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conductivity (Konrad 2000), bulk density (Yang et 
al. 2003), volume (Viklander 1998; Zhang et al. 
2007), porosity and particle size (Viklander and 
Eigenbrod 2000; Chepil 1942), water content (Kim 
and Daniel 1992), strength (Swan and Greene 1998; 
Formanek et al. 1984; Kok and Mccool 1990; Qi 
and Ma 2006), particle arrangement (Konrad 1989; 
Qi et al. 2003), and elastic modulus (Simonsen et 
al. 2002). The original structures of soil and rock 
are destroyed (Chamberlain and Gow 1979; Lai et 
al. 2008), and composition materials are broken up 
and disaggregated into loose debris (Mutlutuk et al. 
2004). The demolition of freeze–thaw action on 
soil bodies originates from water migration in the 
soil, while the temperature gradient from the 
positive and negative variations of surface 
temperature drives this phenomenon (Wang et al. 
2005). The strength of the destructive action is 
related to factors such as surface freezing 
temperature, freezing depth, freezing duration, and 
winter snowfall. Generally, lower surface 
temperature (Bai et al. 2012; Wan et al. 2012), 
deeper freezing depth, longer freezing duration, 
and larger winter snowfall make the damage more 
severe (Chang et al. 2014; Chen et al. 2008). 

The Qinghai–Tibet Plateau is located in an 
alpine frost zone with an average elevation 
exceeding 4000 m. The air temperature is low, the 
daily temperature range is large (Liu et al. 2008), 
and the number of days with alternately occurring 
positive and negative air temperatures varies 
between 150 and 300 d·a-1 in a large part of the 
plateau, leading to prolonged freeze–thaw 
alternation (Yang et al. 2007). Intense and 
frequent freeze–thaw actions alter the physical and 
mechanical properties of soils, produce loose and 
clastic materials on the surface, and increase 
material sources for wind and water erosion 
(Sharratt et al. 2000). As the most severe freeze-
thaw erosion region of China (Liu et al. 2006), the 
freeze-thaw erosion of Qinghai-Tibet Plateau 
covers an area of 104×104 km2, accounting for 82% 
of China’s total freeze-thaw erosion area 
(126.98×104 km2), and the eroded product is one of 
the main sediment sources of the Yangtse River, 
Yellow River, and Lancang River (Fan and Cai 
2003). Freeze-thaw erosion is a large eco-
environmental problem facing the Qinghai-Tibet 
Plateau, and investigating these processes is 
essential for soil and water conservation (Dong et 

al. 2000). Studies regarding the effect of freeze–
thaw action on physical and mechanical properties 
of soils are available (Ma et al. 1999; Qi et al. 2008; 
Broms and Yao 1964). However, only a few studies 
involve the Qinghai–Tibet plateau, and the results 
show that some physical–mechanical 
characteristics of investigated soils change after 
they were subjected to freeze–thaw cycles, such as 
the height of sample, water content, the resilient 
modulus and the failure strength (Wang et al. 2005; 
Wang et al. 2007), there are still other physical and 
mechanical characteristics of Qinghai–Tibet soils 
that urgently need to be studied after soils are 
subjected to freeze–thaw cycles, such as porosity, 
granularity and uniaxial compressive strength. The 
potential influence of future climate warming on 
the number of freeze-thaw cycles and associated 
geotechnical failures (Harris et al. 2009; Kurylyk et 
al. 2014) provides the impetus for seeking a better 
understanding of the influence of freeze-thaw 
cycles on soil physical and mechanical properties. 
Therefore, physical and mechanical properties of a 
variety of soil samples collected from the Qinghai–
Tibet Plateau during the freeze–thaw processes 
were selected as the objects of this research, in 
order to enhance our understanding of the laws of 
freeze-thaw erosion, thereby providing the basis for 
controlling the freezing-thawing hazards of 
Qinghai-Tibet Plateau. 

1    Study Area 

The Honglianghe River, located at 35°03'13"N, 
93°01'07"E, was chosen as the sampling place for 
this work. The site is located in the hinterland of 
Qinghai–Tibet Plateau and described as a cold and 
semiarid climate region with an average altitude of 
4600 m (Figure 1). The average annual 
temperature is −4.2°C, the lowest monthly average 
temperature is −16.9°C, the highest monthly 
average temperature is 6.3°C, the extreme 
maximum temperature is 17.0°C, and the extreme 
minimum temperature is −30.3°C. The annual 
average relative humidity is 54.2%, the annual 
average saturation vapor pressure is 306.3 kPa, the 
average annual number of strong wind days is 136 
(Xie et al. 2014), and the annual average rainfall is 
266 mm. Landforms of the region are relatively flat 
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and vegetation is sparse and dominated by 
herbaceous plants. Soil samples were collected 
from the primitive bedrock surface. 

2    Materials and Methods 

2.1 Sample preparation 

The dry density of the soil in the sample 
preparation was set to 1.8 g·cm-3 according to the 
dry density of soil for road engineering in the 
sample location. The soil texture of the sample 
belongs to argillaceous siltstone. The grain size 
distribution curve of the soil sample is shown in 
Figure 2 and the Gs (specific gravity), Sr 
(saturation), Cu (coefficient uniformity), Cc 
(coefficient of curvature) of the soil sample are 2.69 
g·cm3, 65.32%, 20%, 3.53%, respectively. Sample 
preparation by undercompaction was conducted 
according to related research (Gullu 2014), 
cylindrical test samples that were 61.8 mm in 
diameter, 125 mm in height, and possessing 
moisture content of 12% were passed through a 2 

mm circular-hole (diameter) sieve. According to 
the volume size and water content of sample, soil 
samples with the target dry density were weighed 
and molded at one time in the special sampling 
machine. The soil samples were saturated by using 
distilled water under vacuum conditions for 4 
hours, and then were set in negative temperature 
conditions for over 48 hours. To ensure stable 
water content in the freeze–thaw experiment 

 
Figure 1 Location map of Honglianghe River of Qinghai-Tibet Plateau. 

 
Figure 2 Grain size distribution curve of the soil 
sample tested. 
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processes, samples were sealed by double-layer 
plastic foil and a self-sealing bag, and then placed 
in a freeze–thaw experiment box to simulate the 
surface freezing and thawing processes of the 
Qinghai–Tibet Plateau. With 24 h as a circulation 
period, both freezing and thawing durations were 
12 h. The freeze–thaw temperature difference was 
from –40°C to 20 °C, and freeze–thaw circulation 
times were 0, 1, 3, 6, 9, 12, and 15. In addition, 
some physical parameter variations, such as 
volume, porosity and granularity of the test 
samples, were measured during the freeze–thaw 
processes. 

Volumetric strain νε  was introduced to 
quantify the relative volume variation of soil 
samples during the freeze–thaw processes in this 
research. 

                        
0

V
Vνε Δ= ×100%                             (1) 

where νε  is the volume strain rate, VΔ  is the 
volume after each freeze–thaw cycle (cm3), and 0V  
is the original volume of the tested sample (cm3). 

Porosity was obtained from specific density and 
dry bulk density, and can be calculated by the 
following formula: 

%100-1
1

×= ）（
d
dP                               (2) 

where P is porosity (%), d is dry bulk density 
(g·cm-3), and d1 is specific density (g·cm-3). 

Granularity of the soil particles was obtained 
by sieving analysis. 

2.2 Test equipment and methods 

To investigate the effect of freeze–thaw cycle 

action on the mechanical properties of soil samples 
from Qinghai–Tibet Plateau, seven types of soil 
samples after different freeze–thaw cycles were 
used in uniaxial and triaxial compression tests at 
room temperature of 15°C. After a fixed number of 
freeze–thaw cycles, all the samples were kept at a 
room temperature of 15°C for 24 h, and then used 
in two types of tests. Uniaxial compression tests 
were performed on the seven types of soil samples 
with a constant loading rate of 1.25 mm/min in the 
entire test by using a conventional universal 
material testing machine with a maximum load 
range of 100 KN (Figure 3, left). After the axial load 
reached a peak, the load was continued for another 
2.5 mm and the test was stopped. The peak stress 
was taken as the uniaxial strength. Triaxial 
compression tests were conducted on the seven 
types of soil samples by using an MTS-810 material 
testing machine (Figure 3, right) whose axial load 
range was 100 KN. Axial displacement was in the 
range of –85 cm to 85 cm, and confining pressure 
load was in the range of 0 MPa to 20 MPa (Gullu 
2014), all triaxial compression tests were 
conducted under consolidated and drained 
conditions, and the axial constant loading rate was 
1.25 mm/min. The testing temperature was 
maintained at 20°C in the loading process. 

3    Experiment Results 

3.1 Effect of freeze–thaw cycle on soil 
physical parameters  

According to Equation (1), sample volume 
strain can be obtained during the process of 
freezing, as shown in Figure 4(a). In the freezing 

      
Figure 3 The test equipment. 
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process of a single specimen, volume deformation 
gradually increased with time due to frost heaving, 
especially within the first 3 h. The growth rate of 
volume strain was at maximum at 3 hours, after 
which the increase had slowed down and generally 
tended to be stable. Figure 4(b) shows the variation 
pattern of the volume strain along with the freeze–
thaw cycles. During the first six freeze–thaw cycles, 
the volume strain rate of the specimen was larger. 
Between the 6th and 15th freeze–thaw cycles, the 
volume strain was roughly stable between 1.3 and 
1.5. Soil porosity is another physical parameter 
affected by freeze–thaw cycles (Figure 4(c)). 
Porosity increased significantly from 23% to 32% 
during the 15 freeze-thaw cycles. Furthermore, the 
porosity growth rates were the fastest during the 
first six freeze-thaw cycles. To further analyze the 
influence of freeze–thaw cycles on soil structure, 

this research also analyzed the granularity 
variation characteristics of each particle group of 
soil samples, as shown in Table 1. The particle mass 
fraction of each soil granularity did not exhibit 
obvious variation within 15 freeze–thaw cycles. 

3.2 Uniaxial compression test results 

Figure 4(d) shows the variation pattern of 
uniaxial compression strength of the tested 
samples after being exposed to freeze–thaw cycles. 
The uniaxial compressive strength of the test 
sample that did not undergo freeze–thaw cycles 
was 252.3 kPa. After one, three, and six freeze–
thaw cycles, the strength of the samples were 177.3, 
98.7, and 86.4 kPa, respectively. Freeze–thaw 
cycles significantly reduce the compressive 

        
 
 
 
 

        
 
 
 

Figure 4 Relations between freeze–thaw cycles and physical and mechanical properties of the tested sample. 

(a) Relation between freezing time and volume 
variation in the tested sample 

(b) Relation between freeze–thaw cycles and 
volume variation in the tested sample 

(c) Relation between freeze–thaw cycles and 
porosity of the tested sample 

(d) Relation between freeze–thaw cycles and 
uniaxial compressive strength of the tested sample
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strength. The uniaxial compression strength of the 

tested sample was relatively unchanged after six 

freeze-thaw cycles. 

3.3 Triaxial compression test results 

The triaxial compression test results of 

different soil samples under four kinds of confining 

pressure strengths are shown in Table 2. In order 

to investigate the effect of freeze–thaw cycles in 

complex stress state of failure points for testing 

soils, the strength envelope curves of different soil 

samples in the p-q stress space were plotted. 

3/)(
3

1
3211 σσσ ++== Ip  

2

13

2

32

2

212 )()()(
2

1
3 σσσσσσ −+−+−== Jq

where p is mean stress (kPa), q is deviatoric stress 

(kPa), 
1I  is the first invariant stress (kPa), and 

2J  

is the second invariant of stress deviator (kPa), σ  

is the normal pressure of failure surface (kPa). 

Under the triaxial stress state, 31 σσ −=q ,

)2(
3

1
31 σσ +=p

. 

As shown in Figure 5, the failure loci 

of the seven-group testing samples were 

essentially identical in the p-q stress 

space. The freeze–thaw cycles had no 

significant influence on the shape of the 

failure surface of the soil samples. 

However, the failure surfaces of the 

samples which experienced 12-15 

freezing-thawing cycles were 

significantly lower than that experienced 

other times of freezing-thawing cycles. 

The main reason for this was that freeze-

thaw cycle affected the whole property of 

testing soils and thus resulted in notable 

decrease of failure loci. To further 

analyze the effects of freeze–thaw cycles 

on soil failure strength, linear failure 

surfaces of the soil sample were obtained 

under the τσ −  plane based on the 

Mohr–Coulomb criterion((Li et al. 2009) 

(Figure 6): 

ctan += ϕστ  

where τ  represents shear strength of the 

soil sample (kPa), σ  represents normal 

pressure of failure surface (kPa), ϕ  is 

the internal friction angle (degrees), and 

c is cohesion (kPa). 

As shown in Figure 6, the cohesion 

value and the internal friction angle of 

the soil sample that did not undergo 

freeze–thaw cycles were 28.18 kPa and 

35.69°, respectively. During the initial 

freeze–thaw cycles (the first six times), 

the cohesion of the soil samples 

significantly decreased after one, three, 

and six freeze–thaw cycles. The cohesion 

Table 1 Granularity of the tested sample after 
experiencing various freeze–thaw cycles (%) 

Granularity 
(mm) 

Freeze–thaw times 
0 1 3 6 9 12 15 

2.00–0.50  8.65 8.82 9.10 8.65 9.50 8.90 9.35 
0.50–0.25  9.55 9.38 9.40 9.15 9.25 9.55 9.45 
0.25–0.05  64.45 61.46 59.15 59.85 60.30 60.95 59.75 
0.05–0.005  11.20 11.90 12.20 14.40 12.80 12.20 11.60 
＜0.005  6.15 8.44 10.15 7.95 8.15 8.40 9.85 

 

Table 2 The triaxial test results of the tested sample after 
experiencing various freeze–thaw cycles 

Freeze–
thaw times 

Sample no. 

Confining 

pressure 3σ
(kPa) 

Destruction of axial 
stress 1σ (kPa) 

0 C0-1 17 175 
C0-2 49 295 
C0-3 80 415 
C0-4 112 535 

1 C1-1 21 166 
C1-2 52 293 
C1-3 87 417 
C1-4 115 548 

3 C3-1 26 136 
C3-2 56 250 
C3-3 91 340 
C3-4 120 476 

6 C6-1 24 159 
C6-2 56 294 
C6-3 85 432 
C6-4 118 566 

9 C9-1 26 142 
C9-2 57 266 
C9-3 91 387 
C9-4 119 514 

12 C12-1 29 117 
C12-2 61 220 
C12-3 94 323 
C12-4 128 423 

15 C15-1 27 126 
C15-2 61 233 
C15-3 94 343 
C15-4 124 454 
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values of the soil samples were 18.58, 12.97, and 
10.1 kPa, respectively. After six freeze–thaw cycles, 
cohesion decreases slowly as the number of freeze–
thaw cycles increases. In addition, internal friction 
angle has no obvious variation within 15 freeze–
thaw cycles. 

4    Discussion 

Freezing and thawing processes are the 
responses of soil physical characteristics to 
temperature boundary conditions. In essence, 
these processes comprise the development of soil 
samples from an unstable state to a dynamic and 
steady state (Lee et al. 1995). The steady state of 

   
 

   
 

   
 

 
 

Figure 6 Strength lines of the tested specimen 
after experiencing various freeze–thaw cycles. 

Figure 5 Failure loci of specimens in the p-q space. 
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testing soil is achieved when the gap in the soil 
particles caused by a rearrangement of the soil 
particles is constant. Multiple freeze–thaw cycles 
cause irreversible alterations in some physical 
characteristics and further change the physical and 
mechanical characteristics of soil. During the 
freezing process, water in the soil samples 
increases the pressure in the soil pore wall due to 
volume expansion. Thus, the gap between the soil 
particles increases, which causes a rearrangement 
of the soil particles. In the melting process, particle 
gaps produced in the frost heave cannot be fully 
recovered, directly leading to an irreversible 
porosity increase due to the process of freezing and 
thawing. The particle mass fraction of each soil 
granularity did not exhibit obvious variation within 
15 freeze–thaw cycles as the freeze-thaw cycles 
were not sufficiently long enough to induce the soil 
particles to fail. 

Soil strength is mainly determined by the 
interactions between particles rather than the 
strength of particle minerals themselves. The main 
failure mode of soil is shear failure, and its strength 
is directly affected by cohesion and the internal 
friction angle. During the initial freeze–thaw cycles 
(fewer than six times), volume strain and porosity 
of the tested sample increased significantly, 
causing soil particle gaps and altered arrangement. 
The original connection between soil particles 
failed and cementation strength decreased, 
affecting soil cohesiveness and inducing a decrease 
in uniaxial destruction strength. With the increase 
in number of freeze–thaw cycles (6 times to 15 
times), the uniaxial compression strength of the 
tested sample tended to become stable due to 
stabilizing of the volume strain and porosity. 
However, it can be clearly concluded that the 
volume strain and porosity are two primary factors 
for uniaxial strength for testing soil, which are both 
strongly sensitive to freeze–thaw cycle exposure. 

After six freeze–thaw cycles, cohesion 
decreases slowly as the number of freeze–thaw 
cycles increases. The main cause of soil cohesion 
weakening is particle structure rearrangement in 
the soil samples. This finding is consistent with the 
results of the uniaxial test. The internal friction 
mechanisms of soil samples are mainly categorized 
into two categories: occlusal friction and sliding 
friction. The two kinds of mechanisms are affected 
by soil particle arrangement, particle composition, 

particle fragmentation, and the particle mass 
fraction of each granularity of soil sample that did 
not exhibit obvious variation within 15 freeze–thaw 
cycles. The number of freeze–thaw cycles did not 
cause the soil particles to fail. The triaxial constant 
confining pressure test was adopted by using low 
confining pressure (less than 130 kPa). The 
increase in confining pressure did not significantly 
influence the arrangements and gaps of particles in 
the soil samples, and failed to further influence 
occlusal friction between particles. 

Similar to previous studies (Yang et al. 2003; 
Wang et al. 2005; Wang et al. 2007), the present 
study considered the influence of freeze-thaw 
cycles on the physical and mechanical properties of 
soil samples from the Qinghai-Tibet plateau. 
However, the present study is unique in several 
aspects. Firstly, the soil textures are different. The 
soil texture of the samples in previous studies were 
clays and sandy loam, but the soil texture of the 
samples in the present study were argillaccous 
siltstone. Secondly, the test results are different. In 
previous studies, the internal friction angle 
exhibited an increasing trend as the times of 
freeze–thaw cycles increased, but the internal 
friction angle maintained a fluctuation between 30° 
and 40° and showed no evident regular variation in 
the present study. Finally, the perspectives are 
different, the previous studies investigated this 
issue from the perspective of mechanics, which 
covered the effects of freeze–thaw on physical–
mechanical properties of soil such as dry density, 
sample height, water content, stress–strain 
behavior, failure strength, elastic modulus, 
cohesive modulus and internal friction angle. 
However, in the present study, the same issue was 
investigated from the perspective of environment, 
the aim of which was to explain the environmental 
impacts of the physical–mechanical property 
changes of soil resulting from freeze–thaw cycles. 

5    Conclusions 

With the rapid development of infrastructure 
in cold regions (Ma et al. 2011; Lai et al. 2012; 
Zhang et al. 2012), the effects of freeze–thaw cycles 
on the physical and mechanical properties of soil 
requires more attention from the engineering and 
academic communities. The potential influence of 
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future climate warming on the number of freeze-
thaw cycles and associated geotechnical failures 
(Harris et al. 2009; Kurylyk et al. 2014) provides 
the impetus for seeking a better understanding of 
the influence of freeze-thaw cycles on soil physical 
and mechanical properties. With this premise, a 
series of freeze–thaw cycle tests, uniaxial 
compression tests, and triaxial constant confining 
pressure tests were carried out in soil samples 
collected from the Qinghai–Tibet Plateau. Some 
conclusions drawn from the test results are 
summarized below. 

1. In the single freezing process, the growth 
rate of volume strain attained its maximum within 
the first 3 h. The volume strain of the soil sample 
increased as the freeze–thaw cycles increased, and 
the growth rate of volume strain was maximal 
within the first six freeze–thaw cycles. The 
variation pattern of porosity and freeze–thaw cycle 
was similar to that of volume strain. Granularity 
did not exhibit obvious variation within 15 freeze–
thaw cycles. 

2. The variation in the uniaxial compression 
strength of the soil sample was great within six 
freeze–thaw cycles. Consequently, the uniaxial 
compression strength of the soil sample after six 
freeze–thaw cycles was only 34.7% of the soil 
sample that did not undergo freeze–thaw cycles. 
The uniaxial compressive strength remained 
approximately stable after six freeze-thaw cycles. 

3. Freeze–thaw cycles had no significant 
influence on the shape of soil sample failure locus 
under the p-q stress space. The failure surfaces of 
the soil sample after 12 and 15 freeze–thaw cycles 
were significantly lower relative to those of other 
soil samples. The soil sample cohesion decreased 

gradually as the number of freeze–thaw cycles 
increased, and the decreased rate of cohesion was 
maximal within six freeze–thaw cycles. In addition, 
the internal friction angle was barely affected by 
freeze–thaw cycles. During the entire experiment, 
internal friction angle fluctuated between 30° and 
40° and showed no evident regular variation. 

The three groups of experiment results 
demonstrate that freeze–thaw cycles influence the 
physical and mechanical behavior of soil samples 
from the Qinghai–Tibet Plateau. The initial freeze–
thaw action, the variation of particle gaps, and the 
arrangement in the soil sample affect physical and 
mechanical behaviors directly. Six freeze–thaw 
cycles were found to critically influence the 
properties of soil in the scope of this research. 
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