bulk density
(g cm-3) 

Sand b

(%) 
Silt b 
(%) 

Clay b 
(%) 

Gravel b

(%) 

S1 

60-160 12.82 85.93 0.298 48.85 39.67 11.48 30.15
160-260 7.09 80.05 0.447 41.50 48.00 10.50 28.69
260-360 4.62 83.18 0.430 40.44 47.19 12.37 30.02
360-460 3.96 78.79 0.519 37.52 48.47 14.01 35.71
460-560 2.68 76.16 0.588 32.24 47.28 20.48 43.76

S2 

60-160 16.96 87.37 0.281 47.40 39.89 12.71 29.75
160-260 8.16 78.77 0.432 42.12 46.71 11.17 28.26
260-360 4.32 81.54 0.412 39.55 47.72 12.73 26.97
360-460 2.60 78.53 0.502 38.14 45.55 16.31 31.46
460-560 2.09 76.96 0.533 33.95 46.20 19.85 28.51

Notes: Textural classification was according to the USDA soil taxonomy; a Measured by potassium dichromate 
volumetric method; b Clay <0.002 mm, silt 0.002-0.05 mm, sand 0.05-2 mm, gravel ≥2 mm; percentage by weight. 
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July 2007, respectively. 
The studied site of Katuwal et al. (2015) was 

located in Silstrup (56°55′56″ N, 8° 38′44″ E), in 
the northwestern part of Jutland, Denmark. The 
field was cultivated with barley, fodder beet and 
red fescue (Norgaard et al. 2013). According to the 
USDA soil classification system, the soil types are 
classified as Alfic Argiudoll and Typic Hapludoll 
(Norgaard et al. 2o13). The soil texture is 
characterized by sandy loam and loam with high 
sand content (52.8%), low organic carbon (2%) and 
low porosity (44%). Seventeen undisturbed soil 
samples (19 cm diameter and 20 cm in height) 
were sampled from the topsoil in October 2010. 

1.7 Statistical analysis 

Non-parametric Wilcoxon signed rank tests 
were performed to test significance of difference 
between global macropore characteristics for 
different soils (the forest soil vs. the agricultural 
soils and the grassland soils). In the forest soils, 
the relation between the density of macropores 
and the macroporosity was measured by linear 
regression and calculation of the Pearson 
correlation coefficient (RS1 for S1, RS2 for S2). All 
statistical analyses were conducted in Statistical 
Package for the Social Sciences statistical analysis 
software (Version 17.0) with level of significance 
at P<0.05. 

2    Results 

2.1 Visualization of macropore networks 

 3D visualization of macropore networks in the 
two soil columns are shown in Figure 6 and 
different types of macropores could be identified. 
Previously, we had carried out five dye tracer 
experiments in the field (i.e., 1 m2 surface area) in 
this study site and found a few earthworm burrows 
in the forest soils. However, earthworm burrow 
was did not observed in the two soil columns due to 
the density of earthworm was low, namely, about 4 
to 5 individuals m-2. Thus, the highly continuous, 
relatively large, round in shape and tubular 
macropore in these forest soil columns may be root 
channels (Luo et al. 2010). They constituted an 
important proportion of the macropore networks 
in the two soil columns. Moreover, because we had 
observed in situ that organic matter has downward 
migrated through the root channels during the 
sampling, the irregular, smaller and less 
continuously distributed macropores were likely 
inter-aggregate macropores (the voids between 
aggregates) (Luo et al. 2010) and other macropores 
without knowing origin (Figure 6c). In addition, a 
few circular macropores could be observed in 
binary images (Figure 4). These macropores may 
be associated with root-soil interface because the 
rhizosphere was stained by dyes in dye tracer 
experiments in situ. 

 
(a) S1-macropore networks         (b) S2-macropore networks      (c) macropores without knowing origin 

Figure 6 3D visualization of macropore networks ((a), (b)) for the object soil columns of S1 and S2 and macropores 
without knowing origin ((c)). This kind of macropores ((c)) was very common in the forest soils in present study sites 
but the formation mechanism of these macropores was not clear and needs further study. 

 Macropores without 

knowing origin 
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Compared with the agricultural soils (see 
Figure 4 in Katuwal et al. 2015; Figures 3 and 4 in 
Luo et al. 2010) and the grassland soils (Figures 3 
and 4 in Luo et al. 2010), macropore networks in 
the forest soils tend to be more complex. First, root 
channels in the forest soils were larger, deeper and 
longer. Furthermore, in the forest soils, the 
vertically oriented macropores were less. 
Additionally, the large number of the irregular 
macropores in the forest soils. 

2.2 The variation of macropore number 
density, macroporosity, ECD and 
circularity with soil depth 

 The distributions of macropore number 
density, macroporosity, average ECD and average 
circularity with depth in the soil profile for two 
object soil columns (S1 and S2) are 
presented in Figure 7. In 
comparison, the variation of these 
characteristics with depth was 
significantly larger in the forest 
soils (Figure 7) than in the 
agricultural soils (Figures 5 and 6 
in Katuwal et al. 2015; Figure 5 in 
Luo et al. 2010) and the grassland 
soils (Figure 5 in Luo et al. 2010). 
Further, the distribution patterns 
differed significantly among the 
three kinds of soils with different 
land-use. The depths of macropore 
distributions were also significantly 
larger in the forest soils than in the 
agricultural soils and the grassland 
soils (Luo et al. 2010; Katuwal et al. 
2015). 

 Macropore number density 
fluctuated around 1513 number m-2 
at soil depths between 85 mm and 
400 mm and increased at soil 
depths of 400–436 mm, peak was 
2250 number m-2, then declined at 
soil depths from 436 to 535 mm for 
S1 (Figure 7a). For S2 (Figure 7a), 
macropore number density 
increased in the 85–371 mm soil 
layer, peak was 2975 number m-2, 
and decreased at soil depths of 
371–535 mm. In contrast, 

macropore number density always decreased with 
depth in the agricultural soils (Katuwal et al. 2015). 

 Macroporosity increased wavily with depth, 
especially at soil depths of 130– 270 mm, peak was 
0.135 m3 m-3, and declined sharply at 270 mm soil 
depth, then slightly waving as soil depth increased 
at 390 mm soil depth for S1 (Figure 7b). 
Macroporosity increased at soil depths between 85 
mm and 283 mm and declined at 283 mm soil 
depth, then increased dramatically at 452 mm soil 
depth, peak was 0.149 m3 m-3 and then decreased 
sharply at 482 mm for S2 (Figure 7b). Nevertheless, 
Katuwal et al. (2015) reported that in most of the 
agricultural soil samples with macroporosity higher 
than 0.008 cm3 cm−3 (i.e., 0.008 m3 m−3), 
macroporosity variation with depth was more 
uniform. For soil under the grass, macroporosity 
first decreased with depth and increased slowly, 

Figure 7 Macropore number density, macroporosity, average ECD and 
average circularity distribution along the soil depth (85 to 535 mm) for S1 
and S2. 
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and then declined as soil 
depth increased (Luo et al. 
2010). 

 Average ECD for each 
slice varied from 3.129 to 
6.291 mm and varied from 
3.114 to 6.556 mm for S1 and 
S2, respectively (Figure 7c). 
However, ECD at all depths 
ranged from 1.067 to 53.759 
mm and ranged from 1.067 
to 65.146 mm for S1 and S2, 
respectively. Average 
circularity for each slice was 
between 0.728 and 0.907 
and between 0.674 and 
0.886 for S1 and S2, 
respectively (Figure 7d). 

2.3 Global macropore 
characteristics 

2.3.1 Macropore density, 
macroporosity, 
macropore volume 
distribution and 
TMWA 

 The global macropore 
characteristics of the three 
kinds of soils are listed in 
Table 3. Macropore density was significantly less 
for the forest soils (ranged from 1.151 to 1.228×105 
number m-3, with an average of 1.190×105 number 
m-3) than both the agricultural soils (P<0.05) and 
the grassland soils (P<0.05). Katuwal et al. (2015) 
reported that macropore density ranged from 0.70 
to 3.69×105 number m-3 and with an average of 
2.39×105 number m-3 in the agricultural soils. 
Macropore density in the cropland ranged between 
6.61 to 8.47×105 number m-3, with an average of 
7.65×105 number m-3, and in the grassland, the 
range was from 8.76 to 13.73×105 number m-3, with 
an average of 11.54×105 number m-3 (Luo et al. 
2010). 

 In contrast, soil macroporosity was greater in 
the forest soils (varied from 0.062 to 0.090 m3 m-3, 
with an average of 0.076 m3 m-3) than that in the 
agricultural soils (P<0.05) and the grassland soils 
(P<0.05). For agricultural soils, Luo et al. (2010) 
calculated that macroporosity was between 0.022 

and 0.032 m3 m-3, with an average of 0.027 m3 m-3. 
Further, Katuwal et al. (2015) computed that the 
range was between 0.0038 and 0.0166 m3 m-3, with 
an average of 0.009 m3 m-3. In the grassland, soil 
macroporosity varied within a range of 0.031 to 
0.074 m3 m-3 with an average value of 0.051 m3 m-3 
(Luo et al. 2010). 

 The volume distribution of the macropores in 
each object soil column (S1 and S2) plotted against 
the cumulative volume percentage of macropores is 
shown in Figure 8. The forest soils had larger 
macropore volume (ranged from about 1.34 mm3 to 
331,213.469 mm3, with an average of 482 mm3 for 
S1, and the range was from 1.34 to 1,359,530 mm3, 
with an average of 655 mm3 for S2) as compared to 
the agricultural soils and the grassland soils. More 
than 90% of the macropore volume consisted of 
macropores with volume >1000 mm3 for S1 and 
93% for S2. The largest macropore with a volume 
of 331,213.469 mm3 in S1 occupied about 30% of 

Table 3 Global macropore characteristics of the forest soils (S1 and S2), 
agricultural soils (AS), and the grassland soils (GS) 

Soil 
column 

MD BD ND MP TMWA
density MALD MVLD MHR

(×105) number m-3 m3 m-3 m2 m-3 km m-3 mm
S1 1.151 2.934 1.927 0.062 55.818 2.630 1.214 2.738
S2 1.228 5.074 3.884 0.090 90.532 4.663 2.204 2.486
Mean 1.190 4.004 2.906 0.076 73.175 3.647 1.709 2.612
AS1a 2.39 4.38 1.21 0.009 15.88 2.42 — — 
AS2 b 7.65 — 2.62 0.027 26.83 4.94 1.299 0.71 
GS b 11.54 — 4.44 0.051 47.94 9.46 2.397 0.73 
Soil 
column 

MMAL MMVL MBAL MBVL MT MA MHR
mm - ° mm 

S1 22.856 10.550 8.967 4.139 1.279 51.692 2.738 
S2 37.962 17.947 9.189 4.344 1.277 50.708 2.486 
Mean 30.409 14.248 9.078 4.242 1.278 51.200 2.612 
AS1 a 10.11 — 5.48 — 1.25 — — 
AS2 b — — — — 1.63 42.367 0.71 
GS b — — — — 1.71 37.733 0.73 

Notes: MD: macropore density, BD: branch density, ND: node density, MP: 
macroporosity, TMWA density: total macropore wall area density, MALD: 
macropore actual length density, MVLD: macropore vertical length density, 
MMAL: mean macropore actual length, MMVL: mean macropore vertical length, 
MBAL: mean branch actual length, MBVL: mean branch vertical length, MT: 
mean tortuosity, MA: mean angle, MHR: mean hydraulic radius. —: no data. 
a The mean of seventeen soil samples that taken from an agricultural field in 
Silstrup, Denmark. The lowest boundary of macropores was 1.2 mm in diameter. 
Detailed data see Table 2 in Katuwal et al. (2015). 
b The mean of six soil samples that collected from two cropland sites and two 
pasture sites, respectively, in Pennsylvania, USA. The lowest boundary of 
macropores was 0.75 mm in diameter. Detailed data see Table 2 in Luo et al. 
(2010). 
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grassland soils varied from 1.87 to 3.05×105 
number m−3 and from 2.39 to 5.85×105 number 
m−3, respectively (Luo et al. 2010). 

 Overall, macropore length density for the 
forest soils was comparable with that for the 
agricultural soils (P>0.05), but smaller as 
compared to the grassland soils (P<0.05). For the 
forest soils, macropore actual length density and 
vertical length density ranged from 2.630 to 4.663 
km m−3 and from 1.214 to 2.204 km m−3, 
respectively. For the agricultural soils, Katuwal  
et al. (2015) computed that macropore actual 
length density was between 0.71 and 3.91 km m−3. 
Macropore actual length density and vertical length 
density ranged from 4.47 to 6.10 km m−3 and from 
0.54 to 1.95 km m−3, respectively, in the 
agricultural soils (estimated based on the Figure 8 
in Luo et al. 2010). However, for the grassland soils, 
macropore actual length density ranged from about 
4.50 to 12.93 km m−3 and the macropore vertical 
length density ranged from about 1.07 to 3.17 km 
m−3 (Luo et al. 2010). 

 In contrast, our results showed that the forest 
soils had greater mean macropore actual length, 
mean macropore vertical length, mean branch 
actual length, and mean branch vertical length than 
those the agricultural soils and the grassland soils. 
Mean macropore actual length and mean branch 
actual length was 30.409 mm and 9.078 mm, 
respectively, for the soils in forest, which were 
about 3.01 and 1.66 times higher than those in 
cropland (P<0.05) (Katuwal et al. 2015), 
respectively. In the forest soils, mean macropore 
vertical length and mean branch vertical length was 
14.248 mm and 4.242 mm, respectively. As can be 
seen from the Table 3, mean macropore density 
was 7.65×105 number m-3 and 11.5×105 number  
m-3 for the agricultural soils and the grassland soils 
(Luo et al. 2010), respectively, which was about 
6.43 and 9.70 times higher than that for the forest 
soils. However, mean macropore actual length 
density was 4.94 km m−3 and 9.46 km m−3 for the 
agricultural soils and the grassland soils (Luo et al. 
2010), respectively, which only was 1.35 and 1.42 
times higher than that for the forest soils. Mean 
macropore vertical length density was 1.299 km 
m−3 and 2.397 km m−3 for the agricultural soils and 
the grassland soils (estimated based on the Figure 
8 in Luo et al. 2010), respectively, which only was 
0.76 and 1.40 times the that in the forest soils. The 

above results demonstrate that the mean 
macropore actual length and mean macropore 
vertical length in the forest soils are larger than 
those in both the agricultural soils and the 
grassland soils. 

2.3.3 Macropore tortuosity, angle and 
hydraulic radius 

On the whole, the tortuosity of the forest soils 
(1.278 on average) was smaller relative to that of 
the agricultural soils (but not at a significant level 
(P>0.05)) and the grassland soils (P<0.05) (Table 
3). This mean was comparable with that of Katuwal 
et al. (2015), who reported that the tortuosity of the 
agricultural soils varied within a close range of 1.23 
to 1.28 with an average value of 1.25. Furthermore, 
Luo et al. (2010) calculated that the agricultural 
soils had the tortuosity of 1.46–1.91, while that for 
the grassland soils was 1.56–1.87. 

The forest soils had a mean angle of 51.200° 
compared to 42.367° and 37.733° in the 
agricultural soils (P>0.05) and the grassland soils 
(P<0.05), respectively (Table 3). For the forest soils, 
mean hydraulic radius was 2.612 mm, which was 
about 3.68 and 3.58 times greater than that for the 
agricultural soil and the grassland soils, 
respectively (P<0.05) (Table 3). 

3    Discussion 

3.1 3 D morphology and spatial distribution 
of macropore networks 

 Results from this study demonstrated that 
macropore networks in the forest soils tend to be 
more complex and deeper as compared to the 
agricultural soils (Luo et al. 2010; Katuwal et al. 
2015) and the grassland soils (Luo et al. 2010). The 
discrepancies may be attributed to the different 
types of macropores and different vegetation types 
for the different soils. 

 First, different types of macropores have 
distinct geometries (Luo et al. 2010; Hu et al. 2016) 
and the main types of macropores are different 
among the three kinds of soils. For instance, as can 
be seen from the Figure 6, root channels, inter-
aggregate macropores and other macropores 
without knowing origin occur extensively in the 
forest soils. Furthermore, we had carried out five 
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dye tracer experiments in situ in this study site and 
found a large number of gravels (or stones) and 
roots were stained by dyes. The results suggested 
that stone-soil interface and root-soil interface are 
important macropores in the forest soils. These 
findings are consistent with those of Noguchi et al. 
(1997), Feyen et al. (1998), Laine-Kaulio et al. 
(2015), and Zhang et al. (2016). However, Luo et al. 
(2010) and Katuwal et al. (2015) reported that 
earthworm burrows and root channels constituted 
a significant proportion of the macropore networks 
in the agricultural soils and the grassland soils. 

Second, different vegetation types have 
different types of root systems (Aubertin 1971; 
Pagenkemper et al. 2015). Thus, macropore 
networks that resulted from root systems have 
different morphology and spatial distribution. For 
example, Rhododendron decorum Fr.(shrub), 
Cyclobalanopsis glaucoides Schott. (tree), and 
Yushania Keng f. (grass). coexist in the study site. 
However, cropland sites (Luo et al. 2010) had 
rotation cropping of corn (Zea mays L.) and 
soybean (Glycine max (L.) Merr.). The field 
(Katuwal et al. 2015) was cultivated with barley, 
fodder beet and red fescue. Moreover, several 
researcher demonstrated that the root networks of 
woody vegetation such as forest and shrubland 
have greater depth, diameter, dispersion, and 
biomass than these of the root networks of 
herbaceous plants or cultivated crops (e.g. Lee and 
Lauenroth 1994; Jackson et al. 1996; Messing et al. 
1997; Price et al. 2010). 

Finally, as shown in Figures 7a, 7b, unlike the 
agricultural soils and the grassland soils, there 
were no significant positive correlations between 
the density of macropores and the macroporosity 
for the forest soils (RS1=0.016, RS2=0.317). This was 
because the ranges of macropore size were 
significantly larger in the forest soils than in the 
agricultural soils and the grassland soils. For 
example, Luo et al. (2010) reported that the 
maximum of volumetric macropores size was 
smaller than 100,000 mm3 for the agricultural soils 
and the grassland soils (Figure 6 in Luo et al. 2010). 
However, the maximum of volumetric macropores 
size was 331,213.469 mm3 and 1,359,530,mm3 for 
S1 and S2, respectively (Figure 8). Consequently, it 
is more appropriate to use macroporosity rather 
than the macropore number density to indicate the 
proportion of macropores in forest soils. 

3.2 Global macropore characteristics 

3.2.1 Macroporosity, macropore volume, 
TMWA, node density and hydraulic 
radius 

The forest soils had higher macroporosity, 
larger macropore volume, higher TMWA density, 
higher node density, and larger hydraulic radius as 
compared to the agricultural soils and the 
grassland soils (Table 3). This finding suggests that 
the macropore networks in the forest soils have 
high inter-connectivity and can be explained by a 
combination of anthropogenic and natural factors. 
In summary, the well-developed macropore 
networks in the forest soils can be related to stable 
and high vegetation cover, low bulk density, high 
gravel content, high organic matter content, low 
silt content, and less anthropogenic disturbance 
(less soil compaction). 

Vegetations have positive effects on the 
formation and development of macropore network. 
First, root systems play an important role in 
forming root channel and root-soil interface in 
forst soils (Noguchi et al. 1997; Price et al. 2010; 
Zhang et al. 2016). For instance, Noguchi et al. 
(1997) estimated that at Hitachi Ohta experimental 
watershed in Japan, about 55-70% of the 
macropores were formed by roots. Second, roots 
initiate aggregate formation, and root exudates and 
microbial activity stimulate production of humic 
cement, which enhances aggregate stability (Jirků 
et al. 2013). Thus, a large number of inter-
aggregate macropores were observed in the forest 
soils. Third, plant canopy and litter cover protect 
macropores in topsoils against rain splash and 
wind-driven rain splash, reduce soil erosion, and 
maintain macropores and aggregate stability for 
long time (Hanson et al. 2004; Bodner et al. 2013; 
Marzen et al. 2015; Zhao et al. 2016; Prosdocimi  
et al. 2016; Rodrigo Comino et al. 2016a). Several 
researcher demonstrated that raindrop erosion 
destroys soil particles and aggregates, and 
subsequently transports fine soil particles, and 
thereby clogs macropores (Hanson et al. 2004; 
Lamandé et al. 2011; Bagarello et al. 2014; Marzen 
et al. 2015). In the forest site, the vegetation is 
long-term stable due to less anthropogenic 
disturbance. However, the cropland sites had 
rotation cropping and thereby most crops leave the 
soil surface unprotectd in a certain period of the 
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year (Luo et al. 2010). The pasture sites were 
grazed by animals: cows and horses (Luo et al. 
2010). Therefore, soil erosion rates are much lower 
for the forest soils as compared to the agricultural 
and grassland soils. The results are in agreement 
with those reported by Auerswald et al. (2009); 
Cerdan et al. (2010); Rodrigo Comino et al. (2015). 

Furthermore, mean bulk density (0.444 g cm-3) 
for the forest soils was less than one third of the 
mean bulk density for the agricultural soils (1.495 g 
cm-3) (Luo et al. 2010 and Katuwal et al. 2015) and 
the grassland soils (1.43 g cm-3) (Luo et al. 2010). 
Generally, the soils with lower bulk density often 
contains greater volume of macropores (Bottinelli 
et al. 2016). 

 Additionally, the greater rock fragment (or 
gravel, stone) content, the more temperate is the 
soil climate (Cerdà 2001). Therefore, rock fragment 
favorable for faunal activity and macropores 
formation (Cerdà 2001). For example, using 
scanning electron microscope, Certini et al. (2004) 
observed numerous hyphae and other living forms 
on the surface of the stones, in forest (silver fir 
(Abies alba Mill.) and European beech (Fagus 
sylvatica L.)) soils in Vallombrosa, Italy. Moreover, 
like as plant canopy and litter cover (already 
discussed above), surface rock fragment protect 
macropores against raindrop erosion (Cerdà 2001; 
Prosdocimi et al. 2016; Rodrigo Comino et al. 
2016b). In addition, the forest soils have higher 
organic matter content as compared to the 
agricultural and grassland soils (Luo et al. 2010; 
Katuwal et al. 2015). Consequently, the forest soils 
more favorable for soil macropore development 
and stabilization (Hu et al. 2016; Prosdocimi et al. 
2016; Zhang and Xu 2016). 

On the contrary, in agricultural soils (Luo et al. 
2010), the low macroporosity could be attributed to 
conventional tillage. Buczko et al. (2006) 
concluded that, the smaller numbers of macropores 
and lower connectitity of the macropore networks 
is found commonly in conventional tillage systems 
as compared with conservational tillage systems 
due to more disturbance of the topsoil. 
Furthermore, the low macroporesity in the 
grassland soils was likely associated with the 
compaction caused by grazing (Luo et al. 2010). 
Additionally, Hagerstown silt loam (agricultural 
and grassland soils, Luo et al. 2010) have higher 
silt content as compared to the forest soils (loam). 

As a consequence, the Hagerstown silt loam was 
more susceptibility to raindrop impart, and not 
favorable for macropore development and 
stabilization (Hanson et al. 2004; Bagarello et al. 
2014; Rodrigo Comino et al. 2016 a, b). 

3.2.2 Macropore length, angle and 
tortuosity 

 Compared with the agricultural soils and the 
grassland soils (Luo et al. 2010; Katuwal et al. 
2015), the forest soils had larger mean macropore 
length (including actual length and vertical length) 
and angle, and lower tortuosity (Table 3). These 
results suggest that macropore networks in the 
forest soils have high vertical continuity, less 
vertically oriented and high linearity. 

 The larger mean macropore length in the forest 
soils could be attributed to the amount of root 
systems was smaller but the total length of root 
systems was longer as compared to the agricultural 
soils and the grassland soils (Luo et al. 2010; 
Katuwal et al. 2015). Furthermore, in the forest soils, 
root channels and root-soil interfaces constituted an 
important proportion of the macropore networks. 
Therefore, the larger angle is mainly related to the 
root morphology. First, Rhododendron decorum Fr. 
is a shallow rooted plant, and the root morphology 
of yclobalanopsis glaucoides Schott. is heartroot 
(Zhou et al. 2001). They had a large number of 
lateral roots. Second, the shallow forest slope soils is 
underlay by solid bedrock, which favorable for root 
lateral growth (Luo 1984). In addition, generally 
speaking, the tortuosity of roots decreased with an 
increase of the diameter of roots. Therefore, the 
tortuosity of macropore network in the forest soils 
was low. Furthermore, more tortuous macropores in 
the agricultural and grassland soils may be due to 
the greater competition for food and space among 
more abundant earthworms in these soils (Luo et al. 
2010). 

4    Conclusions 

The typical characteristics of 3D macropore 
networks in the forest soils as follow: (1) the main 
types of macropores are root channels, inter-
aggregate voids, macropores without knowing 
origin, root-soil interface and stone-soil interface; 
(2) macropore networks tend to be more complex, 
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larger, deeper and longer; (3) the forest soils have 
high macroporosity, total macropore wall area 
density, node density, and large macropore volume, 
hydraulic radius, mean macropore length, angle, 
and low tortuosity; (4) the above results suggest 
that macropore networks in the forest soils have 
high inter-connectivity, vertical continuity, 
linearity and less vertically oriented. 

 However, unfortunately, the top 85 mm soil 
layer were not quantified in this study due to the 
soil structure was very weak and prone to 
disturbance during sampling. Consequently, an 
improved sampling method and a larger numbers 
of small scale soil samples (e.g., 90 mm 
diameter×90 mm length) extracted from the top 
soil layer are required for future 3D macropore 
characteristics studies. Furthermore, the temporal 
variability of macropore networks in the forest soils 
needs further investigation. 
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