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surface and subsurface hydrologic conditions, soil 
strength properties and ecosystems (Kurylyk et al. 
2014a). 

In China, permafrost regions occupy a 
significant portion of the land area, however, the 
permafrost coverage is estimated to have been 
reduced by about 18.6% since the late 1980s 
(Cheng and Jin 2013). Permafrost in China is 
mainly found on the Qinghai-Tibet Plateau (QTP), 
the largest lower latitude permafrost region in the 
world. Permafrost on the QTP is thinner and 
warmer than that in the polar regions of, for 
example, North America and Russia. Recent 
climate warming has been recorded on the QTP 
(Xie et al. 2012), and the trend is greater than the 
global average (Yang et al. 2010). Permafrost is 
sensitive to climate change and environmental 
disturbances because it is the product of 
interactions between the earth-atmosphere system 
(Henry and Smith 2001; Smith and Riseborough 
1996, 2002). On the QTP, the climate warming 
causes increases in ground temperatures, active-
layer thicknesses (ALT), and the initiation of 
thermokarst processes (Ding 1998; Jin et al. 2006; 
Wang 1993). These changes may affect the 
infrastructure stability of the Qinghai-Tibet 
Railway (QTR) and the Qinghai-Tibet Highway 
(QTH). Recent studies indicate that the rate of ALT 
increase along the QTR (7.8 cm yr-1) is higher than 
it in other regions of the QTP (1.33 cm yr-1) (Wu 
and Zhang 2010; Zhao et al. 2010). Concurrently, 
increases in permafrost temperature have 
markedly changed the cold-regions hydrogeology 
on the QTP (Cheng and Jin 2013). Therefore, 
mapping the distribution of permafrost and 
determining potential changes caused by climate 
warming are important for land use planning, 
infrastructure development, and ecological and 
hazard assessments. 

Different permafrost models have been 
developed to map permafrost at various scales in 
arctic and mountain regions. These models may be 
of the equilibrium, empirical-statistical, or process-
based types and have been widely used at regional 
and local scales (Riseborough et al. 2008; Harris  
et al. 2009). Field measurements are difficult to 
obtain in more remote areas on the QTP, so 
permafrost models are useful for examining 
changes under climate warming scenarios. Li and 
Cheng (1996) used analytical methods and 

numerical simulations to examine permafrost 
evolution and ground temperature variations on 
the QTP. Later, Li and Cheng (1999) predicted 
changes to permafrost at different altitudes using a 
model integrated with a geographic information 
system. Luo et al. (2014) applied the Kudryavtsev 
model to simulate the ALT and changes to ground 
temperatures in the source area of the Yellow River. 
These limited studies described permafrost 
conditions at a broad scale, but did not account for 
complex topography and vegetation patterns or 
hydrogeological processes at the surface and within 
the active layer. Therefore, these were large-scale 
approximations in infrastructure risk assessment. 
More research using permafrost models should be 
carried out on the QTP at a finer spatial scale. 

Given the proposed power transmission line, 
expressway, and oil/gas pipeline in the Qinghai-
Tibet Engineering Corridor (QTEC), additional 
knowledge of permafrost distribution and its 
relationships with geomorphology is needed. The 
active layer plays a significant role in the surface 
energy balance, hydrologic cycle, carbon exchange 
between the atmosphere and the land surface, local 
ecosystem, and human infrastructure (Wu and 
Zhang 2010). Therefore, it is necessary to 
determine the active-layer thickness quickly and 
accurately. 

To examine the applicability of different 
models on the QTP, we tested four analytical 
models to simulate the ALT and the ground 
temperatures in Wudaoliang Basin, located in 
central QTP. The objectives of this study were: (1) 
to calculate the mean annual temperature at the 
permafrost surface (Tps) and active layer thickness 
(ALT) at the study sites, (2) to compare these 
results with field measurements, and (3) to 
evaluate the applicability of these models. 

1    Study Area and Data Acquisition 

1.1 Sites description 

Four field measurement sites (1 to 4) were 
situated in Wudaoliang Basin (35.19° E, 93.08° N) 
about 280 km from Golmud (Figure 1). The 
average elevation in the region is about 4616 m. 
The study area is characterized by flat terrain and 
arid soils with continuous permafrost (Fang et al. 
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cables with 23 sensors (± 0.02°C accuracy) were 
installed in each borehole with a PVC pipe for 
sensor housing. The thermistor spacing was 0.05 m 
within the upper 0.3 m, 0.1 m between 0.3 and 0.5 
m, 0.25 m between 0.5 and 3 m, and 0.5 m below 3 
m. At each site, three Onset Soil Moisture Smart 

Sensors with the resolution of 0.0007 
m³/m³ (0.07%), were placed at 0.5 m, 
1.0 m, and 1.5 m depth in August 2010. 
The soil moisture instruments failed 
at Site 2, so reported results are 
limited to Sites 1, 3, and 4. The data 
acquisition system at each site 
consisted of a Campbell Scientific 
CR3000 data logger powered by solar 
panels and batteries. Data collection 
at the four sites began in July 2011 
with measurements recorded every 
four hours. An Onset HOBO weather 
station was installed near Site 3 in 
July 2010. Air temperature was 
measured every 30 minutes at 2 m 
above the ground surface in an 
unventilated radiation shield. 
Precipitation, wind speed and 
direction, solar radiation, and ground 
temperature at 0.1 m below the 
surface were also recorded every 30 
minutes. All data from 2012 to 2014 
are analyzed in this paper.  

1.2 Soil properties 

During the borehole drilling in 
summer 2010, we collected the soil 
samples from each site for property 
analysis. Gravimetric water content (ω) 
was calculated from mass lost after 
drying the soil. Bulk density (ρ) was 
also determined with the cutting-ring 
method. Soil descriptions were taken 
in order to determine soil type and 
distribution profiles. The thermal 
conductivity (K) and heat capacity (C) 
of surface soil were determined from 
Xu et al. (2010). Soil parameters from 
boreholes used in the model 
parameterization are summarized in 
Table 1. Each soil parameter was 
averaged in one soil layer.  

2   Modeling Methods 

In this study, four analytical equations were 
used to calculate ALT and Tps at the field sites. We 

 
Figure 2 Mean annual air temperatures from the Wudaoliang Weather 
Station and the climate station in our study sites (Field climate station). 
Data from the Wudaoliang Weather Station was from 1957 to 2012 (blue 
dots, R2=0.5). Data from the climate station in our study sites was from 
2012 to 2014 (red dots, R2 =0.1). 
 

 
Figure 3 Geomorphic conditions of the four field sites. A (Site 1): alpine 
meadow with rock grid and high vegetation coverage (≥60%). B (Site 2): 
alpine meadow with high vegetation coverage (≥60%). C (Site 3): 
transitional area between alpine meadow and grassland with moderate 
vegetation coverage (45% to 60%). D (Site 4): alpine grassland with low 
vegetation coverage (10% to 30%). Each site covers about 200 m 2. The 
pictures were taken in August 2014. 
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choose the methods based on the 
parameters required, and satisfactory 
performance of the models in other 
recent studies. The symbols used in the 
equations are listed in Table 2. 

2.1 Equations for temperature at 
the permafrost surface 

Smith and Riseborough (1996, 
2002) estimated the mean annual 
temperature at the permafrost surface 
(Tps) with the TTOP model (Eq. 1), 
which combines the thermal offset with 
ground surface freezing and thawing 
indices. This model assumes that the 
relationship between ground surface 
temperature and temperature at the 
permafrost surface is determined 
primarily by conductive heat flow. Tps 
can be regarded as the result of the interaction 
between the air temperature regime, surface offset, 
and the thermal offset. The detailed derivation of 
this model can be found in Smith and Riseborough 
(2002). In this paper, we used the surface 
temperature, rather than the air temperature, as 
the driving variable. 

st f s

f

K DDT K DDF
TTOP

K P
−

=                    (1) 

Kudryavtsev et al. (1977) showed that Tps could 
be calculated using a semi-empirical and analytical 
equation: 

( )
2

20.5 arcsin 1t f s s s
s f t s

s s s
ps

f

K K T T TT K K A
A A A

T
K

π
⎡ ⎤−

+ + + −⎢ ⎥
⎢ ⎥⎣ ⎦=

(2) 
This equation determines the mean annual 

ground temperature by consecutively introducing 
the thermal effects of snow, ground surface 
vegetation, and active-layer soils layer by layer, so 
that temperatures and seasonal amplitudes are 
defined at each level (snow surface, vegetation 
surface, ground and permafrost surfaces) 
(Sazonova and Romanovsky 2003). 

Table 1 Soil profiles, ground surface type and soil thermal properties of four sites (from 0.05 m in depth to the 
permafrost surface) 

Sites Vegetation type Soil type Thickness 
(m) 

Soil water 
content ω* 
 (%) 

Dry 
density ρ 
(kg/m ³) 

Thermal 
conductivity※  
(W/ (m °C)) 

Volumetric heat 
capacity※  
(kJ/ m³ °C) 

Kt Kf Ct Cf 

1 Alpine meadow 
with rock grid 

Fine sand 1.80 16.5 1400 1.31 1.53 1288.5 1158.0
Sand loam 1.00 16.4 1480 0.91 0.96 1447.1 1257.6

2 Alpine meadow 
Fine sand 1.90 14.1 1540 1.37 1.42 1388.1 1247.6
Sand loam 
and gravel 0.60 23.0 1500 1.14 1.31 1217.1 1086.7 

3 Transitional 
zone 

Fine sand 1.70 15.5 1450 1.26 1.49 1323.1 1189.1
Sand loam 
and gravel 0.80 16.5 1570 1.03 1.17 1536.4 1371.8 

4 Desert 
Grassland 

Fine sand 1.70 10.8 1574 1.37 1.68 1377.8 1238.2
Red clay 0.90 15.2 1840 1.16 1.39 1551.2 1421.9

Notes: ※ Values converted from Xu et al. (2010); *Averaged value for one soil layer; Soil water content, volumetric 
heat capacity, density and volumetric heat capacity were averages of each soil layer. 

Table 2 Symbols used in predictive equations 

Symbol Description Units 

DDTs Thawing index for ground surface 
temperature (degree-days) °C·days 

DDFs 
Freezing index for ground surface air 
temperature (degree-days; expressed as a 
positive number) 

°C·days 

P Annual period (365 days) Days 
Kt Thermal conductivity of thawed ground W/ (m °C) 
Kf Thermal conductivity of frozen ground W/ (m °C) 
Ct Volumetric heat capacity of thawed ground kJ/ m³ °C 
Cf Volumetric heat capacity of frozen ground kJ/ m³ °C 

As Amplitude of annual temperature variations at 
soil surface °C 

Ts Mean annual temperatures at the ground 
surface °C 

L Latent heat (334) (Xu et al. 2010) kJ/kg 
ρ Dry density of soil kg/m³ 
ω soil water content by weight - 
Z The maximum thaw depth (ALT) m 
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2.2 Equations for active layer thickness 

2.2.1 Modified Stefan solution 

A number of simplified analytical solutions 
have been proposed to calculate ALT. One of the 
simplest is the Stefan equation. However, the 
standard Stefan equation always overestimates the 
thaw depth because the heat capacity is not 
considered. A modified Stefan equation (Eq. 3a) 
was proposed by several researchers, and Kurylyk 
and Masaki (2015) presented improved Stefan 
equation correction factors that account for the 
influence of soil heat capacity. 

1

5 1

2                                                                       ( )

                                                                                ( )

1- 0.16 0.038

t s

u s
T

T

K DDTZ a
L

C TS b
L
S S

λ
ρω

ρω
λ

=

=

= + ( )2
1

2

6 1 1 5

 0                                      ( )

1 0.147 0.535  ( 0 )  ( )

                                                                         

T i

i i
T T i

s s

f f

t u

T C c

T TS S T C d
T T

K C
K C

λ β β λ

β

= °

⎡ ⎤⎛ ⎞
= + + × < °⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

=       ( )e

(3) 

where λ is a dimensionless correction factor which 
is less than 1 with the form of Eq. 3c or 3d. ST1 is the 
Stefan number with the form of Eq. 3b when the Ts 

is a constant value. Ti is the initial temperature 
during thawing. β is a dimensionless parameter 
that accounts for differences in soil thermal 
properties, which can be assumed to be 1 for most 
soils (Kurylyk and Masaki 2015). More general 
discussion of these equations are found in 
Kurylyk and Masaki (2015) and Kurylyk et al. 
(2014b). 

2.2.2 Kudryavtsev model 

Romanovsky and Osterkamp (1997) 
estimated the ALT in Alaskan using several years 
of field data with the standard Stefan equation 
and the Kudryavtsev equation (Eq. 4), which 
accounted for heat fluxes and phase changes 
(Kudryavtsev et al. 1977). The Kudryavtsev 
equations overestimated the ALT by an average of 
2 cm, less than the 13 cm error for the standard 
Stefan equation. Sazonova and Romanovsky 
(2003) applied these equations to develop the 
model GIPL 1.0. One disadvantage of Eq. 4 is that 
Tps is required as an input. In this paper, we refer 
to Eq. 2 and Eq. 4 as the Kudryavtsev model.  

(2 )
2( )

2 (2 )

2
where,

2( )
     and      

2 2/ 2ln
/ 2

t
z t c c

tt t
s ps

t
z t c c z t

t

z t

t t
s ps

s ps
z c

t z ts t

ps t

K PAC X LX L
CK C PA T

K PAC X LX AC L
C

Z
AC L

K C PA TA T LA X
C AC LA L C

T L C

ρ
π

π ρ ρ
π

ρ

ρ π
ρρ

ρ

+
− +

+ + +
=

+

−−
= =

+⎛ ⎞+
⎜ ⎟⎜ ⎟+⎝ ⎠

- ，

(4) 

The Kudryavtsev model assumes thermal 
equilibrium, which means that temperature 
averages over decades rather than a single year 
should be used as input. However, only 3 years of 
ground temperature and air temperature data are 
available from this study. Figure 2, based on long-
term climate data from the Wudaoliang Weather 
Station, indicates that the 3 years for this study 
were not extremely warm or cold. Therefore, we 
considered that these data were appropriate 
despite the model assumption (Wilhelm et al. 
2015).  

3    Results 

3.1 Field measurements 

Mean annual ground surface temperatures (Ts) 
from a depth of 0.05 m was calculated for each site 
at the 15 boreholes (Figure 4). During the study 
period, Ts values exhibited notable intra-site 

 
Figure 4 Box plots of mean annual ground surface 
temperature at a depth of 0.05 m for each year of the field 
sites. 
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variability. Hence, the temperatures were each 
averaged for all 15 boreholes at each site from 2012 
to 2014 (i.e. 3-year mean value) to eliminate the 
variations. ALT was determined by identifying the 
maximum seasonal penetration of the 0°C 
isotherm from the thermistor cable data. Tps was 
calculated from the sensors closest to the bottom of 
the active layer. Figure 5 presents the measured 
values for each prediction equation during the 
study period. For all sites, Ts ranged from -1.1°C to 
-0.6°C. The mean annual Tps ranged between  
-1.8°C at site 1 and -0.5°C at site 4, with SD 
(standard deviation) values below 0.37°C. At site 4, 
both Ts and Tps were higher than at the other sites. 
The mean annual degree days were ranged from 
1101°C·days to 1235°C·days for thawing periods 
(DDTs) and 1373°C·days to 1559°C·days for freezing 
periods (DDFs). There were little differences of 
DDTs among the sites. The ALT for all sites ranged 
from 1.70 m to 2.54 m, with SD values lower than 
0.31 m. The mean temperature at the ground 
surface was 6.2°C to 6.8°C during the thawing 
period for all sites. Average annual surface 
temperature amplitudes (As) for the four sites was 
about 10.6°C. 

3.2 Permafrost surface temperature 
modeling  

Table 3 summarizes the statistical analysis of 
simulated Tps from Eq. 1 and Eq. 2, and the 
measured values at the four sites. Eq. 1 is a simple 
algorithm that requires the mean annual degree 
days (DDTs, DDFs) and soil thermal properties. 
Furthermore, it seems that Eq. 1 performed 
satisfactorily simulations at all sites with the mean 
relative error below 24%. The Tps values from Eq. 1 
were always higher than the measured values, with 
the differences ranging from 0.02°C to 0.43°C. Eq. 
2 accounted for the seasonal amplitudes, and 
produced lower simulated Tps than the measured 
values, with the differences between 0.15°C and 
0.25°C. The mean relative error of Eq. 2 was 
estimated below 30% for all sites. 

3.3 Active layer thickness modeling 

The ALTs at the four sites were calculated 
using the measured parameters for Eq. 3 and Eq. 4. 
Comparisons of the calculated and measured ALTs 
are shown in Figure 6 and a statistical analysis 

 

Figure 5 Measured mean data for the prediction equations. (a) presented the mean annual degree days at the four 
sites. (b) presented the mean annual ground surface temperature (Ts) and the mean annual temperature at the 
permafrost surface at the four sites. (c) showed the mean ALTs of all sites. 
 

Table 3 Statistical analysis of calculated and measured Tps(°C). ∆T (°C) is the mean difference between 
measured and calculated Tps of each site. SD is the standard deviation of the calculated Tps 

Site 
TTOP model Kudryavtsev model 

Mean value SD Δ T Relative error (%) Mean value SD Δ T Relative error (%) 
1 -1.54 0.52 0.26 14.2 -2.05 0.81 0.25 13.9 
2 -1.06 0.51 0.14 11.4 -1.52 0.43 0.32 26.3 
3 -1.18 0.42 0.02 2.1 -1.35 0.42 0.15 12.5 
4 -0.45 0.12 0.05 10.1 -0.65 0.21 0.15 29.7 
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summary is shown in Table 4. Eq. 3 
calculated the ALT more satisfactory 
than Eq. 4 did. 

During the study period, the ALT 
calculated with Eq. 3 was 1.71 to 1.85 
m for site 1, 1.91 m to 2.09 m for site 2, 
2.13 m to 2.34 m for site 3 and 2.62 m 
to 2.84 m for site 4, respectively. The 
mean relative error for all sites from 
the modified Stefan model was less 
than 7%. Generally, the relative error 
of the standard Stefan model is 10% to 
30% on the QTP (Xu et al. 2010). In 
contrast, Eq. 4 predicated the ALT was 
2.14 m to 2.20 m at site 1, 2.24 m to 
2.40 m at site 2, 2.42 m to 2.47 m at 
site 3 and 2.49 m to 2.59 m at site 4, 
respectively. Eq. 4 always 
overestimated the ALT by 0.13 m to 
0.47 m for sites 1 to 3. At site 4, it 
underestimated the ALT by a mean 
value of 0.07 m. The mean relative 
error of Eq. 4 was below 30% for all 
sites. 

4    Discussion 

In most contemporary studies, 
ground temperatures are obtained and 
analyzed at a single point for each studied site (e.g. 
Riseborough et al. 2008). At a regional scale, 
macroscale proxy data may lead to overly 
generalized results, but at a local scale, models 
derived from point measurements may be difficult 
to apply at a regional scale (Janke et al. 2012). We 
measured ground temperatures with fine-scale 
grids at each site, and recorded notable within-site 
variations in ground temperatures (Figure 4). 
Intra-site variability leads to model uncertainty 
when conditions are applied at a larger scale. 
Models employed in this study combine both 
thermophysical and geographical capabilities and 
represent controlling factors of ALT and Tps with 
limited number of site-specific parameters. All four 
study sites in Wudaoliang Basin are within an area 
of 800 m2, and air temperature and topography are 
similar for all sites. Therefore, ground surface 
conditions and soil moisture conditions, which 
influence the soil thermal properties, seem to be 

primary factors that control Tps and ALT.  

4.1 Ground surface condition variables 

In this study, averaged values from the 
boreholes at each sites were used as inputs to the 
models, however, the inter-annual spatial 
variability of the ground surface temperatures 
should not be ignored. Figure 4 indicates that the 
observed range of variability is up to 2.0°C at site 1, 
2.6°C at site 2, 2.9°C at site 3 and 3.2°C at site 4. 
Similar spatial variability in ground surface 
temperature has been recorded recently in the Alps 
and Norway (Gisnås et al. 2014; Gubler et al. 2011; 
Pogliotti et al. 2015; Rödder and Kneisel 2012). The 
thermal effect of snow cover was the main control 
on variability in these other permafrost regions. 
For our study sites, the variability may be caused 
by heterogeneous ground surface conditions. 
Vegetation influenced the near-surface ground 

 
Figure 6 Comparisons of the ALTs between the measured and 
modeled values during the period of 2013 to 2014 at each site. 
 
Table 4 Statistical analysis of calculated and measured ALT (m). ∆ALT 
(m) is the average difference between calculated and measured ALT. 
The values were all averaged from 2012 to 2014 

Site
Mean 
measured 
ALT 

Modified Stefan solution Kudryavtsev model 

Mean 
value ΔALT

Mean 
relative 
error (%)

Mean 
value ΔALT 

Mean 
relative 
error (%)

1 1.70 1.77 0.07 3.9 2.17 0.47 27.4 
2 2.08 1.98 0.10 4.9 2.32 0.23 11.2 
3 2.30 2.21 0.09 4.1 2.44 0.13 5.8 
4 2.61 2.78 0.16 6.3 2.54 0.07 2.8 
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temperatures by reducing solar 
radiation. At the same time, the 
vegetation may reduce evaporation 
and help maintain soil moisture. 
The rock grids may lower the wind 
speeds, and increase the albedo of 
the ground surface and heat 
conduction. Sand has a low specific 
heat capacity and high permeability, 
which promotes high heat 
absorption and release. Jin et al. 
(2008) and Lv et al. (2008) have 
reported on the combined 
influences of these local 
environmental variables on ground 
temperature on the QTP. Ground 
surface temperature variability 
could influence the near-surface 
ground temperatures and increase 
the uncertainty of the models. 
Figures 7 and 8 present the relation 
between measured Tps and 
calculated Tps based on Eq. 1 and Eq. 
2, taking into account variability at 
sites. At site 3 and 4, Tps from Eq. 1 
and measured values corresponded 
well (R2 > 0.9), but at site 1 and 2 
there was more scatter (R2 < 0.3). 
The difference between the Tps 

calculated by the case with the 
averaged value (Sect. 3.2) and with 
the variability observed at the sites 
is up to 1°C. Riseborough (2007) 
studied the effect of transient 
conditions on the TTOP model and 
found that inter-annual variability 
does not influence the model results 
if long-term averages are used. 
Hence, averages of multi-year and 
repeated measurements can reduce 
the error of Eq. 1. Sazonova and 
Romanovsky (2003) compared the 
Eq. 2 results with measured 
temperatures from 32 sites in 
Siberia, and reported an accuracy of 
0.2°C to 0.4°C and a good 
correlation between the Tps values 
over a long time scale. This is 
similar to the results in our study 
(0.15°C to 0.25°C). Eq. 2 seems 

 
Figure 7 Relationship of the measured Tps and calculated values from Eq. 
1 of each borehole at the four sites. 

 
Figure 8 Relationship of the measured Tps and calculated values from Eq. 
2 in each borehole at the four sites. 
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insensitive to the variability of the ground surface 
temperature for all sites except at site 1 (R2 =0.44). 
Accounting for the temperature amplitudes (As) 
may be responsible for this because there was little 
As variability in all sites.  

4.2 Soil thermal properties 

The soil thermal properties mainly depend on 
the substrate’s material composition (Kurylyk et al. 
2015). Soil was divided into two major layers with 
distinct thermal properties at the study sites (Table 
1). The near-surface soil type was similar among all 
sites. According to the measurements, soil 
moisture affected the thermal properties of the 
frozen and thawed soil and hydrological process. 
Heterogeneous soil thermal properties may 
therefore affect the model results. 

Soil moisture content was measured over the 
summers during the study period at three depths in 
the soil profile. No data are reported here from 
winter because the moisture contents were outside 
of the sensor’s measurement accuracy range. The 
soil was very dry close to the surface, especially at 
sites 3 and 4, where the volumetric water content 
was less than 0.1. Lin et al. (2015) reported a 
reversed thermal offset due to the arid conditions. 
Arid conditions may change the relation between 
thawed and frozen soil thermal conductivities. 
Evaporation and moisture percolation were also 
unrestricted in dry soils. Advective and convective 
heat transport plays an important role in regions of 
significant groundwater flow or vapor migration 
(Kurylyk et al. 2014). Data from the Wudaoliang 
Weather Station over the past 10 years indicates 
that precipitation is mainly concentrated between 
May and September. The annual precipitation was 
about 370 mm, however, the annual evaporation 
reached about 1421 mm similar to values of 1300 
mm to 1500 mm reported by Wu and Zhang 
(2008). We hypothesized that the advective heat 
transport by rainfall and conductive heat transport 
increased the near surface ground temperature in 
summer. Future work will test this hypothesis by 
employing the algorithms (considering heat 
advection) which was studied in Kurylyk et al. 
(2014b). 

4.3 Some other factors influencing the 
modeling 

The four spatial models used to determine 

ground temperature and ALT are one- dimensional 
models, so do not consider the lateral heat flow 
between adjacent points (Riseborough et al. 2008; 
Harris et al. 2009). Lateral heat flow may result 
from the spatial variability in soil properties and 
the ground water flow from the rivers or the lakes. 
Additional factors such as the unfrozen water 
content may have also influenced the modeling 
results. Therefore, monitoring of the groundwater 
conditions and heat transport is necessary so that 
the impact of non-conductive processes can be 
quantified and evaluated, if possible, by a 
sophisticated hydrological model accounting for 
water flow and heat transport.  

Further research on intra-site variability in 
additional areas is necessary to gain a sound 
understanding of local factors controlling the 
thermal regime, and to assess the uncertainties of 
model application at the regional scale. Advanced 
measurement methods, such as geophysical 
investigations, multicriteria GIS, and remote 
sensing may help improve approximations of site 
parameters in the temporal and spatial domains. 

5    Summary and Conclusions 

We obtained detailed gridded ground 
temperatures and active-layer thicknesses 
measurements at four sites with different surface 
conditions in Wudaoliang Basin on the QTP. The 
measured values were compared with those 
produced by permafrost models over a period of 3 
years. We concluded the following: 

(1) There were notable differences in observed 
ground temperatures and active-layer thicknesses 
both within and among the sites. Ground surface 
condition and soil water content variations were 
mainly responsible for these differences. Lateral 
heat flow may also account for some of the 
variation. 

(2) The TTOP model (Eq. 1) produced more 
accurate annual temperatures at the surface of 
permafrost than the Kudryavtsev model (Eq. 2), 
when averaged values were used. The relative error 
was below 15% for the TTOP model and 30% for 
the Kudryavtsev model in all sites. 

(3) A modified Stefan solution (Eq. 3) 
produced better satisfactory accuracies than the 
Kudryavtsev model (Eq. 4) when estimating active-
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layer thicknesses. The mean relative error of the 
modified Stefan solution was <7% for all sites. The 
Kudryavtsev model had a mean relative error of 2.8% 
to 27.4% for different ground surface conditions. 
Additionally, the Kudryavtsev model requires more 
input parameters than the Stefan solution does. 
The accuracy and practicability are limited. The 
modified Stefan solution may be applied to 
climate-changes studies in the future.  

(4) Additional field investigations over longer 
periods focused on the interrelationships between 
permafrost thaw and hydrologic change are 
necessary. These efforts should employ advanced 
measurement methods to obtain adequate and 
extensive local parameters that will help improve 
model accuracy and benefit the application of  
 

hydrological models. 
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