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Introduction 

With global climate change, glacier retreats 
have occurred widely around the world and could 
become more rapid (Oerlemans 2005; Zemp et al. 
2006). New bare lands have emerged because of 
glacial retreats and a successional process towards 
a zonal ecosystem has begun. Glacier forefield 
chronosequences can reveal an ecosystem 
developmental process and offer an excellent 
opportunity to study the successional development 
of a terrestrial process by substituting space for 
time. Most studies of environmental succession 
based on this system have focused on plant and 
animal communities and soil development (He and 
Tang 2008; Hodkinson et al. 2003; Kaufmann 
2001). In contrast, we know very little about 
microbial patterns across a glacier forefield 
chronosequence. 

In light of the key roles of microorganisms in 
pedogenesis, biogeochemical cycling and plant 
colonization (Brunner et al. 2011; Schutte et al. 
2010), studies of microbial succession are 
becoming more important (Schmidt et al. 2014; 
Chen et al. 2015). Genetic cloning and sequence 
analysis (Jumpponen 2003; Zumsteg et al. 2013) 
and analyses of phospholipid fatty acids and 
enzymes (Tscherko et al. 2005) have often been 
used in studies of microbial succession on glacier 
forefields. Though some progress has been made 
concerning microbial diversity and succession 
along the glacier forefield chronosequence, 
researchers have often reported different 
observations and reached inconsistent conclusions. 
On the basis of an Arctic glacier foreland, Schutte 
et al. (2010) indicated that bacterial richness 
increased significantly with site age. However, 
Jangid et al. (2013) tested bacterial community 
patterns along a long chronosequence of a 
retreating glacier and concluded that bacterial 
richness and diversity declined significantly with 
site age. Meanwhile, Wu et al. (2012) found 
opposite results in a foreland of an Asia glacier: not 
only did bacterial richness increase with 
successional time, so did bacterial diversity.  

In addition, Sigler and Zeyer (2002) analyzed 
genetic fingerprinting along the forefields of two 
receding glaciers and revealed that bacterial 
diversity and succession differed significantly 
between the two chronosequences, even when the 

two glaciers are located in the same region. As for 
fungal succession on a glacier forefield, only a few 
studies have been performed, which did not draw 
general conclusions. Brown and Jumpponen (2014) 
showed that fungal richness and diversity were 
static across the Lyman Glacier chronosequence. 
Their data highlight different drivers for fungal and 
bacterial succession trajectories. In contrast, 
Blaalid (2012) found that in Norway, fungal 
richness increased significantly along the glacier 
forefield chronosequence. Their results suggested 
that fungal richness patterns were similar to those 
of bacteria. These contradictory results indicate 
that fundamental knowledge about microbial 
succession in glacier forefields is still lacking, and 
more studies are needed to understand the 
underlying mechanisms.  

The Hailuogou glacier is located on Gongga 
Mountain in southwestern China. It is a typical 
temperate glacier and is more sensitive to climate 
changes than polar or continental glaciers (Liu et al. 
2010). To our knowledge, very few studies have 
provided information about microbial changes in 
such glaciers. The Gongga Mountain area is one of 
the few remaining refuges for the Tertiary Geoflora 
(Yin 1987), and the soils can be expected to harbor 
relatively unique microbial communities. In this 
study, we analyzed microbial community changes 
along a primary successional chronosequence in 
front of the Hailuogou glacier using 454 
sequencing. Our objectives were to examine the 
following information: (1) what are the dominating 
microorganisms in the temperate glacier forefield? 
and (2) how do microbial communities change with 
increasing terrain age? This study is expected to 
provide additional information about microbial 
succession on the glacier forefield and to produce 
important clues for understanding the driving 
factors of successional dynamics in terrestrial 
ecosystems. 

1    Materials and Methods 

1.1 Study site 

We chose the Hailuogou glacier retreat area 
(29°34'N, 102°00'E, 2951–2886 m) located on 
Gongga Mountain (summit: 7556 m) (Figure 1). 
Gongga Mountain is located in the transition zone 
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between the Tibetan Plateau and Sichuan Basin. 
On the east slope of Gongga Mountain, Hailuogou 
glacier is the largest glacier, with an area of 25 km2. 
The regional climate is dominated by the warm-
humid subtropical monsoon. The mean annual 
precipitation is 1949 mm, the mean annual 
temperature is 4°C, and the mean annual relative 
humidity is 90%. 

The Hailuogou glacier retreat area has 
extended approximately 2000 m since the 1820s 
and has developed a chronosequence ranging from 
deglaciated moraines to forest soil (Zhou et al. 
2013). On this chronosequence, quartzite, 
granodiorite, biotite schist, chlorite schist, slate 
and phyllite constitute the parent soil materials 
(Xu 1989). With increasing soil age, different 
successional stages of vegetation have gradually 
appeared. The first stage community is mainly 
composed of Astragalusadsurgens Pall., 

Anaphalissp., Epilobiumhirsutum Linn., and other 
leguminous plants (site 1, young site). The second 
stage is dominated by Hippophaerhamnoides L., 
Salix rehderiana Schneid, Populuspurdomii 
Rehder (site 2, young site). Subsequently, 
Populuspurdomii Rehder becomes the dominant 
species through inter-species competition; together 
with mixed Rhododendron — H. rhamnoides— 
Salix dolia Schneid. It forms the community of the 
third stage (site 3, mid-aged site). In the next stage, 
Betulautilis, Piceabrachytula, and Abiesfabri begin 
to appear in large numbers (site 4, mid-aged site); 
The subdominant conifers grow up into the canopy 
layer and Populuspurdomii gradually disappears 
(site 5, old site); Finally, the ecosystem developed 
into a community mainly composed of 
Piceabrachytula and Abiesfabri (site 6, old site). 
Some properties of the sites are shown in Table 1. 

 
Figure 1 Location of the Hailuogou chronosequence and sampling sites. 
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1.2 Site selection and soil sampling 

Soil samples were collected in September 2012 
at the six sites along the chronosequence. For each 
site, three 10 m × 10 m plots were set up in the core 
zone of each successional stage. Five sampling 
points were randomly selected (with> 2 m intervals 
between the sampling points) along one diagonal 
line of each plot. Soil samples (0 – 10 cm below the 
litter layer) were collected using a sterile blade at 
each sampling point. Soil samples from all 
sampling points at each site were combined as the 
representative soil sample of each site. These 
representative soil samples were analyzed for soil 
physicochemical characteristics and genetic 
material. 

1.3 PCR amplification and pyrosequencing 

Soil genetic material was extracted from 0.5 g 
of fresh soil using the Soil DNA/RNA Kit (OMEGA, 
Bio-Tek, USA) following the manufacturer’s 
instructions. The extracted genetic material was 
dissolved in sterilized double-distilled water for 
sequencing (Yang et al. 2007). The genetic material 
concentration was determined using a 
spectrophotometer (NanoDrop® ND-100, USA). 

Two primer sets were selected to amplify the 
bacterial and fungal gene fragments for 454 

pyrosequencing. The fungal 18sRNA genes were 
amplified using the primers V4_euk_R2 (5′-
ACGGTATCT(AG)ATC(AG)TCTTCG-3′) (Brate et al. 
2010) and 3DNF (5′- xxxxGGCAA 
GTCTGGTGCCAG-3′) (Cavalier-Smith et al. 2009). 
The bacterial primer pair 27F (5′-
AGAGTTTGATCCTGGCTCAG-3′) and 533R (5′-
xxxxTTACCGCGGCTGCTGGCAC-3′) (Lane 1991; 
Weisburg et al. 1991) were used to amplify the 
16sRNA genes. In primers 3DNF and 533R, xxxx 
was used as a barcode that allowed sample 
identification during pyrosequencing. 

All PCR reactions were performed in 20 μl 
mixtures containing 1μl of each primer (8 pmol μl-1), 
0.5 μl of template DNA (45 ng μl-1), 100 mM KCl, 
15 mM Tri-HCl, 3 mM MgCl2 and 400 μM dNTP, 
and 0.5 μl of Taq DNA polymerase (2.5 U ul-1). The 
PCR reactions were carried out using the following 
sequences: 95°C for 2 min, 25 cycles at 95°C for 30 
s denaturation, 55°C for 30 s annealing, 72°C for 
30 s extension, followed by 72°C for 5 min. The 
presence of PCR products was examined by DGGE 
(denaturing gradient gel electrophoresis, 2μl PCR 
products, 2% agarose gel). The PCR products of all 
samples were purified using a PCR purification kit 
(Axygen Bio, USA). The sequencing tasks were 
completed by Majorbio Biotech Co., Ltd (Shanghai, 
China) using high-throughput 454 pyrosequencing. 

MOTHUR software was used to analyze the 
sequences (Schloss et al. 2009). Quality sequence 

Table 1 Site characteristics

Site Young sites Mid-aged sites Old sites rs p 1 2 3 4 5 6
Stand age (year) 14 32 42 54 82 122   
Elevation (m) 2944 2934 2924 2911 2883 2856   
Mean ST (°C) 6.2 6.1 5.8 5.4 4.7 4.5 -0.899 *
Mean SM (%) 28.4 35 31.3 35.4 36.7 39.8 0.943 **
pH 6.7 5.8 5.4 5.2 4.7 4.5 -1 ***
BD (g cm-3) 1.84 1.31 1.28 1.06 0.72 0.60 -1 ***
SOM (g kg-1) 7.7 66.5 227.1 324.6 419.9 458.2 1 ***
Total N (g kg-1) 0.04 0.30 1.12 2.00 3.40 3.15 0.943 **
Total P (mg kg-1) 1244.8 1275.6 1169.8 1068.7 776.2 893.8 -0.886 *
Total K (mg kg-1) 21.1 18.2 13.9 12.9 5.3 6.3 -0.943 **
Total Na (mg kg-1) 18.7 14.2 10.1 9.3 3.4 3.4 -1 ***
Total Ca (mg kg-1) 43.5 37.9 30.8 27.8 17.4 15.2 -1 ***
Total Mg (mg kg-1) 19.9 18.6 14.5 11.0 4.0 4.3 -0.943 **
Total Fe (mg kg-1) 40.3 38.0 31.6 22.6 10.6 11.6 -.943 **
Total Al (mg kg-1) 68.1 58.4 46.0 39.1 16.6 18.8 -0.943 **

Notes: ST= Soil Temperature; SM = Soil Moisture; BD = Bulk Density; SOM = Soil Organic Matter. rs denoted 
Spearman rank correlation coefficient between stand age and sites characteristics. *denoted significance at the p < 
0.02 probability level; **denoted significance at the p< 0.005 probability level; ***denoted significance at the p< 
0.0001 probability level. 
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reads were selected by removing the sequences 
with lengths < 200 bp, homopolymers > 8 nt, > 1 
difference with the barcode, or > 2 differences with 
the primer region. The commands “screen.seqs,” 
“filter.seqs” and “unique.seqs” were used to further 
trim the sequences and eliminate the redundant 
reads. Chimeras were removed using the 
“chimera.slayer” command. The “dist.seqs” 
command was performed to cluster unique 
sequences into operational taxonomic units (OTUs) 
at a similarity of 97%, and rarefaction curves were 
produced at this level. The MOTHUR “unique.seqs” 
command was used for simplifying the sequence 
reads to generate a unique set of sequence reads. 
The “align.seqs” command was then run to align 
the unique sequences and compare them with the 
SILVA comprehensive rRNA database 
(http://www.arb-silva.de/). Moreover, the 
representative sequence from each OTU was 
analyzed by SILVA Incremental Aligner (SINA) 
(http://www.arb-silva.de/aligner/) against SILVA 
comprehensive rRNA database (http://www.arb-
silva.de/), and taxonomy was assigned to OTU with 
the minimum sequence similarity (99% to species, 
95% to genus, 90% to class/order/family, and 80% 
to domain/phylum) (Pruesse et al. 2007; Wei et al. 
2015). 

1.4 Data analysis 

All OTUs were obtained using cluster analyses 
with a 97% sequence similarity. The Shannon 
diversity index (Hshannon) was calculated as follows: 
Hshannon = −∑ , and evenness was 
calculated using evenness = Hshannon/ln(S), where, S 
is the total number of observed OTUs, = /  (ni 
is the number of sequences in OTU i and N is the 
total number of sequences in the community).  

2    Results 

2.1 Sequence data 

The number of sequence reads varied among 
the sites. The number of fungal sequences showed 
greater variation than the bacterial sequences 
across the entire chronosequence (the coefficients 

of variation were 0.11 for bacteria, 0.38 for fungi). 
After sequence clean-up, the average length was 
495 base pairs (bp) for the bacteria and 450 bp for 
the fungi. The unclassified sequences at the phylum 
level were a relatively small proportion (5.7% of the 
bacterial reads, 2.3% of the fungal reads). After 
clustering at 97% sequence similarity, a total of 
16,710 bacterial and 564 fungal OTUs were 
recovered. 

2.2 Overall characteristics of microbial 
communities 

OTUs were assigned to twenty-four bacterial 
phyla by pyrosequencing analysis. Most of OTUs 
were assigned to the Proteobacteria and 
Acidobacteria; 28,347 sequences (43%) and 5764 
OTUs (34%) were assigned to Proteobacteria, and 
10,933 sequences (16%) and 1919 OTUs were 
assigned to Acidobacteria (Figure 2). Moreover, 
some OTUs with abundant sequences were aligned 
with several taxa: 1832 OTUs (11%) with 6138 
sequences (9.2%) were assigned to Bacteroidetes, 
1249 OTUs (7.5%) with 5105 sequences (7.7%) to 
Actinobacteria, and 1659 OTUs (9.9%) with 4025 
sequences (6.0%) to Planctomycetes. Sequences 
assigned to Verrucomicrobia and Chloroflexi were 
also abundant (Figure 2). We detected fewer 
sequences associated with the other bacterial phyla.  

For example, the sequences related to 

Figure 2 Taxonomic proportions of bacteria in the 
Hailuogou glacier retreat area. 
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Gemmatimonadetes, Nitrospirae and 
Cyanobacteria all accounted for less than 2% of the 
bacterial sequences. It is noteworthy that we found 
a large number of OTUs related to photosynthetic 
bacteria. For example, 639 OTUs were assigned to 
the photosynthetic Chloroflexi with 2015 sequences 
(3%), 145 OTUs to the Cyanobacteria with 517 
sequences (0.8%) and 67 OTUs to the Chlorobi 
with 219 sequences (0.3%). Of the 35 classified 
classes, sequences related to the Acidobacteria 
(10154 sequences, 15%) were most abundant, and 
OTUs with 27572 sequences (41%) were assigned to 
4 classes: Alphaproteobacteria, Betaproteobacteria, 
Gammaproteobacteria and Deltaproteobacteria. 
Sequences related to Sphingobacteria (3919 
sequences, 5.9%), Planctomycetacia (2940 
sequences, 4.4%) and Actinobacteria (1936 
sequences, 2.9%) were also abundant. OTUs were 
assigned to 62 bacterial orders. Those assigned to 
Burkholderiales (6063 sequences, 9.1%), 
Sphingobacteriales (3919 sequences, 5.9%), 
Rhizobiales (3554 sequences, 5.3%) and 
Planctomycetales (2940 sequences, 4.4 %) 
comprised the major bacterial groups. Of 6995 
OTUs assigned to 126 families, those related to 
Comamonadaceae (3221 sequences, 4.8%), 
Planctomycetaceae (2940 sequences, 4.4%), 
Acidobacteriaceae (2433 sequences, 3.7%) and 
Sinobacteraceae (2160 sequences, 3.2%) were most 
abundant.  

Many of the detected sequences may come 
from novel taxa, as 33,922 sequences could not be 
classified to family. More sequences assigned to 
some bacteria were found on the older terrain, but 
fewer (e.g., Isosphaera) or no (e.g., 
Labrysmiyagiensis) sequences were recorded on 
the younger terrain. Conversely, sequences 
associated with other bacteria (e.g., Arenimonas 
oryziterrae, Pseudoxanthomonas ginsengisoli and 
Pedobacter cryoconitis) were abundant on the 
younger sites, but scarce on the older sites. 

Most of the OTUs in the study sites were 
assigned to 10 fungal phyla or subphyla. The fungal 
OTUs were strongly dominated by Ascomycota 
(387 OTUs and 69%, 7672 sequences and 85%), 
Basidiomycota (68 OTUs and 12%, 723 sequences 
and 8%) (Figure 3). OTUs assigned to other phyla 
were present but rare: 27 OTUs in the 
Chytridiomycota, 6 in the Neocallimastigomycota 
and 13 in the Glomeromycota; their sequence reads 

were 163 (1.8%), 54 (0.6%) and 47 (0.5%), 
respectively. We also encountered some fungal 
subphyla, and 19 OTUs and 177 sequences (2%) 
were matched to the Mucoromycotina. At each 
taxonomic level, we encountered a large number of 
sequences that remained unclassified. Fifteen 
fungal classes were matched, of which the following 
were most abundant: 712 sequences (7.9%) 
matched with Agaricomycetes, 679 (7.5%) with 
Pezizomycetes, 567 (6.3%) with Sordariomycetesand 
507 (5.6%) with Leotiomycetes. In addition, we 
detected OTUs related to 42 fungal orders, of which 
679 sequences (7.5 %) matching with Pezizales, 431 
sequences (4.8%) with Hypocreales and 287 
sequences (3.2%) with Helotiales were the major 
sequences. Of OTUs related to the 57 fungal 
families, those related to Pyronemataceae (234 
sequences, 2.6%), Sarcosomataceae (199 sequences, 
2.2%), Tuberaceae (158 sequences, 1.7%) and 
Cantharellaceae (119 sequences, 1.3%) were most 
abundant.  

Many sequences could not be assigned to 
higher taxonomic levels (e.g., 318 OTUs were not 
assigned to the class level) and may have come 
from unknown fungi. Across the chronosequence, 
large numbers of sequences associated with 
Craterellus tubaeformis (family Cantharellaceae) 
were found on the older sites (site 5 and 6), but 
fewer were found on the younger sites (site 1 and 2). 
Moreover, no sequences associated with the 

Figure 3 Taxonomic proportions of fungi in the 
Hailuogou glacier retreat area. 
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Cantharellaceae were detected from the young sites. 
Similar patterns were found for Chytriomyces, 
Mortierella_verticillata and Leotia_lubrica. 
Mortierella_alpina and Bionectria_ochroleuca 
were widespread on the young terrain but were 
scarce on the older sites. 

2.3 Microbial communities along the 
primary successional chronosequence 

At each individual site, the bacterial 
communities were dominated by sequence reads 
related to Proteobacteria, Acidobacteria, 
Bacteroidetes, Actinobacteria, Planctomycetes, 
Verrucomicrobia and Chloroflexi, and the 
percentages of these phyla varied between 84% and 
92% of the sequence reads (Figure 2). All sites 
showed little difference in the percentage of 
Proteobacteria (from 39%-42%) except for site 2. 
The percentage of Acidobacteria was smaller in the 
young sites than in the mid-aged and old sites. In 
contrast, the percentage of Bacteroidetes was 
greater in the young sites than in the mid-aged and 
old sites. The percentages of Chloroflexi and 
Planctomycetes were greatest and that of 
Verrucomicrobia was smallest in the mid-aged sites. 
Along the chronosequence, the percentage of OTUs 
related to Proteobacteria ranged from 34% to 42% 
in the individual sites (Figure 2). The percentage of 
OTUs related to Acidobacteria and Planctomycetes 
showed a tendency to increase with soil age. 
However, a decreasing tendency was obvious with 
soil age for the percentage of OTUs related to 
Bacteroidetes. In addition, the percentage of OTUs 
related to Verrucomicrobia was on the low side in 
mid-aged sites in contrast to the young and mid-
aged sites. 

At each site, Ascomycota accounted for a very 
large proportion of the fungal sequence reads 
(from 75% to 91%), and the percentage decreased 
slightly with soil age (Figure 3). In the fungal 
sequences, the percentage of sequences assigned to 
Basidiomycota tended to be low in mid-aged sites 
compared with that in the young and mid-aged 
sites. For the Chytridiomycota, the percentage of 
sequence reads was 0.1% to 5% and increased 
markedly from site 1 to site 5 (Figure 3). In 
addition, the Mucoromycotina at all sites were 
more than 1.5% (the highest was 4%) except for site 
2 (0.8%). 

Although the OTUs assigned to Ascomycota 
also accounted for a very large proportion along the 
chronosequence, they showed a decreasing 
tendency (from 81% to 64%) (Figure 3). In contrast, 
the OTUs related to Basidiomycota increased 
markedly along the chronosequence (from 4% to 
16%). Overall, the OTUs related to 
Mucoromycotina increased along the 
chronosequence (from 2% to 5%). 

The rarefaction curves (Figure 4) showed that 
the great majority of the bacterial and fungal OTUs 
were captured by pyrosequencing, but the bacterial 
curves did not reach complete saturation, 
suggesting that a greater pyrosequencing effort was 
needed. Diversity estimators of the bacterial 
communities reached their highest values on the 
mid-age sites and to show relatively low value on 
the young and old sites (Figure 5). A similar 
pattern was also observed for the fungal 
communities. In addition, the pattern was more 
pronounced in the fungal communities compared 
with the bacterial communities.  

Along the chronosequence, the richness of 
fungal OTUs tended to decrease with site age (rs = 

Figure 4 Rarefaction analysis of bacterial and fungal 
pyrosequencing. 
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-0.67, p = 0.078). In contrast, bacterial OTU 
richness did not respond linearly to site age. A 
tendency to increase or decrease with site age was 
found for 0.8% of the bacterial OTUs at a very 
significant level (p < 0.01), for 6.1% of the bacterial 
OTUs at a significant level (p < 0.05) and for 40% 
of the bacterial OTUs at a marginally significant 
level (p < 0.1). For individual fungal OTUs, an 
obvious variation tendency was seen with site age 
for 1.4% of fungal OTUs at a very significant level 
(p < 0.01), for 7.4% of the fungal OTUs at a 
significant level (p < 0.05) and for 37% of the 
fungal OTUs at a marginally significant level (p< 
0.1). 

3    Discussion 

Along a deglaciated chronosequence, we 
employed pyrosequencing to reveal the bacterial 
and fungal communities from an early primary 
successional system that has continued to 
deglaciate for a century. Previous studies have 
reported that the relative abundance of 
Proteobacteria sequences is 30%-50% of the soil 

bacterial community (Zumsteg et al. 2012; 
Knelman et al. 2012; Miyashita et al. 2013; Shen  
et al. 2013; Brown and Jumpponen 2014). This is 
quite consistent with our results. It may suggest 
that the relative abundance of Proteobacteria has 
changed little between the soils during primary 
succession and the zonal soils. In contrast, the 
relative abundance of Bacteroidetes appears to 
change readily. In some soils during primary 
succession, the relative abundance of Bacteroidetes 
was 6% to 13% (Zumsteg et al. 2012; Knelman et al. 
2012), very similar to our observations. However, 
in the zonal soils of the temperate forest, the 
relative abundance of Bacteroidetes is very low, 
and its average value is approximately 2.4%-3.5% 
(Shen et al. 2013; Miyashita et al. 2013). This likely 
implies that Bacteroidetes are a special type of 
bacteria for the early stage of soil development. 

For the fungal community, this and other 
studies have shown that Ascomycota are the major 
fungi in soils during primary succession (Cutler et 
al. 2014; Brown and Jumpponen 2014). In these 
studies, the relative abundance of Ascomycota 
sequences was very high (65%-85%) compared 
with less than 50% in other soils (Blaalid et al. 2014; 
Shen et al. 2014; Liu et al. 2015). Cutler (2014) 
found that the relative abundance of 
Mucoromycotina were higher in soils on a volcanic 
primary succession gradient (≈ 2.6%) compared 
with other soils (≈ 0.1%) on the Arctic archipelago 
of Svalbard (Blaalid et al. 2014). In other studies of 
fungal sequencing in zonal soils, the relative 
abundance of Mucoromycotina may have been too 
small to report (Rincon et al. 2015; Shen et al. 2014; 
Liu et al. 2015). Therefore, Mucoromycotina may 
be important early colonizing taxa. 

The successional system showed positive 
successional species (Yang et al. 2014; Zhou et al. 
2013), that could be considered as part of the 
process of building a zonal and mature ecosystem. 
The accumulation of autochthonic organics and the 
arrival of organisms (or debris) from allochthonic 
sources are probably the drivers establishing the 
early ecosystem establishment (Brown and 
Jumpponen 2014). In this process, soil 
microorganisms revealed their importance in 
ecological functions establishing an organic pool in 
the soil. First, certain photosynthetic bacteria (e.g., 
Chlorobi and Cyanobacteria) could produce 
organic matter using air, water, sunlight and 

Figure 5 Diversity and evenness of bacterial and fungal 
communities in different sites. 
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minerals for soil, and these photosynthetic bacteria 
were distributed frequently in young sites with 
sparse vegetation.  

Second, some microorganisms are pathogens 
that kill soil animals. For example, it was found 
that most of bacterial OTUs (43% of all bacterial 
sequences) were assigned to the phylum 
Proteobacteria in the studied area. The phylum 
Proteobacteria may include a wide variety of 
pathogens (Madigan and Martinko 2005). It likely 
implies that the phenomena of pathogenic bacteria 
killing soil animals may exist. The bodies of 
animals killed by pathogenic microorganisms could 
become soil organic matter.  

Third, many mycorrhizal fungi (e.g., the 
families Tuberaceae and Russulaceae, the genus 
Geopora and Craterellustubaeformis) were found 
in the early primary successional system. 
Mycorrhizal fungi are responsible for most nutrient 
uptake by the majority of land plants and are 
increasingly recognized as important drivers of 
terrestrial ecosystem processes (Mohan et al. 2014). 
They should be important microbial species 
promoting ecosystem succession. In addition, 
many taxonomic groups (family Sarcosomataceae, 
genus Saccharomyces and Coniochaetavelutina) 
that include saprotrophic communities are widely 
distributed in the glacier retreat area. These 
saprophytic microorganisms are responsible for 
litter decomposition and play an important role in 
the cycling of nutrients (Koukol et al. 2006). It is 
suggested that building a complete system of 
decomposed biological residues for a mature 
ecosystem may be a necessary task during early 
primary succession. Most importantly, a large 
amount of microbial necromass is added to the soil 
organic matter with rapid turnover. According to a 
recent study, carbon in the microbial necromass 
could account for 80% of soil organic carbon 
(Liang and Balser 2011). The ecological functions 
described above show microbial communities are 
one of the main drivers that build soil organic 
matter pool and expedite pedogenesis for 
ecosystem succession. 

Vegetation can impact the physical and 
chemical properties of soil through litter, root 
growth and root exudates (van der Heijden et al. 
2008). Our data support the important impact of 
plants on soil properties. Particularly along the 
primary successional chronosequence with 

different plant types, soil temperature, pH, 
moisture and a variety of nutrients (SOM, TN, TP, 
K, Ca, Na, Mg, Fe, Al) exhibited statistically 
significant distributional trends (increases or 
decreases) (Table 1). These changes in soil 
properties could influence the microbial 
communities. As shown by Read (1994), close links 
exist between plant and microbial communities 
that influence the soil environment. 

In contrast to the linear changes in soil 
properties and the positive succession of plant 
communities during primary succession, the 
microbial communities exhibited different 
developmental patterns in this study area. The 
highest values of bacterial and fungal evenness and 
diversity indicated that there was a relatively good 
soil environment for microbial communities in the 
mid-aged site successional stage. Indeed, a 
previous study in this area also demonstrated that 
the dominant species of plants were abundant and 
many trees were young and energetic in the mid-
aged sites (Cheng and Luo 2002). In addition, the 
degree of soil weathering was low in this 
successional stage compared to the old sites (He 
and Tang 2008), and low soil weathering could 
easily provide the available mineral nutrition. We 
suggest this is a successional stage with less 
environmental stress and more niches for 
microbial communities in a complete primary 
succession (from bare land to a zonal ecosystem).  

In contrast to our findings, Brown and 
Jumpponen (2014) observed a static microbial 
diversity (bacteria and fungi) and a declining 
bacterial evenness across the Lyman Glacier 
chronosequece. Moreover, they noted that their 
findings may not be universal. The possible 
explanations for this incongruence were the 
differences in successional speeds and ecosystem 
types between the two study areas. According to 
survey and previous data, the growing season is 
much longer in the Hailuogou glacier retreat area 
(approximately 6 months of the year) than that in 
Lyman Glacier area (approximately 3 months of 
the year) (Cazares et al. 2005).  

The long growing season led to the rapid 
succession of vegetation in our study area. For 
example, our site 1 reached the vegetation phase 
which their site reached after 20‒ 30 years of 
glacier retreat. After 82 years of glacier retreat, our 
site had reached the lush forest stage of Abiesfabri 
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and Piceabrachytyla while their site was still in the 
stages of the shrub and meadow parkland 
communities containing individuals of 
Abieslasiocarpa, Larixlyallii and 
Tsugamertensiana among patches dominated by 
several members of Ericaceae (Jumpponen et al. 
1998). In addition, the accumulation rates of 
organic C and N in our study area were 
significantly higher than in other chronosequences 
(He and Tang 2008). For example, the 
accumulation rates of C and N were 3-4 times and 
7-11 times as high as those of other 
chronosequences, respectively (Egli et al. 2001; 
Lichter 1998). 

The above discussion thus indicates that 
primary succession sequence in the Hailuogou 
glacier retreat area is developing rapidly compared 
to some chronosequences. 

4    Conclusions 

This study revealed the characteristics of 
microbial community changes on a primary 
succession in the Hailuogou glacier retreat area. 
The highest values of bacterial and fungal evenness 

and diversity indicated that there were less 
environmental stress and more niches for 
microbial communities in the middle successional 
stage compare with other stages. In addition, the 
microbial taxa were identified and their ecological 
functions showed that microbial communities are 
among the main drivers which build the soil 
organic matter pool and expedite pedogenesis for 
ecosystem succession. The primary succession in 
the Hailuogou glacier retreat area is developing 
rapidly. 

Acknowledgements 

This study was funded by the National Natural 
Science Foundation of China (Grant Nos. 41501281 
and 41272200) and the Chinese Academy of 
Sciences (CAS "Light of West China" Program). 

 
Electronic Supplementary Materials: 

Supplementary materials (Appendixes 1, 2, 3, 4) 
are available in the online version of this article at 
http://dx.doi.org/10.1007/s11629-015-3570-2

References

Blaalid R, Carlsen T, Kumar S, et al. (2012) Changes in the root-
associated fungal communities along a primary succession 
gradient analysed by 454 pyrosequencing. Molecular Ecology 
21(8): 1897-1908. DOI: 10.1111/j.1365-294X.2011.05214.x 

Blaalid R, Davey ML, Kauserud H, et al. (2014) Arctic root-
associated fungal community composition reflects 
environmental filtering. Molecular Ecology 23(3): 649-659. 
DOI: 10.1111/mec.12622 

Brate J, Logares R, Berney C, et al. (2010) Freshwater Perkinsea 
and marine-freshwater colonizations revealed by 
pyrosequencing and phylogeny of environmental rDNA. ISME 
Journal 4(9): 1144-1153. DOI: 10.1038/ismej.2010.39 

Brown SP, Jumpponen A (2014) Contrasting primary 
successional trajectories of fungi and bacteria in retreating 
glacier soils. Molecular Ecology 23(2): 481-497. DOI: 
10.1111/mec.12622 

Brunner I, Plotze M, Rieder S, et al. (2011) Pioneering fungi 
from the Damma glacier forefield in the Swiss Alps can 
promote granite weathering. Geobiology 9(3): 266-279. DOI: 
10.1111/j.1472-4669.2011.00274.x 

Cavalier-Smith T, Lewis R, Chao EE, et al. (2009) Helkesimastix 
marina n. sp (Cercozoa: Sainouroidea superfam. n.) a gliding 
zooflagellate of novel ultrastructure and unusual ciliary 
behaviour. Protist 160(3): 452-479. DOI: 10.1016/ 
j.protis.2009.03.003 

Cazares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant 
colonization patterns on a subalpine glacier forefront as a 
model system of primary succession. Mycorrhiza 15(6): 405-
416. DOI: 10.1007/s00572-004-0342-1 

Cheng G, Luo J (2002) Successional features and dynamic 

simulation of sub-alpine forest in the Gongga Mountain, 
China. Acta Ecologica Sinica 22(7): 1049-1056. (In Chinese) 

Chen M, Xu P, Zeng G, et al. (2015) Bioremediation of soils 
contaminated with polycyclic aromatic hydrocarbons, 
petroleum, pesticides, chlorophenols and heavy metals by 
composting: Applications, microbes and future research 
needs. Biotechnology Advances 33(6): 745-755. DOI: 
10.1016/j.biotechadv.2015.05.003 

Cutler NA, Chaput DL, van der Gast CJ (2014) Long-term 
changes in soil microbial communities during primary 
succession. Soil Biology & Biochemistry 69: 359-370. 

Egli M, Fitze P, Mirabella A (2001) Weathering and evolution of 
soils formed on granitic, glacial deposits: results from 
chronosequences of Swiss alpine environments. Catena 45(1): 
19-47. DOI: 10.1016/S0341-8162(01)00138-2 

He L, Tang Y (2008) Soil development along primary succession 
sequences on moraines of Hailuogou glacier, Gongga 
Mountain, Sichuan, China. Catena 72(2): 259-269. DOI: 
10.1016/j.catena.2007.05.010 

Hodkinson ID, Coulson SJ, Webb NR (2003) Community 
assembly along proglacial chronosequences in the high Arctic: 
vegetation and soil development in north-west Svalbard. 
Journal of Ecology 91(4): 651-663. DOI: 10.1046/j.1365-
2745.2003.00786.x 

Jangid K, Whitman WB, Condron LM, et al. (2013) Soil 
bacterial community succession during long-term ecosystem 
development. Molecular Ecology 22(12): 3415-3424. DOI: 
10.1111/mec.12325 

Jumpponen A (2003) Soil fungal community assembly in a 
primary successional glacier forefront ecosystem as inferred 



J. Mt. Sci. (2016) 13(9): 1621-1631 
  
 

 1631

from rDNA sequence analyses. New Phytologist 158(3): 569-
578.DOI: 10.1046/j.1469-8137.2003.00767.x 

Jumpponen A, Mattson K, Trappe JM, et al. (1998) Effects of 
established willows on primary succession on Lyman Glacier 
forefront, North Cascade Range, Washington, USA: Evidence 
for simultaneous canopy inhibition and soil facilitation. Arctic 
and Alpine Research 30(1): 31-39. DOI: 10.2307/1551743 

Kaufmann R (2001) Invertebrate succession on an alpine glacier 
foreland. Ecology 82(8): 2261-2278. DOI: 10.2307/2680230 

Koukol O, Novak F, Hrabal R, et al. (2006) Saprotrophic fungi 
transform organic phosphorus from spruce needle litter. Soil 
Biology & Biochemistry 38(12): 3372-3379. DOI: 10.1016/ 
j.soilbio.2006.05.007 

Knelman JE, Legg TM, O'Neill SP, et al. (2012) Bacterial 
community structure and function change in association with 
colonizer plants during early primary succession in a glacier 
forefield. Soil Biology & Biochemistry 46: 172-180. DOI: 
10.1016/j.soilbio.2011.12.001 

Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E & 
Goodfellow M (eds) Nucleic acid techniques in bacterial 
systematics. John Wiley & Sons, New York, USA. pp 115-175. 

Liang C, Balser TC (2011) Microbial production of recalcitrant 
organic matter in global soils: implications for productivity 
and climate policy. Nature Reviews Microbiology 9(1): 75-75. 
DOI: 10.1038/nrmicro2386-c1 

Lichter J (1998) Rates of weathering and chemical depletion in 
soils across a chronosequence of Lake Michigan sand dunes. 
Geoderma 85(4): 255-282. DOI: 10.1016/S0016-7061(98) 
00026-3 

Liu Q, Liu S, Zhang Y, et al. (2010) Recent shrinkage and 
hydrological response of Hailuogou glacier, a monsoon 
temperate glacier on the east slope of Mount Gongga, China. 
Journal of Glaciology 56(196): 215-224. DOI: 10.3189/ 
002214310791968520 

Liu JJ, Sui YY, Yu ZH, et al. (2015) Soil carbon content drives 
the biogeographical distribution of fungal communities in the 
black soil zone of northeast China. Soil Biology & 
Biochemistry 83: 29-39. DOI: 10.1016/j.soilbio.2015.01.009 

Madigan MT, Martinko JM (2005) Brock Biology of 
Microorganisms (11th ed.). Prentice Hall, Lebanon, Indiana, 
USA. 

Miyashita NT, Iwanaga H, Charles S, et al. (2013) Soil bacterial 
community structure in five tropical forests in Malaysia and 
one temperate forest in Japan revealed by pyrosequencing 
analyses of 16S rRNA gene sequence variation. Genes & 
Genetic Systems 88(2): 93-103.DOI: 10.1266/ggs.88.93 

Mohan JE, Cowden CC, Baas P, et al. (2014) Mycorrhizal fungi 
mediation of terrestrial ecosystem responses to global change: 
mini-review. Fungal Ecology 10: 3-19. DOI: 10.1016/j. 
funeco.2014.01.005 

Oerlemans J (2005) Extracting a climate signal from 169 glacier 
records. Science 308(5722): 675-677. DOI: 10.1126/science. 
1107046 

Pruesse E, Quast C, Knittel K, et al. (2007) SILVA: a 
comprehensive online resource for quality checked and 
aligned ribosomal RNA sequence data compatible with ARB. 
Nucleic Acids Research 35(21): 7188-7196. DOI: 10.1093/ 
nar/gkm864 

Read DJ (1994) Plant-microbe mutualisms and community 
structure. In: Schulze ED, Mooney HA (eds.), Biodiversity and 
ecosystem function. Springer Berlin Heidelberg, Germany. pp 
181-209. 

Rincon A, Santamaria-Perez B, Rabasa SG, et al. (2015) 
Compartmentalized and contrasted response of 
ectomycorrhizal and soil fungal communities of Scots pine 
forests along elevation gradients in France and Spain. 
Environmental Microbiology 17(8): 3009-3024. DOI: 10.1111/ 
1462-2920.12894 

Shen CC, Liang WJ, Shi Y, et al. (2014) Contrasting elevational 
diversity patterns between eukaryotic soil microbes and 

plants. Ecology 95(11): 3190-3202.DOI: 10.1890/14-0310.1 
Shen C, Xiong J, Zhang H, et al. (2013) Soil pH drives the 

spatial distribution of bacterial communities along elevation 
on Changbai Mountain. Soil Biology & Biochemistry 57: 204-
211. DOI: 10.1016/j.soilbio.2012.07.013 

Schloss PD, Westcott SL, Ryabin T, et al. (2009) Introducing 
mothur: open-source, platform-independent, community-
supported software for describing and comparing microbial 
communities. Applied and Environmental Microbiology 
75(23): 7537-7541. DOI: 10.1128/AEM.01541-09 

Schmidt SK, Nemergut DR, Darcy JL, et al. (2014) Do bacterial 
and fungal communities assemble differently during primary 
succession? Molecular Ecology 23(2): 254-258. DOI: 10.1111/ 
mec.12589 

Schutte UME, Abdo Z, Foster J, et al. (2010) Bacterial diversity 
in a glacier foreland of the high Arctic. Molecular Ecology 19: 
54-66. DOI: 10.1111/j.1365-294X.2009.04479.x 

Sigler WV, Zeyer J (2002) Microbial diversity and activity along 
the forefields of two receding glaciers. Microbial Ecology 
43(4): 397-407. DOI: 10.1007/s00248-001-0045-5 

Tscherko D, Hammesfahr U, Zeltner G, et al. (2005) Plant 
succession and rhizosphere microbial communities in a 
recently deglaciated alpine terrain. Basic and Applied Ecology 
6(4): 367-383. DOI: 10.1016/j.baae.2005.02.004 

van der Heijden MGA, Bardgett RD, van Straalen NM (2008) 
The unseen majority: soil microbes as drivers of plant 
diversity and productivity in terrestrial ecosystems. Ecology 
Letters 11(3): 296-310.DOI: 10.1111/j.1461-0248.2007.01139.x 

Weisburg WG, Barns SM, Pelletier DA, et al. (1991) 16s 
Ribosomal DNA Amplification for Phylogenetic Study. 
Journal of Bacteriology 173(2): 697-703. 

Wei M, Yu Z, Zhang H (2015) Molecular characterization of 
microbial communities in bioaerosols of a coal mine by 454 
pyrosequencing and real-time PCR. Journal of Environmental 
Sciences 30: 241-251. DOI:10.1016/j.jes.2014.07.035 

Wu X, Zhang W, Liu G, et al. (2012) Bacterial diversity in the 
foreland of the Tianshan No. 1 glacier, China. Environmental 
Research Letters 7(1): 1-9. DOI: 10.1088/1748-9326/7/1/ 
014038 

Xu Z (1989) Preliminary analysis of origin of Hai Luo Ditch 
Glacier. Journal of Sounthwest Petroleum Institute 11(4): 16-
24. (In Chinese) 

Yang Y, Wang G, Shen H, et al. (2014) Dynamics of carbon and 
nitrogen accumulation and C:N stoichiometry in a deciduous 
broadleaf forest of deglaciated terrain in the eastern Tibetan 
Plateau. Forest Ecology and Management 312: 10-18. DOI: 
10.1016/j.foreco.2013.10.028 

Yang ZH, Xiao Y, Zeng GM, et al. (2007) Comparison of 
methods for total community DNA extraction and purification 
from compost. Applied Microbiology and Biotechnology 74(4): 
918-925.DOI:10.1007/s00253-006-0704-z 

Yin K (1987) Rare plants in the areas of the Gong-ga mountain. 
Exploration of nature 6(20): 135-140. (In Chinese) 

Zemp M, Haeberli W, Hoelzle M, et al. (2006) Alpine glaciers to 
disappear within decades? Geophysical Research Letters 
33(13): 1-4. DOI: 10.1029/2006GL026319 

Zhou J, Wu Y, Prietzel J, et al. (2013) Changes of soil 
phosphorus speciation along a 120-year soil chronosequence 
in the Hailuogou glacier retreat area (Gongga Mountain, SW 
China). Geoderma 195: 251-259. DOI: 10.1016/j.geoderma. 
2012.12.010 

Zumsteg A, Baath E, Stierli B, et al. (2013) Bacterial and fungal 
community responses to reciprocal soil transfer along a 
temperature and soil moisture gradient in a glacier forefield. 
Soil Biology & Biochemistry 61: 121-132. DOI: 10.1016/ 
j.soilbio.2013.02.017 

Zumsteg A, Luster J, Göransson H, et al. (2012) Bacterial, 
Archaeal and Fungal Succession in the Forefield of a Receding 
Glacier. Microbial Ecology 63(3): 552-564. DOI: 10.1007/ 
s00248-011-9991-8 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ARA <>

    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <>
    /GRE <>


    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>

    /DEU <>
    /ENU <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


