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(Emmett 1970; Abrahams et al. 1992; Weltz 1992; 
Barros and Colello 2001; Hu and Abrahams 2004, 
2005, 2006; Zhang et al. 2010; Wang et al. 2014).  

The overland flow resistance can be affected by 
such factors as rainfall, slope gradient, underlying 
roughness elements, etc. (Grosh and Jarrett 1994). 
The type of roughness elements concerned with 
overland flows are numerous and complex. It may 
be single or multiple objects, e.g., sand, gravel, 
vegetation, and even surface relief, etc. The effect 
of single type obstacles on overland flows can be 
found widely expounded in publications. Abrahams 
et al. (1992) discussed the overland flow resistance 
in semi-arid areas with gravel coverage, and 
achieved linear relationships between the 
resistance and the Reynolds number (Re). Gilley 
and Finkner (1992) studied stone zones and 
considered the influence of the roughness element 
size and the spacing between them on the flow 
resistance. Yao (1996) formulated the equation of 
the resistance coefficient within the range of the 
Reynolds number under different rainfall 
intensities. Musleh and Cruise (2006) 
demonstrated that the vegetation density and 
water depth strongly affected flow resistance in 
proportion to the unsubmerged vegetation on wide 
flood plains. Furthermore, there was a positive 
power function relationship between Re and 
resistance coefficient in the overland flow on 
geocell-supported slopes, and at the same time, a 
negative power function relationship was 
established between drag coefficients and the 
Froude number (Fr) (Wang et al. 2012). However, 
Li (2009) believed that the roles of rainfall and bed 
roughness elements were interrelated in respect of 
overland flow resistance.  

As a very universal roughness element on 
mountain slopes, vegetation has been widely 
reported to be effective in slowing down overland 
flows and reducing soil erosion (Munoz-Carpena 
and Parsons 2005; Gharabaghi et al. 2006; Knapen 
et al. 2009; Zhang et al. 2010). The resistance 
mechanism of vegetation against overland flows 
has been under discussion. Oscillations of grass 
with flow to wear down its momentum would result 
in extra flow resistance (Palmer 1945). Shrub stems 
may bring about turbulent vortices and wakes to 
dissipate flow energy and increase resistance 
against fast flows (Li and Shen 1973). Weltz et al. 
(1992) investigated the flow resistance in an 

intermountain area covered by canopies, plant 
stems and cryptogams, but could not make distinct 
the trend of effective roughness coefficient 
associated with vegetation types (grass or shrub). 
Plant leaves and stems can increase effective 
surface friction drag and further impact flow 
resistance in vegetated areas (Abrahams et al. 
1994). Ceramic tiles in comparison with organic 
litters, through experimental studies, would create 
retardation to a flow and higher flow resistance as a 
result of the organic litters tangling with and over 
tiles, which has a larger ratio of surface to volume 
because of surface tension (Dunkerley et al. 2001). 
Experiments on different conditions of the 
submerged vegetation convinced Wu and Yang 
(2014) that with the increase of the relative 
bending rigidity of submerged vegetation the flow 
resistance also increased, showing a positive 
correlation between them.   

Plenty of researches of recent years on the 
dynamic correlations between vegetation and 
overland flows have reached rather few results 
aimed at analyzing on how the spatial distribution 
of natural vegetation caused variations in flow 
resistance. Weltz et al. (1992) pointed out by their 
qualitative researches that the percentage of 
vegetation-coverage affected the overland flow 
resistance. Abrahams et al. (1994) also believed 
that the lowering of the resistance was due to the 
quantity adjustment in vegetation development. 
These studies focused on the percentage of 
vegetation-coverage but ignored the internal effects 
of vegetation-covered channel beds. In order to 
further understand and reveal the influence of the 
spatial distribution of vegetation on the overland 
flow resistance, a series of flume experiments were 
carried out by using natural plants enumerated in 
this study. Generally speaking, grasslands were 
often selected as the obstacle to overland flows in 
many previous studies. Prairies of shortgrass, 
mixed-grass, tallgrass were taken as obstacles 
(Weltz et al. 1992). Hill slopes in the grasslands 
were also selected for studies conducted at Walnut 
Gulch, where the vegetation consisted of 
Chihuahuan desert grassland dominated by 
Bouteloua spp., Andropogon bardinodis, and 
Hilaria belangeri (Abrahams et al. 1994). In 
addition, perennial ryegrass was considered as the 
obstacles under investigation (Pan and Shangguan 
2006). Similar to perennial ryegrass and 
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mascarene grass, Chlorophytum malayense (CM) 
and Ophiopogon bodinieri (OB), two common 
species of short grass, were used for preventing soil 
erosion and urban greening in Southwest China, 
also regarded as widely distributed variety on the 
watershed side slope. Therefore, Chlorophytum 
malayense and Ophiopogon bodinieri were choices 
for analyzing the effects of the natural vegetation 
on the characteristics of overland flows.   

Most of the above-mentioned studies on 
overland flow resistance are focused on the effects 
of the hydrodynamic characteristics rather than on 
the roughness element distributions. So, this study 
aims at the two other questions from another 
perspective: (a) whether or not there exists the 
effect of changing assemblage of different 
roughness elements on the resistance coefficient in 
overland flows, and (b) how to look at the 
relationship between flow resistance coefficients 
and the impacting factors on the basis of a series of 
overland flow experiments regarding the different 
spatial distributions of roughness elements. This 
study is to better understand the influence of the 
spatial distribution of roughness elements on the 
hydraulic characteristics of overland flows and on 
flow resistance. The findings can provide basic 
reference for exploring the law of overland flow 
resistance relevant to several types of roughness 
elements and to obstacles that may change in 
spatial distribution on mountain slopes. 

1    Materials, Apparatus and Method 

A flume experiment was conducted in the 
State Key Laboratory of Hydraulics and Mountain 
River Engineering of Sichuan University, China. 
The experiment apparatus was the flume 6.9 m in 
length, 0.5 m in breadth and 
0.3 m in depth, made up of 
0.003 m thick walls and bottom 
of Plexiglas (Figure 1).  

Experimental process: 
As shown in Figure 1, water 

enters the flume in the form of 
overflows from a head tank and 
over a plate weir which was to 
have the input flow in 
equilibrium; θ is the bed slope, 
which can be adjusted from the 

end of the flume. The inflow volume is controlled 
by a valve. Pebbles are deposited along the leading 
edge of the flume to keep the water stabilized 
before entering the test section which is 1.5 m in 
length along the flume at a distance of 1.5 m from 
the upstream end and of 3.0 m to the downstream 
end. The experiment is carried out in four batches. 
The first batch is on a fixed smooth bed and the 
other three on different vegetated rough beds. The 
second batch uses a rough bed without vegetation, 
which consists of 0.08 m thick soil underneath and 
0.02 m thick layer of uniformly overlying gravels 
0.01 - 0.02 m in granularity. The third patch is 
made with a rough gravel bed with CM distributed 
on top in different ways. The bed for the fourth 
patch is vegetated with OB. 

CM or OB plants for the second patch are 
planted in the rough bed in three distribution 
patterns (Figure 2). The first pattern is in a 
rectangular with the plants grown laterally at 
intervals of 0.12 m, namely 4 in a row, and 
lengthwise at intervals of 0.15 m. The arrangement 
for the second pattern is all the same as the first 
one in arranging the vegetation elements except for 
the rows staggered. As for the third pattern, it 
differs only in the lengthwise spacing expanded to 
0.3 m.   

The discharge (Q) is evaluated by measuring 
the water volume with a container at the lower end 
of the flume. Due to the complexity involved in 
overland flows irrelative to velocity measurements 
(Dunkerley et al. 2001; Li et al. 1996; Li and 
Abrahams 1997), the flow velocity is measured by 
dye tracing techniques in this study. The residence 
time of the dye tracer in the experiment is recorded 
by a clock so as to calculate the mean surface 
velocity. This procedure repeats 5 times for an 
averaged flow velocity to obtain.  

Therefore, the mean flow velocity along a cross 

 
Figure 1 Experimental system of overland flow with natural vegetation inside. 
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                         (2) 

where g is gravitational acceleration, s is energy 
slope to be calculated by ,  is the flume 
slope gradient; v is the mean flow velocity, . 

The Reynolds number ( ) ranging 
from 572 to 4515 corresponds to the flow regime 
including laminar, transitional and full turbulent 
flows. The Froude number ( ) ranges 
from 0.34 to 3.76. 

Hu and Abramhams (2005) designed a series of 
mobile bed tests using different bed slopes between 
2.7°-7.5° to explore the impact of sediment 
movements on the overland resistance. Then 
through the experiments with some cylinders 
inclined of less than 11.4°, Hu and Abrahams (2006) 
divided the composition of resistance into different 
forms corresponding to the mobile bed. Li (2009) 
observed the experimental plots all sloping at 2° in 
the field, and concluded that the total resistance is a 
more complicated non-linear superposition relation 
between individual resistance components. Most of 
the previous experiments were designed with slopes 
of 2-12°. Pan and Shangguan (2006) by using slopes 
of 3-15° found that with the slope increasing the 
Froude number increased while the resistance 
coefficient decreased. On the other hand, the 
hydraulic characteristics of the overland flow on the 
sand bed and vegetated bed were analyzed in 
reference to slopes ranging 5°-25° in our previous 

studies. Yi et al. (2011) measured the hydraulic 
characteristics of overland flows and further 
discussed the method of calculating the flow 
resistance on the smooth and adhering sand beds 
sloping at 15°, 20° and 25°, respectively. Yan et al. 
(2012) discussed the relationship between the 
overland flow resistance coefficient and the 
Reynolds number on a artificially vegetated flume 
sloping at 5°, 10° and 15°. Wang et al. (2013) 
observed the hydraulic parameters of overland flows 
and analyzed the local head losses on a mobile 
vegetative bed sloping at 20° and gave a 
presentation (2014) of the effect of different slopes 
on flow movements and overland flow resistance 
according to a series of flume experiments 
conducted on the beds installed with a gradient of 
15°, 20° and 25°, successively. Ye et al. (2014) 
discussed the influence of vegetation characteristics 
on the hydraulic parameters of overland flows on 
the bed with slope variable of 11°, 13°, 15° to 18°. In 
all the above literature there seemed to lack analysis 
of the spatial distribution of natural vegetation 
responsible for the varying flow resistance. For 
comparing the characteristics of flow resistance with 
the natural vegetation expounded in literature, this 
study involved the natural vegetation in experiments 
done on two different bed slopes of 6° and 10°, and 
furthermore, these results were later used as the 
basis for the other experiments done on larger 
slopes. Thus, four flow rates and three patterns of 

28f ghs v=

sins θ= θ
/m s

Re vR ν=

Fr v gh=

Table 1 Experiment conditions and related hydraulic parameters 

Rough elements Case Surface rough 
condition Bed slope Unit discharge 

(10-3 m2/s) 
Resistance 
coefficient 

Reynolds 
number 

Froude 
number 

Smooth 1 Smooth 6° 0.60-4.02 0.09-0.39 572-3852 1.46-3.00
10° 0.61-4.59 0.10-0.44 602-4515 1.78-3.76

Gravel 2 Gravel  
(10-20 mm) 

6° 1.34-4.26 0.52-4.90 1421-4540 0.41-1.26 
10° 1.12-4.03 0.97-9.74 1196-4292 0.38-1.20

Chlorophytum 
malayense 

3 Rectangle 
(15×12cm) 

6° 1.16-3.75 0.67-5.47 1262-4038 0.39-1.12 
10° 1.21-3.53 0.85-9.47 1377-4034 0.38-1.27 

4 Isosceles 
triangle 
(15×12cm) 

6° 1.23-3.74 1.03-3.70 1334-4056 0.47-0.90
10° 1.32-3.67 1.53-5.36 1477-4093 0.51-0.95

5 Rectangle 
(30×12cm) 

6° 1.11-3.74 0.53-4.16 1238-4179 0.45-1.26 
10° 1.30-3.70 1.18-5.83 1448-4124 0.49-1.09

Ophiopogon 
bodinieri 

6 Rectangle 
(15×12cm) 

6° 1.36-3.97 0.73-7.09 1446-4233 0.34-1.06 
10° 1.39-3.75 1.35-10.35 1486-3794 0.37-1.01

7 Isosceles 
triangle 
(15×12cm) 

6° 1.35-3.85 1.31-2.76 1385-3961 0.55-0.88
10° 1.35-3.94 1.60-12.21 1395-4058 0.47-1.40

8 Rectangle 
(30×12cm) 

6° 1.48-3.66 0.45-3.03 1600-3945 0.54-1.36
10° 1.37-3.89 0.71-6.40 1480-4195 0.47-1.40
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vegetation configuration were also adopted for a 
total of 64 experiments whose parameters were all 
given in Table 1. 

2    Results and Discussions 

2.1 Fr∼q relation 

The flow pattern can be classified as subcritical, 
critical, and supercritical according to the Froude 
number (Fr). The results shown in Figure 3 
indicate that the characteristics of the Froude 
number varied a lot about experiments done on the 
smooth bed and rough bed undergoing the same 
unit flow rate. For example, the Froude number 

greater 1.0 for the smooth bed implies that the flow 
whereon is supercritical. However, Fr in the range 
of 0.34 to 1.4 is derivable from the rough beds, (see 
Table 1). The relationship between Fr and q 
indicates that Fr approximates 1.0 when q =3.0 
l/s.m, and the flow becomes subcritical or critical 
when q < 3.0 l/s.m. Jing et al. (2007) believed that 
the rough bed can motivate the flow pattern to 
transform from supercritical to subcritical ones 
with the increasing roughness coming into effect 
under the same flow rate. The similar tendency 
suggested in this study can be found when the 
smooth bed is switched into the rough bed with 
gravel or vegetation on top. It should be noted that 
in these cases there is only slight difference 
occurring between different vegetation configured. 

 

 
Figure 3 The unit discharge q against Fr. 
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The Froude number derived from the obstacle of 
CM is a little bigger than that of OB, indicating that 
the layout forms (rectangle or triangle) has little 
influence on the flow pattern. Similarly, by the 
same discharge, with the slope on the increase, the 
gap among the same layout forms is little. 

2.2 f∼q relation 

Figure 4 shows the distribution of the 
resistance coefficient f against the unit flow rate q 
for both configurations of CM and OB. All the 
graphs are plotted with the same range of the unit 
discharge from 0.4 to 4.7 l/s.m. The f∼q graphs 
show f decreases with q increasing in respect to 
slope in the range of 6°or 10°. When q is less than  
3.0 l/s.m with q on the increase, the resistance 
coefficient decreases obviously. Whereby the 
discharge has a considerable influence on the 
resistance. When q is more than 3.0 l/s.m, the 
resistance coefficient approaches to a constant. It 
can be explained that when the discharge increases 
toward a certain value, the mean water depth also 
increases with reduction in the influence of 
roughness elements on the flow resistance, and so 
the resistance coefficient appears on very small 
change, for which a scaling analysis can be adopted 
as below.  

The Darcy-Weisbach friction equation gives 
the derivative of resistance coefficient , 
where noticeable is that the numerator is related to 
h known as gravity scale, and the denominator is 
related to  known as inertial scale. The 
resistance coefficient, therefore, to a certain extent, 
represents the ratio of gravity scale to inertial scale. 
The ratio exhibits a contrary to the Froude number 
characterized by inertial scale ( ) and gravity 
scale (h). The results of the Fr-q relation (see 
Figure 3), therefore, confirms the f-q inverse 
relation shown in Figure 4. 

For the invariant slope and different 
vegetation configured, there is no apparent 
distinction in f-q relation noted in respect to CM 
and OB. While the rectangular layout containing 
the intervals lengthwise of 0.15 m and laterally of 
0.12 m between neighbor plants, (Case 3 and Case 
6) the gap here is bigger than in other distributions. 
The flow resistance induced by OB is greater in 
comparison with that by CM. It is clear that both 
CM and OB are of flexibility and emergent. With 

flows pushing on the plants, their stems vibrate in 
response. It is known for certain that CM has 
higher flexibility to vibrations of larger magnitude. 
In accordance with studies of flow resistance 
induced by aquatic vegetation (Yang and Choi 
2009; Aberle and Järvelä 2013), the more flexible 
the vegetation, the lower the flow resistance will be 
in result. Therefore, the effect of the vegetation 
flexibility on the overland flow resistance is 
applicable for the flows of rivers or open-channels. 
The vegetation configuration results in the 
variation of flow resistance. In this study, it is 
observable that the flow resistance resulted from 
the isosceles triangular layout (15 × 12cm) is on the 
whole smaller than that from the rectangular 
layout (15 × 12cm). In comparison, the vegetation 
density (vegetation number per unit area) is the 
same whether the vegetation elements are 
staggered in the former case or not in the later case. 

But with the isosceles triangular (15 × 12mm) 
and the rectangle (30 × 12mm) layouts, under the 
same conditions of flow rate and spacing between 
plants, the increase in the row interval with the 
decrease in the vegetation density can have an 
impact on the flow resistance.  

2.3 f∼Re relation 

The relationship between f and Re is 
illustrated in Figure 5 wherein it is clear that f 
decreases significantly with the increase of Re. It 
should be noted that f, with respect to all cases, 
approaches to a local constant as Re becomes 
greater than 4000. Meanwhile, the unit flow rate is 
roughly 3.0 l/s.m when Fr approximates 1.0 and Re 
= 4000. 

The f∼Re negative relation is consistent with 
Huthoff (2009) who presented increments in the 
form drag with the size of wakes, and as a 
conclusion agrees with our preliminary studies on 
the different roughness elements such as particles 
of different granularity and artificial vegetation 
configuring (Yi et al. 2011; Wang et al. 2013; Wang 
et al. 2014; Ye et al. 2014). But the f-Re negative 
relation makes a difference from the previous 
studies by Abrahams (1994) who suggested that the 
trend of f-Re is predominantly for negative sloping 
for shrublands and the positive sloping or upward 
convex relation for grasslands. By comparison of 
the experimental conditions, Re worked out by 

28f ghs v=

2v

2v
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Abrahams et al. (1994), is much smaller than that 
in this study ranging from 86.5 to 450.2. This 
indicates that the f-Re relation behaves not only 
inversely, but also corresponds to the generalized 
relation between the Darcy-Weisbach friction 

factor and the Reynolds number according to the 
findings by Turner et al (1978).  

The flow resistance for the vegetated rough 
bed (CM and OB) is consistently greater than that 
for the smooth bed. Based on some previous 

 

 

 
Figure 4 Darcy-Weisbach friction factor f (vertical axis) against the unit discharge q. 
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studies (e.g., Barros et al., 2001; Zhang et al., 2010), 
the Darcy-Weisbach resistance is a compound 
resistance, an integration of a few external factors 

such as surface (grain) resistance, wave resistance, 
and form resistance. Water flows give rise to 
vortexes, wakes and secondary dissipation of 

 

 

Figure 5 Darcy-Weisbach friction factor 
f against Reynolds number Re. 
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energy on the gravel bed having possibility of 
increasing the resistance. The form resistance is 
relevant to the vegetation bunches as well as the 
flow conditions. In this study, CM and OB are 
planted on the rough gravel bed so as to divide the 
whole bed into sections. The vegetation protruding 
above the gravel surface tends to generate flow 
resistance. However, based on the studies on the 
flows passing through two cylinders, the pulsation 
in the vortex zone between two cylinders becomes 
weakened as the water table raised and the flow 
velocity decreased, which results in the decrease in 
the drag coefficient averaged for the two cylinders 
(Wang et al., 2005). Similar to the cylinder test, the 
existence of vegetation may counteract the 
development of vortexes, wakes and lead the flow 
resistance to decrease. By the way, even smaller 
results can be observed when compared with what 
is going on with the rough gravel bed. Thus the 
vegetation is to be known, to some extent, as a 
negative effect on the form resistance. 

According to Li and Shen (1973), the flow 
resistance in laminar flows can be described by the 
Darcy-Weisbach equation:  

                        (3) 

where  and  are friction coefficients, A is an 
empirical coefficient and b stands for the raindrop 
effect. Therefore, for the indoor flume experiments 
without precipitation reaction, the equation can be 
changed to the form as below: 

                                   (4) 

Julien (2002) demonstrated that the value of 
differed from that derived from the rough 

surface. Based on the tests conducted on the short 
grass prairie, the laminar flow was 3000-10000. 
Chen (1976) pointed out that for impervious 
surfaces the flow was defined as of laminar type 
with Re<1000 for the impervious smooth surfaces, 
but the flow resistance for vegetated surfaces is 
much greater if compared with that on impervious 
smooth surfaces. The parameter  for laminar 
flows may be as high as up to 105. 

The range of Re shown in Figure 4 of this 
study presents the Re less than 5000, namely 
between 3000 and 10000 as proposed by Julien 
(2002). Therefore, the value of  here can be 
assumed to be 5000 with the equation adjusted to 

the form as follows: 

                              (5) 

The fitting relation with log-log scale as shown 
in Figure 5 can be obtained according to the 
experimental data. Compared by Chen (1976) with 
the f-Re relation ( ) in vegetated surface 
layers, the constant 5000 in this study is much 
smaller than 50000. Furthermore, on the basis of 
the range of  (Julien 2002), the determined 
value of 5000 is feasible for the analysis of f-Re 
relation.  

3    Conclusions 

This paper aims at providing an insight into 
the overland flow resistance due to different 
roughness elements. There are three types of 
roughness elements, namely smooth, sand and 
vegetated bed. Different bed slopes were used in 
this study. Both non-staggered and staggered 
vegetation configurations (rectangle and triangle 
layout) were made for experiments. The main 
results are as follows: 

(1) For all roughness elements designed for 
different bed configurations, the flow resistance 
coefficient approaches to a constant when q = 3.0 
l/s.m with Fr and Re approximating 1.0 and 4000, 
respectively. Significant difference of the Froude 
number for the smooth bed and rough bed were 
observed under the same unit flow rate. The 
Froude number for the planting of Chlorophytum 
malayense (CM) which is some more flexible is 
generally greater than that of Ophiopogon 
bodinieri (OB). It should be noted that the flow 
pattern is less influenced by the vegetation 
configuration (i.e. rectangle and triangle layouts).  

(2) The decreasing vegetation density 
(decrease only in spacing between individual 
vegetation rows) tends to reduce the flow 
resistance. The spacing among plants may impact 
the flow resistance. The flow resistance is not 
significant due to the vegetation in action as 
expected. For this evidence is available in the 
turbulence characteristics of flows passing through 
multiple cylinders. Wakes acting behind the 
vegetation is more likely to counteract the 
development of the vortices that play a positive 
part to increase the flow resistance. 
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(3) The resistance in laminar flows can be 
described by the Darcy-Weisbach equation. Among 
different experimental conditions, k0 for laminar 
flows is special and feasible at the range of 5000 in 
analyzing the f-Re relation (Julien 2002), thus 
taken as the critical value to classify the 
transformation of flow patterns.  

So far the effects of roughness elements 
distribution on overland flow resistance have been 
developed only in laboratory and only on gentle 
slopes. More detailed studies on the microscopic 
flow structure and energy dissipation mechanism 
are still needed for exploring the substantial 
characteristics of the overland flow resistance. And 
the experiments would be extended to the overland 
flow resistance of steeper slopes. On the natural hill 
slopes, more factors besides vegetation distribution 
patterns may impact the effects of overland flow 

resistance. The influence of these factors needs 
further discussion through experiments. 
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