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been widely used as a tool for landslide 
investigation and mitigation at different scales: 
local (Ercanoglu et al. 2004; Bai et al. 2007); 
provincial (Yao et al. 2008; Wang et al. 2009); and 
country-wide (Bălteanu et al. 2010). 

Methods for LSZ can be heuristic, 
deterministic or statistical. For a more detailed 
review of these algorithms, please refer to Aleotti 
and Chowdhurry (1999), Dai et al. (2002) and 
Wang et al. (2005). Among these, statistical 
algorithms have been the most widely used in 
regional studies because of their objectivity, 
reproducibility and rapid assessment. They identify 
landslide-susceptible areas from the relationship of 
causative factors and occurrence of landslide 
events established on records of existing landslide 
events in the area (Carrara et al. 1991; Bălteanu et 
al. 2010). A series of statistical algorithms have 
been proposed to establish such relationship, 
including bivariate (Brabb et al. 1972; DeGraff and 
Romesburg 1980; Jade and Sarkar 1993; Yilmaz 
and Keskin 2009) and multivariate analyses 
(Carrara et al. 1991; Nefesliglu et al. 2008; Yilmaz 
2010 a, b; Pradhan 2010; Bui et al. 2012; Holec et 
al. 2013). In bivariate analysis landslide maps are 
compared with each parametric map (e.g. lithology, 
slope angle and aspect) separately, while 
multivariate analysis integrates all relevant 
parametric maps to create a single susceptibility 
zonation map. 

Based on the analysis of past landslide events, 
a reliable landslide inventory presenting locations 
and outlines of landslides is mandatory for regional 
LSZ analysis. For preparing a landslide inventory, 
researchers use different sampling strategies that 
record landslides such as point, scarp and seed cell 
(Yilmaz 2010b). Sampling strategy used in LSZ 
analysis should reflect the environmental 
conditions prior to landsliding. Yilmaz (2010b) has 
compared the effects of sampling strategies on LSZ 
analyses and recommended that scarp strategy that 
distinguishes main scarps from the 
accumulation/depletion zone as an optimal choice. 
In reality, the availability of existing landslide 
records is always a major concern and often 
determines the sampling strategy in regional LSZ 
practice. 

However, records of existing landslides are 
generally insufficient in terms of length, details and 
spatial coverage due to rugged inaccessible terrain 

and the lack of instrumentation. Especially in 
southwestern China, where landslides are 
particularly prevalent south of the Qinling fold 
system and east of the Tibetan Plateau. These areas 
are lacking quantitative predictions of landslide 
occurrences using detailed LSZ studies. The rugged, 
inaccessible terrain hampers the collection of 
detailed, field-based landslide data. This situation 
demands an LSZ to be developed, tested and 
evaluated in order to overcome the scarcity of 
reliable landslide information in this area. 

As field collection of landslide records is time 
and labor consuming, a possible solution is to 
introduce automated analysis techniques. 
Traditional statistical algorithms, such as multi-
linear regression, are well-known for their 
weaknesses in modeling complex nonlinear 
relationships and dependence on the size and the 
distribution of the training samples. In LSZ, a 
sample records the location, occurrence and 
ambient environmental attributes of landslide 
events. Statistical learning algorithms have been 
introduced to LSZ studies with enhanced 
generalization capability and data adaptability, 
such as: logistic regression (LR) (Yilmaz 2009; Bai 
et al. 2010; Pradhan 2010; Yilmaz 2010a; Yalcin et 
al. 2011); artificial neural network (ANN) (Lee et al. 
2003; Ermini et al. 2005; Chauhan et al. 2010; 
Pradhan et al. 2010);  support vector machine 
(SVM) (Yao et al. 2008; Yilmaz 2009; Samui and 
Kothari 2010; Yilmaz 2010a; Chong et al. 2012).  

In spite of statistical learning algorithms being 
used by a number of regional LSZ practices, few 
contributions addressed how they could work with 
limited field-based landslide data. For example, 
LSZ analysis are mostly performed in small study 
areas with a wealth of landslide records, such as 
the research conducted by Yao et al. (2008), Rossi 
et al. (2010) and Pradhan (2013). 

In contrast to the demand for advanced 
analysis techniques in regional LSZ, little emphasis 
has been put on investigating potentials of different 
statistical learning algorithms by comparing the 
performance of algorithms over large areas. 
Comparative studies are commonly limited to small 
areas with abundant landslide records, which 
raises the question of whether the findings are 
valid for large areas with few landslide records. For 
example, Yesilnacara and Topal (2005) have 
compared LR and ANN algorithms in an area of 
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290 km2. Kanungo et al. (2006) and Gupta et al. 
(2008) both have presented insights into 
conventional, ANN, fuzzy set and neuro-fuzzy 
weighting procedures, in 254 km2. Yilmaz (2009, 
2010a) has compared frequency ratio, LR, ANN 
and SVM algorithms on areas of 25 km2 and 131.6 
km2 respectively. Marjanović et al. (2011) have 
investigated the performances of SVM, LR and 
decision tree algorithms with varying sizes of the 
training data set of 100 km2. Yalcin et al. (2011) 
have compared frequency ratio, analytical 
hierarchy process, bivariate statistics and LR 
algorithms on an area of 4660 km2 using the 
largest extent of 4660 km2. Therefore, it remains 
unclear, how statistical learning algorithms work in 
regional LSZ with limited landslide samples.  

Hanzhong City, a landslide-prone area in 
southwestern China, occupying an area of 27,246 
km2, is investigated for regional LSZ mapping. 
Three statistical learning algorithms, LR, ANN and 
SVM, are selected for comparison of their 
performance in regional LSZ analysis. 

ANN has been regarded as capable of 
approximating any given nonlinear function to any 
degree of accuracy as one can adapt the number of 
neurons or hidden layers to the complexity of the 
target problem (Haykin 1998). This background 
makes the ANN algorithm among the most 
effective and popular methods in LSZ studies. 
However, a number of difficulties with the ANN 
algorithm have been reported, such as: i) the ANN 
training (model building) process is operator-
dependent and cannot provide objective and steady 
output (Ermini et al. 2005; Kanungo et al. 2006; 
Yao et al. 2008); ii) ANN requires a large amount 
of samples for effective training; iii) the final 
solution, or ANN weights, that derives the best 
results is not unique, as many networks with 
different sets of parameters can derive very similar 
results (Haykin 1998; Balabin and Lomakina 2011).  

The LR algorithm is claimed to overcome the 
operator-dependence problem of ANN, as it can 
derive an objective and steady output from a least 
squares algorithm (Yao et al. 2008). The least 
squares algorithm requires a large dataset and 
uniform data distribution to achieve good results. 
Similarly, ANN also requires abundant samples, as 
based on the principle of Empirical Risk 
Minimization (ERM), which tries to minimize the 
difference between model output values and true 

values. As a result, both algorithms might suffer 
from weak generalization capability with limited 
training samples. This suggests that the algorithms 
can work well on known samples but may fail in 
real data, as existing samples are always finite and 
cannot cover infinite cases in the real world. This 
confirms the need to investigate the performance of 
the widely used ANN and LR algorithms with 
limited samples in real regional LSZ practice. 

The SVM algorithm has the potential to be a 
suitable candidate for LSZ on limited samples. The 
SVM algorithm has many advantages (Vapnik 
1995), those we are mostly interested in include: i) 
that it overcomes the operator-dependence 
problem of ANN, as established on a solid 
foundation of mathematic theories; ii) that it tries 
to minimize the structural risk, instead of the 
empirical risk. The structural risk is composed of 
empirical risk and confidence risk, and the latter is 
a function of sample amount and nonlinearity 
(quantified as Vapnik-Chervonenkis dimensions). 
In this way, SVM achieves strong generalization 
ability. Training on a small set of samples can still 
work well on independent samples. 

The aim of this study is to assess the 
performances of these three algorithms in regional 
LSZ analysis with limited landslide field samples. 
Three LSZ maps are derived from the LR, ANN and 
SVM algorithms respectively. Landslide density 
analysis (LDA), receiver operating characteristic 
curves (ROC) and Kappa index are applied to 
evaluate the performances. Furthermore, the 
dependence of the algorithms on sample sizes are 
investigated by varying the sizes of training sets to 
analyze how they work compared to known 
landslides in Hanzhong City. The results will 
provide an improved understanding of algorithm 
suitability for regional LSZ, which in turn will 
provide reference for future detailed landslide 
studies. 

1    Methodology 

1.1 Background information 

The basic assumption in the use of statistical 
algorithms for LSZ is that a number of 
environmental factors must transpire to bring 
about the occurrence of a landslide (Fell et al. 
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2008). The relationship between landslide 
occurrence probability and the causative factors 
can be expressed as:  

P = f (x1, x2, … , xn)                         (1) 

where x1, x2, …, xn are the causative factors; P 
represents the probability of landslide occurrence, 
thus indicating the degree of landslide 
susceptibility (in this paper used as the landslide 
susceptibility index (LSI) value). Therefore using 
statistical algorithms for LSZ, our task can be 
formulated as: given k landslide instances (p1, 
p2, … , pk) and their associated environmental 
parameters (x1,1, x2,1, … , xn,1), (x1,2, x2,2, … , xn,2), … , 
(x1,k, x2,k, … , xn,k), we train the ANN/SVM/LR 
models and decide the function f(x) that 
approximates the actual condition best from these 
known samples. Then the determined function f(x) 
is ready for prediction of landslide susceptibility on 
the basis of environmental information. 

The overview work flow is presented in Figure 
1 and comprises five steps: (1) preparation of input 
data; (2) selection and parameterization of 
environmental factors; (3) training of the three 
machine learning algorithms; (4) calculation and 
classification of LSI values from the trained 
algorithms; (5) model evaluations. 

1.2 Statistical learning algorithms 

LR is a probabilistic model that is suitable for 
dealing with dichotomous dependent variables 
(George and Mallery 2000). Given the probability 
of landslide occurrence P and its absence (1-P), the 
LR model between P and independent variables is 
established through the logistic transformation of P, 
as: 

nn xbxbxbb
P
PPLogit ++⋅+⋅+=
−

= ...)
1

ln()( 22110
   (2) 

where b0 ~ bn are partial LR coefficients to be 
determined and x1 ~ xn are the causative 
environmental parameters.  

An ANN is defined as a collection of basic units 
(neurons), interconnected with one another 
(Chauhan et al. 2010). It ‘learns’ through the 
training process, in which weights between 
neurons are adjusted repetitively in response to the 
errors between target and predicted output values 
until the targeted minimal error is achieved. For 
technical details of the ANN is referred to as 
Bishop (1995). The most popular ANN for LSZ is 
the ‘Multi-Layer Perceptron’ with a ‘Back-error 
Propagation’ learning algorithm (MLP-BP) 
(Pradhan et al. 2010), which is also applied here. 

SVMs were initially developed for 

 
Figure 1 Overview workflow for comparing model performance in regional LSZ (landslide susceptibility zonation) 
assessment. 
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classification purpose and were then extended to 
regression tasks (Vapnik 1995). Two main concepts 
form the basis for the SVM algorithm: i) an optimal 
hyper plane that separates two classes in the 
feature space; ii) a kernel function that transfers a 
non-linear inseparable data pattern into a format 
that is linearly separable in a high-dimensional 
feature space (Vapnik 1995). The technical details 
of SVM are described by Vapnik (1995), Yao et al. 
(2008) and Dai et al. (2012).  

Most studies apply SVM as a one-class or two-
class classifier to landslide susceptibility mapping 
(Yao et al. 2008; Marjanović et al. 2011), in which a 
sign function is applied on a target function to label 
output to a corresponding class (usually landslide 
or non-landslide area). This study uses a support 
vector regression (SVR) algorithm, as the focus is 
to derive continuous landslide susceptibility index 
values to compare with LR and ANN algorithms on 
the same basis. The only difference is that the 
output of target function is derived directly without 
using a sign function. The target function f(x) is 
expressed as: 

∑
=

+−=+⋅=
L

i
ii bxxKaabxwxf

1
),()())(()( *φ  (3) 

where w is the vector of weights; x is the input 
variable; and b is a scalar; ( ⋅ ) denotes the scalar 
product operation; )(xφ denotes the nonlinear 
mapping of x; L is the number of support vectors; 
ai, 

*
ia and b are parameters to determine the 

optimal hyper plane; K(x, xi) is the kernel function. 

The LSI values are calculated from the output 
prediction values of f(x). 

2    Study Area and Data 

2.1 Description of the study area 

Hanzhong is a prefectural-level city located in 
the southwest of Shaanxi Province, China (Figure 
2), most threatened city by geo-hazards in the 
province. The official geo-hazard report 
(DLR(Shaanxi) 2003) reveals that geo-hazards had 
caused a direct economic loss of nearly 100 million 
U.S. Dollars and 403 casualties between 1981 and 
2001. Hanzhong lies within an east-west fault 
controlled subsiding basin, which is delimited by 
the Qinling fold system to the north and the 
Yangtze table land on the south. The complex 
geological structure in combination with prolonged 
tectonic movements have created a series of faults, 
which determine the present topography, the 
location of rivers and the activity of landslides. The 
topographical units distinguished in the area by Liu 
(1997) can be subdivided into three areas: the 
Hanzhong Basin and Hills (elevations below 600 
m); the Low to Medium High Mountains 
(elevations between 600 m and 1000 m); and the 
Medium to High Mountains (elevations above 1000 
m). The Hanzhong City area is underlain by 
sedimentary, metamorphic and igneous rock 

 
Figure 2 Selected geological locations for database validation during field surveys. 
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formations, ranging in age from the Proterozoic to 
the Quaternary. The lithological variations consist 
of a mainly sedimentary rocks (sandstone, siltstone, 
mudstone and limestone), some metamorphic 
rocks (mainly phyllite) and only occasionally some 
igneous rocks are exposed. 

Rivers belong to the Yangtze River watershed, 
including the Jialingjiang River and Hanjiang River 
and many tributary streams, which combines a 
total annual runoff amount of 14.1 billion m3 
(Zhang and Jin 1995; Liu 1997). The climate 
belongs to the humid subtropical zone (Cwa), with 
average annual temperatures of 13.5°C. Annual 
precipitation is between 800-1000 mm, of which 70% 
concentrates from May to October bringing 
frequent rainstorms to the area. 

2.2 Characteristics of landslides 

Various types of geo-hazards, ranging from 
landslides, debris flows, avalanches, and ground 
subsidences occur in the study area. This paper 
focuses only on landslides as recorded in the 
official Atlas of Geological hazard Shaanxi Province 
(DLR(Shaanxi) 2003). According to this official 
geo-hazard report, there are 990 sites of existing 
landslides in the study area, categorized into four 
classes: 7 ‘very large landslides’ (>10 million m3); 
79 ‘large landslides’ (1-10 million m3); 264 
‘medium landslides’ (0.1-1 million m3); and 640 
‘small landslides’ (<0.1 million m3). The most wide-
spread type of landslide is the translational shallow 
landslide, whereas deep-seated landslides 
occasionally developed in the area. In terms of the 
source materials of landslides, many small 
landslides developed in alluvial deposits, whereas 
landslides in loess deposits and in swelling clay 
soils also occurred. 

2.3 Data used 

A map of 1:250,000 scale was selected (Cascini 
2008), which is assumed to fit the regional analysis 
of Hanzhong City as well as Landsat imagery and 
ASTER DEM. Data collected includes nine scenes 
of Landsat TM imagery (http://glcf.umiacs. 
umd.edu) and ASTER DEM imagery 
(http://asterweb.jpl.nasa.gov), a geologic map of 
Shaanxi Province at the scale of 750,000 (Ma 
2002), a geo-hazard map in Hanzhong City 
(DLR(Shaanxi) 2003) and field observation data 
surveyed during 2001-2003 and 2011 (Table 1). 
The Landsat TM pre-processed 2005 satellite 
imagery were downloaded from the Global land 
Cover Facility (GLCF), of which the three visible 
bands 1-3, and the infrared band 4 were used in the 
analyses. The ASTER DEM, derived from ASTER’s 
along-track stereo images, is advantageous for its 
high spatial resolution (30 m) and high vertical 
accuracy (20 m). The lithological boundaries 
depicted on the geological maps were validated 
during field surveys, to ensure that all existing 
landslides fall in the correct lithology. 

Records of landslide events were derived from 
the geo-hazard map in Hanzhong City 
(DLR(Shaanxi) 2003), which was compiled by a 
group of experts under the organization of local 
administration. All the geo-hazard locations in the 
map have been validated in the field investigation 
conducted during 2001-2003. The investigation 
has been performed under a series of rules and 
standards that regulates the behavior in field 
surveys and the criteria in map compiling 
(DLR(Shaanxi) 2003). Therefore, the map is 
regarded as official and reliable, forming the basis 
of the analysis in our work. 

However, available landslide information is 
very limited compared to other LSZ studies. Firstly, 

Table 1 Data used in the study 

Data Description Specific use 
Multispectral data Landsat TM (path: 127-129; row: 36-38), band 

1-5 & 7, 30m cell size, 2005 
Land use/land cover, NDVI 

Topographic data ASTER Global DEM (path 32-34, row 105-108), 
30m cell size, 2009 

Terrain attributes (slope angle, aspect, 
curvature), surface drainage 

Geologic map Shaanxi Province, 1:1,750,000, 2002
Hanzhong City, 1:750,000, 2003 

Lithology, faults 
Existing landslides, faults 

Field data Field surveys, 2001-2003, 2011 Existing landslides, land use/land 
cover 
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although 990 landslides have been reported, the 
publicized geo-hazard map only records 310 of 
them, while many small landslides are excluded 
from the map. Therefore, the spatial coverage of 
recorded landslides is limited. Secondly, the geo-
hazard map records the location and the scale of 
landslides without documenting their areal 
distribution. Although more detailed landslide 
information would be preferred in the local area, in 
reality there is limited coverage of accurate 
landslide field data. Therefore, the focus is whether 
a quick and reliable LSZ analysis can be achieved 
with the existing limited landslide field data. 

3    Experimental Setup 

3.1 Preparation of environmental 
parameters 

Landslides are related to both permanent 
conditioning and triggering factors. Triggering 
factors that involve a time frame (e.g. the 
recurrence interval of a rain storm) are normally 
used for frequency estimates in landslide hazard 
assessment (Fell et al. 2008), but are beyond the 
scope of this LSZ analysis. This study considers the 
empirical permanent environmental factors, 
although the LSZ model is flexible enough to 
incorporate such triggering factors (Bălteanu et al. 
2010). Based on a thorough examination of the 
past landslide events in the study area, the 
following eight potential landslide factors are 
selected: slope angle; aspect; curvature; lithology; 
distance from faults; distance from drainage; land 
use/land cover (LULC); and the Normalized 
Differential Vegetation Index (NDVI). These 
permanent conditioning factors were frequently 
mentioned and used in previously conducted 
research (Ermini et al. 2005; Fell et al. 2008; 
Chauhan et al. 2010; Pradhan et al. 2010l; 
Marjanović et al. 2011) within the context of 
regional landslide mapping and on a regional scale 
in the Hanzhong City area. 

These selected environmental permanent 
conditioning factors are calculated using GIS 
(Geographical Information System) and remote 
sensing (RS) techniques from the data (Table 1), as 
shown in Figure 3. Three geomorphometric 
derivatives, slope, aspect and curvature were 

calculated from the 30 m resolution GDEM. The 
spatial distribution of lithology and fault locations 
is extracted from the existing geological map. The 
Landsat TM images are classified into four land 
cover classes and were used to calculate the NDVI 
values. The analysis cell size is set to 30 m, which 
matches the cell sizes of the GDEM and Landsat 
data. During the field survey landslide locations 
were checked against the existing landslide map of 
Shaanxi province.  

Parameterization is a preliminary step to 
integrate environmental causative factors in the 
LSZ analysis, as the values of the factors are either 
categorical (e.g. lithology) or continuous (e.g. slope 
angle). A common method is to group the attribute 
values into categories for each environmental 
variable according to its contribution to landslide 
occurrence (Fell et al. 2008), which is also 
employed here. To further eliminate the influence 
of varying data scales, the attribute values of each 
causative factor are normalized to the range 0~1 
using the minimum-maximum method. 

To fully appreciate the parameterization, three 
issues should be taken into account: (1) this work 
only considers the occurrence of landslide events 
and did not distinguish different types of landslides. 
A landslide event that was labeled as 'occurred' 
refers to ‘high landslide susceptibility’; (2) the 
influence of environmental parameters is, in 
general, different among types of landslides, 
therefore the parameterization and the LSZ 
analysis is based on the main types of landslides in 
the study area; (3) as each environmental variable 
is categorized into ordinal values based on prior 
knowledge, this may potentially influence the 
ranking of attribute values. Theoretically, such 
influence is limited, as statistical learning 
algorithms are supposed to learn from nonlinear 
data patterns. In practice, appropriate 
parameterization would certainly help reduce the 
non-linearity and the complexity of the problem. 
Therefore, the parameterization is carefully 
controlled by abundant prior knowledge and thus 
kept the same among the three algorithms. This 
means that the learning capability of three 
statistical learning algorithms can be compared on 
the same basis. 

The three geomorphological derivatives, slope 
angle, aspect and curvature are calculated from the 
ASTER DEM using standard GIS tools included in 
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ESRI’s ArcGIS 10.1. The slope angle is divided into 
five 10° interval classes and a >50° class 
(Anbalagan 1992; Gong 1996). The factor of slope 
aspect is considered as two variables of north-
exposedness and west-exposedness, as was 
suggested by Brenning and Trombotto (2006). The 
north-exposedness is divided into flat south and 
north categories, while the west-exposedness is 

divided into flat east and west categories. The 
curvature is divided into negative, zero and positive 
values for concave, straight and convex slopes, 
respectively. 

The bedrock geology is grouped into four 
categories according to their variation in rock 
strength properties and permeability (Bălteanu et 
al. 2010): (a) stable: igneous rocks; (b) moderately 

       

       

       
Figure 3 The resulting thematic layers in the study area of (a) slope angle, (b) North-exposedness, (c) west-
exposedness, (d) slope curvature, (e) lithology, (f) distance from fault, (g) distance from drainage, (h) land cover, (i) 
NDVI  (-To be Continued-) 
 



J. Mt. Sci. (2015) 12(2): 268-288    
 

276 
 

stable: limestones, dolomitic, marl and volcanic 
formations; (c) unstable: phyllite and shale; (d) 
very unstable: mudstone formations.  

A buffer zone is created around the digitized 
faults in intervals of 500 m in line with the 
procedure of Abdallah et al. (2005) and Chauhan et 
al. (2010). The upper limit of the buffer distance to 

faults was set to 3000 m. 
The surface drainage is extracted from ASTER 

DEM using the maximum slope gradient rule. The 
distances of a raster cell to the nearest drainage 
section are calculated and classified into seven 
categories at 50 m intervals, as was suggested by 
Pradhan and Lee (2007) and Pradhan et al. (2010). 

Land use/land cover is derived from the 
mosaicked TM imagery by applying a supervised 
maximum likelihood classifier. Four land cover 
classes are used in training: forest, agriculture, 
urban/infrastructure and water. The overall 
accuracy and the Kappa index were calculated 
following the method described by Congalton (1991) 
as 86.0% and 0.789 respectively, indicating high 
accuracy and good agreement with ground truth of 
the classification result. 

NDVI is calculated from the red and infrared 
bands of the TM images using the ENVI 4.6 
software. The non-vegetation surfaces coincide 
with negative to close to zero NDVI values, whereas 
high positive values indicate a dense vegetation 
cover. Frequency analysis revealed that 83.81% of 
the cells distribute from 0 to 0.6. Therefore, the 
NDVI values are categorized into four classes of 
0.15 intervals from 0 to 0.6 and two additional 
categories representing values below 0 and above 
0.6. It is assumed that non-vegetated areas have a 
relation with landslide occurrence, particularly 
where the scars of landslides are related to the 
removal of vegetation in the lower depositional 
zones. Table 2 summarizes the parameterization 
and landslide density analysis of the eight 
environmental factors. 

3.2 Preparation of the training set and input 
data 

This study applies a point-based sampling 
strategy (Yilmaz 2010b), which was selected with 
respect to available landslide data source. The 
analysis is based on raster cells, where each 
landslide sample corresponds to a pixel that 
indicates landslide instances. Training samples 
have been selected from observed landslide areas 
and non-landslide areas. Although non-landslide 
areas are generally much larger than landslide 
affected areas, non-landslide samples have been 
carefully selected based on field surveys. In this 
way, it avoids the many samples on flat areas that 

(-Continued-) 

 

Figure 3 The resulting thematic layers in the study area of 
(a) slope angle, (b) North-exposedness, (c) west-
exposedness, (d) slope curvature, (e) lithology, (f) distance 
from fault, (g) distance from drainage, (h) land cover, (i) 
NDVI. 
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are trivial in the algorithm learning. The final 
sample dataset contains 310 landslide occurrence 
and 310 non-landslide samples, in which landslide 
and non-landslide areas are kept at a balanced 
ratio of 1:1. Each of the samples are connected to 
eight environmental parameter values 
(independent variables) and one output value 
(dependent variable), in which landslide 

occurrence is indicated as ‘1’ and landslide absence 
is indicated as ‘0’. 

As suggested by Basheer and Hajmeer (2000) 
and Chauhan et al. (2010), the total dataset is split 
into a randomly selected training set, 80% (496 
samples), and a testing set, 20% (124 samples). To 
make sure that training and testing set have similar 
statistical distribution as the whole dataset, the 

Table 2 Parameterization and analysis of the environmental factors  
Environmental 
factors Categories Attribute 

values 
Standardized 
values 

Area
a (%) 

Past landslides 
b (%) 

Landslide density 
(b/a) 

Slope angle 

0-10° 
10-20° 
20-30° 
30-40° 
40-50° 
50-90° 

1 
2 
3 
4 
5 
6 

0.167
0.333 
0.500 
0.667 
0.833 
1.000 

20.331
28.652 
29.749 
16.003 
4.438 
0.828 

31.290 
31.290 
23.226 
10.000 
3.548 
0.645 

1.539 
1.092 
0.781 
0.625 
0.800 
0.780 

North- 
exposedness 

Flat 
North 
South 

1 
2 
3 

0.333
0.667 
1.000 

0.620
48.441 
50.939 

0.323 
49.032 
50.645 

0.520
1.012 
0.994 

West- 
exposedness 

Flat 
East 
West 

1 
2 
3 

0.333
0.667 
1.000 

0.620
50.489 
48.891 

0.323 
49.677 
50.000 

0.52 
0.984 
1.023 

Curvature 
Concave
Straight 
Convex 

1 
2 
3 

0.333
0.667 
1.000 

46.794
8.291 
44.915 

47.097 
7.419 
45.484 

1.006
0.895 
1.013 

Lithology 

Stable 
Moderate 
stable 
Unstable 
Very unstable 

1 
2 
3 
4 

0.250
0.500 
0.750 
1.000 

22.753 
35.388 
33.487 
8.172 

7.765 
39.192 
44.261 
8.786 

0.336 
1.098 
1.324 
1.082 

Distance from 
fault 

>3000 m
2500-3000 m 
2000-2500 m 
1500-2000 m 
1000-1500 m 
500-1000 m 
0-500 m 

1 
2 
3 
4 
5 
6 
7 

0.143
0.286 
0.429 
0.571 
0.714 
0.857 
1.000 

82.417
2.468 
2.647 
2.870 
3.072 
3.232 
3.294 

51.290 
6.129 
6.774 
6.774 
6.774 
10.323 
11.935 

0.622
2.483 
2.559 
2.360 
2.205 
3.194 
3.624 

Distance from 
drainage 

>300 m
250-300 m 
200-250 m 
150-200 m 
100-150 m 
50-100 m 
0-50 m 

1 
2 
3 
4 
5 
6 
7 

0.143
0.286 
0.429 
0.571 
0.714 
0.857 
1.000 

71.222
4.363 
4.623 
3.699 
5.237 
5.171 
5.685 

28.710 
7.742 
11.935 
9.355 
10.645 
12.581 
19.032 

0.403
1.775 
2.582 
2.529 
2.033 
2.433 
3.348 

Land use/land 
cover 

Forest 
Agriculture 
Urban 
Water 

1 
2 
3 
4 

0.250
0.500 
0.750 
1.000 

52.125
34.118 
12.326 
1.432 

29.355 
44.839 
21.290 
4.516 

0.563
1.314 
1.727 
3.154 

NDVI 

0.6-1.0 
0.45-0.6 
0.3-0.45 
0.15-0.3 
0-0.15 
<0 

1 
2 
3 
4 
5 
6 

0.167
0.333 
0.500 
0.667 
0.833 
1.000 

1.978
59.121 
18.974 
4.124 
1.587 
14.215 

0.645 
34.839 
22.903 
6.452 
3.548 
31.613 

0.326
0.589 
1.207 
1.564 
2.235 
2.224 
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whole dataset is sorted in ascending order 
according to the attribute values of the 
environmental parameters. Then the testing set is 
selected as every one out of five (20%) records, 
while the remaining dataset is taken as the training 
set. The training and testing sets are kept the same 
in the three LR, ANN and SVM algorithms. After 
the training phase, the models can predict LSZ for 
the entire area.  

3.3 LSI calculation and classification 

The maps of LSI are calculated by applying the 
three algorithms to the entire study area. The final 
LSZ map is a reclassification of LSI values into five 
zones, categorized as: very low susceptibility (VLS), 
low susceptibility (LS), moderate susceptibility 
(MS), high susceptibility (HS) and very high 
susceptibilities (VHS), following the classifications 
used by Clerici et al. (2002), Bălteanu et al. (2010), 
Chauhan et al. (2010), and Pradhan and Lee (2010). 
Success rate curves (Saha et al. 2005) are 
calculated to define the thresholds for zoning the 
LSI values based on the mean (μ0) and standard 
deviation (σ0) values, defined as (μ0 − 1.5mσ0), (μ0 

−0.5mσ0), (μ0 + 0.5mσ0) and (μ0 + 1.5mσ0), where 
m is a positive value. The value of m is usually 
decided by trial and error in the vicinity of m=1 
(Chauhan et al. 2010). 

3.4 Stability test 

To evaluate the influence of limited landslide 
samples, the stabilities of the three statistical 
learning algorithms with varying sample size is 
further examined. As the learning algorithms are 
essentially data-driven, the sizes of the training set 
might influence the model performances. As the LR, 
ANN and SVM algorithms are all free of data 
distribution (Yao et al. 2008; Bai et al. 2010; 
Chauhan et al. 2010), it is investigated whether and 
how the sizes of the training set influence the 
performances of the models. To guarantee the 
same basis for comparison, at each implementation 
the training set is kept identical among the 
algorithms.  

While the training set is increased from 10% to 
100% of the entire training set by 10% steps, 
repetitive model runs are performed and the result 
of each implementation is evaluated. In detail, the 

training set is first randomly divided into ten equal 
subsets; a training set is actually a random 
combination from these ten subsets, as used in the 
SVM evaluation in Yao et al. (2008). Then for each 
size of the training set (e.g. 50%), the experiments 
are performed repetitively until each subset has 
been used at least once. The average accuracy of 
the repetitive experiments is taken as the indicator 
of model performance.  

3.5 Model evaluations 

The performance of the algorithms in 
predicting landslide susceptibilities is evaluated in 
three metrics: 1) landslide density; 2) the receiver 
operating curves (ROC) and the area under curves 
(AUC); and 3) error matrix. In addition to these 
criteria, the dependence of the three statistical 
learning algorithms on sample size is determined 
by varying the sizes of the training set.  

Landslide density is defined as the ratio of the 
percentage of existing landslide area to the 
percentage of zonation area. It evaluates the 
density of existing landslides in each susceptibility 
zone. The basic assumption is that areas where 
landslides have occurred are more susceptible to 
landslides, so landslide density is expected to be 
higher in VHS and HS zones than it is in VLS and 
LS zones. According to Chauhan et al. (2010), 
landslide density is supposed to increase gradually 
from VLS to VHS zones. 

ROC curves and AUC are commonly used as 
accuracy criteria for prediction models in natural 
hazard assessments (Chauhan et al. 2010; Pradhan 
et al. 2010). The curves are obtained by plotting 
cumulative rates of true positives (correctly 
classified landslide cells) versus false positives 
(landslide absence, misclassified landslide cells). 
An AUC value of 1 indicates perfect classification 
performance, whereas a value of 0.5 is considered 
equal to a random model. The details of ROC and 
AUC can be found in Frattini et al. (2010). 

Error matrix analysis is used to evaluate the 
correctly predicted cases versus the failed cases. 
Kappa index is employed as a quantitative 
indicator. It is advantageous by removing effects of 
random agreement between predictions and 
ground truths by considering all elements in the 
error matrix (Lillesand et al. 2008; Chauhan et al. 
2010). Unlike ROC curve, Kappa index is cutoff-
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dependent, which means that a cutoff should be 
decided for classifying LSI values into two classes, 
corresponding to landslide occurrence or absence 
in ground truth data. In this study, the cutoff is 
determined as the value that has the highest Kappa 
index by iterating cutoff values from 0 to 1 
(Fieldings and Bell 1997). Following Monserud and 
Leemans (1992), accuracy levels evaluated by 
Kappa index are: (1) <0.4, poor; (2) 0.4~0.55, 
moderate; (3) 0.55~0.70, good; (4) 0.70~0.85, very 
good; and (5) >0.85, nearly perfect. 

4    Implementation 

4.1 LSZ using LR 

The LR is stepwise, backwardly implemented. 
In each step, Wald statistics are calculated to test 
the significance of each of the nine environmental 
variables, with a threshold set to 0.05 (George and 
Mallery 2000). The variable with Wald statistical 
value below 0.05 is kept in the model, otherwise 
the variable fails the significance test and is 
removed from the equation. One initially included 
variable (land cover types), failed the significance 
test and was removed from the equation, hence the 
established LR model is: 

97654

321

910.1895.0017.1058.2683.0
084.2101.1271.1834.3)(

xxxxx
xxxPLogit

+++++
+−−−=  (4) 

where P is the estimated probability of landslide 
occurrence; x1, x2, x3, x4, x5, x6, x7 and x9 are slope 
angle, north-exposedness, west-exposedness, 
curvature, lithology, distance from fault, distance 
from drainage and NDVI; the coefficient value of 
variable x is the weight attributed to each input 
variable. Through equation (4), the LSI values of 
the entire study area are derived with the mean 
value μ0 = 0.41 and standard deviation value σ0 = 
0.21. 

To determine the boundaries of LSZ based on 
LSI values, three representative success rate curves 
corresponding to m=1, 1.1 and 1.2 are plotted and 
analyzed following the method used by Chauhan et 
al. (2010). The curve corresponding to m=1 is 
determined as the optimal success rate. 
Accordingly, the boundaries for LSZ are fixed at 
LSI values of 0.10, 0.31, 0.52 and 0.72, deriving: 
very low susceptibility (VLS) category with LSI 

values lower than 0.10; low susceptibility (LS) 
category with LSI values between 0.10 and 0.31; 
moderate susceptibility (MS) category with LSI 
values between 0.31 and 0.52; high susceptibility 
(HS) category with LSI values between 0.52 and 
0.72; and very high susceptibility (VHS) category 
with LSI values higher than 0.72. The derived LSI 
map is shown in Figure 4. 

4.2 LSZ using ANN 

The LSZ using ANN is implemented in the 
MATLAB interface. The MLP-BP ANN consists of 
nine input neurons corresponding to selected 
environmental parameters and one output neuron 
that indicates landslide occurrence. The one hidden 
layer structure is assumed to be sufficient to handle 
nine input neurons. The number of neurons in the 
hidden layer is usually determined through trial 
and error (Ermini et al. 2005; Chauhan et al. 2010). 
Thus ANN with varying numbers of neurons in 
hidden layers are tested to determine the optimal 
structure. The learning rate is 0.01 and the initial 
weights are selected randomly from -1 to 1. The 
maximum epochs are 2000 and the root mean 
square error (RMSE) goal is set to 0.01, either of 
which criterion will stop the training once met. 

The difference in accuracies between 
predictions on training and testing sets is taken as 
the criterion to determine the optimal ANN. An 
ANN with good generalization capability is 
supposed to derive predictions with nearly 
identical high accuracies on both known and 
unknown samples. By varying the number of 
neurons in the hidden layer from five to twenty-five, 
repetitive experiments are performed. Both the 
predictions on the training and testing sets are 
derived and evaluated. Finally, the ANN with 
9×22×1 architecture that derives testing and 
training accuracies as 0.70 and 0.72 respectively is 
determined as the optimal one. The LSI map based 
on the MLP-BP ANN algorithm is shown in Figure 
4b. 

An ANN learns from known samples by 
automatically adjusting weights between neurons. 
Although adjustments of weights are kept in a 
black box, we can capture the updated weight 
matrices between layers, e.g. a 9×22 weight matrix 
for input-hidden connections and a 22×1 weight 
matrix for hidden-output connections in the case of 
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this study. Then matrix multiplication is performed 
on each of the matrices in a sequential manner to 
obtain a 9×1 weight matrix, similar to Chauhan et 
al. (2010). These weights are assumed to reflect the 
contribution of the environmental variables on 
slope failure. 

4.3 LSZ using SVM 

The LSZ using SVM is implemented in the 
MATLAB interface of the software LibSVM 2.8.9 
(Chang and Lin 2011). The environmental 
parameters are taken as input variables and the 
output is the probability of landslide occurrence. 
The most widely used radial basis function (RBF) is 
employed as the kernel function, which is 
insensitive to outliers (Tax and Duin 1999). The 
kernel function parameter γ and penalty parameter 
C of SVM require careful determination to ensure 
the model performance. Thus, a cross validation 
method is used to determine optimal values for C 
and γ. For each pair of (C, γ), the training dataset is 
randomly divided into five equal folds, in which 
four folds are for training and one fold for testing. 
By iterating each fold as a test set and the other 
four folds as a training set, five mean squared error 
(MSE) values are calculated. The best values of C 
and γ are determined as the pair that produces the 
minimal average MSE value. A rough parameter 
search is performed by increasing C and γ from 2-8 
to 28 at an increasing step of log2C=1 and log2γ=1. 
Based on the rough search result, a precise 
parameter search is performed by increasing C and 
γ from 2-4 to 24 at an increasing step of log2C=0.5 
and log2γ=0.5. The determined optimal values of C 
and γ are 5.657 and 11.314 respectively, deriving 
the final LSI map (Figure 4c). 

5   Results 

5.1 Model comparisons 

The resulting LSI maps derived from the three 
algorithms are presented and compared to existing 
landslides in Figure 4. The resulting maps show 
distinct spatial intensity patterns of landslide 
susceptibility. In all maps, high values of LSI maps 
generally coincide with the location of existing 
landslides. The SVM map however, shows less 
extreme variations of the LSI. In addition, the LSI 
map from SVM shows more detailed spatial 
patterned distribution of landslides. This is 
attributed to its capability of dealing with high-
dimensional nonlinear data. For example, the 
spatial pattern of the SVM result shows more 
influence of drainage patterns, while LR and ANN 
consider drainage as a less influential factor, thus 

 
Figure 4 The three LSZ (landslide susceptibility 
zonation) maps derived from (a) Logistic Regression 
(LR), (b) Artificial Neural Networks (ANN) and (c) 
Support Vector Machine (SVM). 
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suppressing such potential patterns.  
The predicted susceptibility zones and 

landslide density are calculated based on raster 
cells on LSZ maps, as shown in Table 3, in order to 
evaluate whether the zonation areas coincide with 
existing landslides. It is generally assumed that 
highest landslide frequencies are expected to occur 
in VHS and HS zones, and low landslide 
frequencies are expected in VLS and LS zones. The 
results presented in Table 3 confirm that SVM 
predicts the susceptibility zones best, as most 
(65.48%) landslides occur in VHS and HS zones 
and only 10.00% of existing landslides fall in VLS 
and LS zones. LR predicts 56.77% of landslides in 
VHS and HS zones, while 51.93% is predicted by 
ANN. ANN predicts 13.35% of landslides in VLS 
and LS zones, while 15.81% is predicted by LR.  

Landslide density shows the degree of 
concentration of existing landslide in the zonal area. 
Generally a gradually increasing trend of landslide 
density values is expected from VLS to VHS zones. 
The VHS zone in a LSZ map is supposed to derive 
the highest landslide density values (Chauhan et al. 
2010). Table 3 shows that all the three algorithms 
show increasing trends in landslide density from 
VLS to VHS zones. SVM derives the highest 
landslide density in the VHS zone. The landslide 
density differences from the VLS to HS zones are 
less prominent among the three approaches. This 
suggests that SVM is very reliable in predicting 
highly concentrated distribution of existing 
landslides in zones of very high susceptibility. 

The ROC curves are plotted using the testing 
set of landslide samples (Figure 5). The largest 
difference of the three curves lies in the range 

between 0.05 and 0.45 of false positive rates. Here, 
the curve of SVM shows far better performance 
than ANN and LR. The calculated AUC values 
reveal that SVM derives the highest accuracy 
(AUC=0.853), whereas LR (AUC=0.718) and ANN 
(AUC=0.763) derives lower accuracies. Calculated 
Kappa indices of 0.355 (LR), 0.403 (ANN) and 
0.613 (SVM) respectively, agree well with the 

model performances evaluated by the ROC analysis.  
The quantitative evaluations demonstrate that, 

given the entire training set, SVM performs 
significantly better than LR and ANN, and that 
ANN outweighs LR in LSZ studies. In addition, the 
evaluation of coincidence of existing landslides 
with susceptibility zones also shows that SVM 
performs best, while the performances of LR and 

Figure 5 The receiver operating characteristic (ROC) 
curves of landslide susceptibility index (LSI) plotted 
for the three algorithms. 

Table 3 Landslide data in the five landslide susceptible zones for the three algorithms used 

Landslide susceptibility zones VLS LS MS HS VHS 

LR 
% of the area of LS zones (a) 2.38 34.48 33.07 20.28 9.78
% of landslides of LS zones (b) 0.65 15.16 27.42 29.35 27.42
Landslide density (b/a) 0.27 0.44 0.83 1.45 2.80

ANN 
% of the area of LS zones (a) 4.03 29.31 38.94 19.07 8.65 
% of landslides of LS zones (b) 0.65 12.90 34.52 28.06 23.87 
Landslide density (b/a) 0.16 0.44 0.89 1.47 2.76 

SVM 
% of the area of LS zones (a) 2.30 26.78 37.20 27.32 6.41 
% of landslides of LS zones (b) 0.65 9.35 24.52 35.16 30.32 
Landslide density (b/a) 0.28 0.35 0.66 1.29 4.73 

Notes: LR for logistic regression; ANN for Artificial Neural Network; SVM for Support Vector Machine; VLS for 
very low susceptibility; LS for low susceptibility; MS for moderate susceptibility; HS for high susceptibility; VHS 
for very high susceptibility. 
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ANN do not show prominent differences. 

5.2 Model stability under varying sizes of 
training set 

Model stability is investigated as the 
dependence of model performance on sample sizes. 
A selection of test results for LR coefficients under 
five sizes of the training set are presented in Table 
4. The regression coefficients derived from LR with 
varying sizes of training set highly fluctuate. It is 
observed that eligible variables under varying sizes 
of training set are different, and the same variable 
may have different coefficient values during 
different trials. This suggests that the established 
LR equation (equation 2) is easily affected by the 
size of the training samples, which might raise 
questions about the reliability of the derived 
coefficients in describing the relative contributions 
of the environmental factors. 

In the ANN algorithm, the network 
architecture, including both the number of neurons 
in each layer and the layers themselves, are kept 
the same among the implementations. We have 
investigated the changes in the updated weight 

matrix to determine the influences of the size of the 
training set on the trained ANN model, with 
examples shown in Table 5. Assumed as indicating 
the contributions of the environmental variables on 
landslide, the weights derived from the ANN model 
trained with varying sizes of training set are found 
to fluctuate. This indicates that the ANN model is 
easily influenced by the size of training set. 

In the SVM algorithm, the optimal values of 
parameters C and γ are also different among 
varying sizes of training sets (Table 6). This 
indicates that the size of training set does affect the 
established SVM model. SVM is essentially a 
nonlinear model, the changes in the parameters (C, 
γ) of the kernel function indicate the adaption of 
the SVM model to the varying training sets, rather 
than the changes in contribution of the 
environmental variables on landslides. 

All the three data-driven algorithms are 
affected by the size of training set. Besides the 
sample size, random sampling of a subset from the 
entire training set also casts potential effects on 
model performance. For example, even under the 
same size of training set, LR or ANN could also 
derive different coefficient values for the same 

Table 4 Logistic Regression (LR) coefficients under five sizes of training samples 
Samples 10% 30% 50% 70% 90%
Trial 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

C
oe

ff
ic

ie
nt

s 

b1 - - - - - - - - - -
b2 -5.94 - - -2.73 -2.91 -1.99 -2.22 -2.59 -2.12 -2.23
b3 - 8.21 2.50 3.63 3.06 3.38 2.66 3.80 -3.13 3.38
b4 - - - - - 1.10 - 0.95 - -
b5 - - 1.71 1.80 1.68 1.39 1.69 1.50 1.63 1.48
b6 - - - - - - - - - -
b7 - - 1.37 - - - 0.95 - 0.91 0.83
b8 - - - - - - - - - -
b9 6.04 - 2.74 2.22 2.63 1.81 2.44 1.86 2.15 1.93
b10 - -14.01 - - - -4.52 -2.71 -3.78 -3.37 -3.28

Note: “-” indicates the variable fails the significance test and is removed 

 
Table 5 Artificial Neural Networks (ANN) derived weights under five sizes of training set 
Samples 10% 30% 50% 70% 90%
Trial 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

D
er

iv
ed

 w
ei

gh
ts

 

w1 -1.44 -2.10 -5.92 -5.16 5.38 4.68 1.44 0.86 1.18 -0.11
w2 -0.48 -0.29 2.85 0.87 -1.32 -2.12 -1.93 -2.39 -0.33 -2.23
w3 1.87 3.69 4.32 4.92 2.37 3.28 5.60 6.19 3.13 5.63
w4 3.30 4.67 3.01 3.16 1.78 2.63 1.13 1.47 -0.24 0.50
w5 5.00 5.48 0.19 1.19 -0.79 0.06 0.29 1.15 2.78 3.16
w6 -1.42 3.47 1.35 2.23 0.04 0.79 0.23 0.58 1.10 1.95
w7 2.64 2.93 4.27 4.75 2.48 2.04 2.52 2.01 5.23 4.90
w8 0.02 -0.06 1.52 1.30 1.68 1.97 0.75 0.28 3.14 2.62
w9 3.72 2.26 2.16 1.14 1.88 1.86 5.68 4.68 2.81 2.69
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variable. Therefore, the average accuracies of 
repetitive implementations of a model under a 
given size of the training set, are calculated and 
compared, as shown in Figure 6. In the LR 
algorithm, a fluctuating trend is observed for AUC 
values, whereas the curve of Kappa index shows a 
steadily increasing trend. The LR algorithm has the 
highest AUC values using small sizes of training set 
(10%-20%), although differences with ANN and 
SVM are rather small. The SVM algorithm has the 
highest AUC values between 30% and 100% of the 
training set size. The values of AUC of LR are close 
to those of the ANN between 10% and 60% of the 
training set size, but are lowest between 80% and 
100% of the training set. The Kappa index curve for 
LR remains below 0.3 between 10% and 100% of 
the training set, which seems not sufficient to 
achieve an acceptable accuracy. 

In the ANN algorithm, the curves of both AUC 
and Kappa index exhibit marked fluctuations in the 
entire range. The ANN algorithm derives fair 
accuracies on a small size (10%-20%) of training set. 
Accuracies decrease steadily until a drop at the 70% 
initiates a sharp increase from 70% to 80% of the 
training set. The increase from 90% to 100% 

indicates that the ANN performance would be more 
predictive with increased size of the training set.  

In the SVM algorithm, a steady increase in 
both AUC and Kappa index values are observed 
from 10% to 100% in the training set. On a small 
size of the training set (10%-20%), the SVM obtains 
moderate accuracy. The values of AUC and Kappa 
index steadily increase and outweigh those of the 
LR and ANN algorithms above 30% of the training 
set size. Between 60% and 100% of the training set 
size, the values of AUC and Kappa index maintain 
highest levels above 0.8 and 0.5 respectively, 
indicating accurate results. 

5.3 Geomorphological interpretations 

The LSZ results and validation of the LR, ANN 
and SVM models have some consequences for 
geomorphological interpretations. The focus is to 
predict landslides, which, in terms of the area and 
volumes involved, have been reported in four 
categories. In Table 7 the model outcome is listed 
according to the size of the reported landslides. Most 
of the landslide training samples fall within the 
small and medium size category. The percentages of 

 
Figure 6 Values of (a) the area under curves (AUC) and (b) Kappa index of the three models with varying sizes of 
training set. 
 

Table 6 Support Vector Machine (SVM) optimal parameters under five sizes of training set 

Samples 10% 30% 50% 70% 90%
Trial 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Optimal 
parameters 

C 1.41 2.83 0.35 0.35 1.41 4 5.66 11.31 4 16 

γ 5.66 2 5.66 4 4 8 0.16 0.16 8 8
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each size of landslides falling into five susceptibility 
zones are calculated to test how the algorithms work 
on various sizes of landslide. Generally a higher 
percentage of landslides should be classified in the 
LSZ results with susceptibility classes of very high 
and high. This is based on the assumption that the 
area where landslides have occurred previously is 
highly susceptible to landslides. As shown in Table 7, 
the SVM algorithm performs best on all sizes of 
landslide, as it classifies the least existing landslides 
as VLS and LS categories and the most existing 
landslides as VHS and HS zones. None of the very 
large landslides have been classified by the SVM as 
VLS and LS zones, while both the LR and ANN 
algorithms classifies 33.33% of them as LS zones. 
On all sizes of landslide, the LR algorithm classifies 
higher percentages of landslides as HS and VHS 
zones than the ANN. The ANN algorithm classifies a 
lower percentage of landslides as VLS and LS zones 
than the LR does on medium-sized landslides. 

Furthermore, the LSZ maps are analyzed in 
comparison with basic terrain attributes of 
lithology (Table 8), to emphasize the degree of 
susceptibility of various lithologies to landslides in 
the area. As expected (Table 8), mudstone 
formations are most susceptible to landslides, 
where 100% of the area falls in the MS, HS and 

VHS zones in all the three algorithms. Phyllite and 
shale formations rank second for their 
susceptibility to landslide occurrence, with an 
average of 91.61% of the area classified as medium 
to very high susceptibility. Igneous rocks show less 
landslide susceptibility than limestone, dolomite, 
marlite and volcanic formations. These findings 
confirm that lithology type is a major factor in 
controlling the susceptibility of the terrain to 
landslide and is in lines with earlier prior 
knowledge about lithological stabilities (Bălteanu 
et al. 2010). 

6    Discussion 

In our LSZ case study, the SVM algorithm 
outperforms both the ANN and LR algorithms in 
all evaluation metrics. In the majority of LSZ 
related studies, there seems to be a trend to regard 
SVM as superior to most other algorithms (Bui et al. 
2012), such as in analytical chemistry (Balabin and 
Lomakina 2011). For example, our results agree 
well with the good performance of SVM algorithm 
used by Marjanović et al.(2011), which outperforms 
both LR and decision tree algorithms. The success 
of SVM can be attributed to its strong 

Table 7 Landslide data within the five susceptibility zones for the three models 

Size of landslide Area (%) LSZ zones Area of each LSZ zone (%) 
LR ANN SVM

Small 
(<0.1 million m3) 41.94 

VLS 0.77 0.77  0.00 
LS 10.77 10.77  9.23 
MS 33.08 35.38  26.15 
HS 31.54 30.77  38.46 
VHS 23.85 22.31  26.15 

Medium 
(0.1-1 million m3) 42.58 

VLS 0.75 0.75  1.50  
LS 17.29 12.03  9.02 
MS 23.31 34.59  21.05 
HS 29.32 28.57  36.84 
VHS 29.32 24.06  31.58 

Large 
(1-10 million m3) 13.23 

VLS 0.00 0.00  0.00 
LS 19.51 19.51  12.20 
MS 24.39 34.15  24.39 
HS 24.39 17.07  21.95 
VHS 31.71 29.27  41.46 

Very large 
(>10 million m3) 1.94 

VLS 0.00 0.00  0.00 
LS 33.33 33.33  0.00 
MS 16.67 16.67  66.67 
HS 16.67 33.33  16.67 
VHS 33.33 16.67  16.67 

Notes: LSZ means landslide susceptibility zonation; LR means Logistic Regression; ANN means Artificial 
Neural Networks; SVM means Support Vector Machine. 
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generalization capacity and high robustness. 
The ANN algorithm outperforms LR algorithm 

based on evaluations of the AUC and Kappa index. 
This is in agreement with the findings in the 
comparative studies by Yilmaz (2009) and 

Yesilnacara and Topal (2005). However, in this 
study case and in Yilmaz (2009) and Yesilnacara 
and Topal (2005), the accuracy differences 
between ANN and LR algorithms are not 
prominent. The qualitative interpretations also do 
not show distinct differences between ANN and LR. 
The operator-dependence of ANN is another 
reason that this study would rather avoid drawing 
any confirmative conclusions regarding the 
performance of LR and ANN.  

The model stability analyses shows that all the 
three data-driven algorithms can be affected by 
varying sizes of training set. Amongst the three 
algorithms, SVM is the most accurate and stable 
algorithm at 30% or more of the training set size. 
Therefore, it is a very reliable and practical method. 
The ANN algorithm is found to be the least steady 
algorithm, as it suffers from pronounced 
fluctuations in the accuracy curves with varying 

sizes of training set. In both the LR and ANN 
algorithms, fluctuations in accuracies are mostly 
observed from 10% to 80% of the training set. This 
might infer that both algorithms require most 
landslide samples to derive accurate results. 

The superiority of SVM in stability tests can be 
attributed to its structural-risk minimum principle 
in a mathematical context. This principle takes the 
empirical risk, the size of the training set and the 
complexity of the problem into consideration, 
while trying to minimize them as a whole. The 
lowest accuracy of the LR result can be mainly 
attributed to its less strong capability of dealing 
with high-dimensional nonlinear data. The 
insufficiency of landslide samples is another 
potential cause. As the differences of accuracies 
and stabilities between LR and ANN algorithms are 
not prominent, it might be too opportunistic to 
conclude whether LR or ANN performs better. The 
differences in physiography of the study area, the 
qualities of environmental variables and potential 
data uncertainty will all have an effect on the 
differences in algorithm performance. The 
operator-dependence of ANN is hard to capture, 

Table 8 The areal distribution of LSZ zones in each lithological unit 

Lithology Area (%) LSZ 
zones 

Area of each LSZ zone (%) 

LR ANN SVM Mean 

River 3.31 - - - - -- 

Igneous rocks 22.00  

VLS 0.00 0.00 0.00  0.00 
LS 27.27 31.82 0.00  19.70 
MS 31.82 36.36 50.00  39.39 
HS 27.27 27.27 22.73  25.76 
VHS 13.64 4.55 27.27  15.15 

Limestones, dolomite, marlite 
and volcanic formations 36.62  

VLS 0.88 0.88 0.88  0.88 
LS 23.89 23.01 13.27  20.06 
MS 38.05 37.17 16.81  30.68 
HS 21.24 23.01 36.28  26.84 
VHS 15.93  15.93 32.74  21.53 

Phyllite and shale 29.86  

VLS 0.00 0.00 0.76  0.25 
LS 9.16 4.58 10.69  8.14 
MS 17.56 32.06 22.90  24.17 
HS 34.35 29.01 36.64  33.33 
VHS 38.93 34.35 29.01  34.10 

Mudstone formations  8.21  

VLS 0.00 0.00 0.00  0.00 
LS 0.00 0.00 0.00  0.00 
MS 20.69 17.24 37.93  25.29 
HS 37.93 48.28 41.38  42.53 
VHS 41.38 34.48 20.69  32.18 

Notes: LSZ means landslide susceptibility zonation; LR means Logistic Regression; ANN means Artificial 
Neural Networks; SVM means Support Vector Machine. 
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which naturally raises doubts about whether the 
network output is correct. However, in this study 
case, the SVM algorithm achieves the best results 
with limited samples and is less sensitive to the size 
of the training set. For large, landslide-prone areas 
in the southwest of China, and in the absence of 
sufficient landslide samples, the SVM algorithm is 
the most suitable option.  

The application and comparison of the three 
statistical learning algorithms in the LSZ is 
conducted in a large area with limited landslide 
data, which reflects the real situation in the 
southwestern mountainous less-developed areas. 
As a result, some simplifications had to be made, 
for example, only to consider landslide occurrence. 
This was done, because the scale-dependent 
relationship between landslide types and 
environmental variables would complicate the 
parameterization and would decrease the number 
of available samples for each type of landslide in 
such a large study area. The dependence of 
conditioning factors on the nature of landslides has 
recently been approached in the study conducted 
by Micheletti et al. (2013).  

Another issue is the absence of a detailed 
landslide inventory, therefore a point-based 
sampling strategy is applied, conforming to the 
location records of landslides. As a result of this 
point-based approach, each landslide location 
corresponds to a cell recorded as a landslide. The 
auto-correlation of spatial data is reduced, as there 
are no two samples located on the same landslide. 
Still, the total dataset is very limited if compared to 
the large study area. A consequence is the 
occurrence of heterogeneous and scattered points 
in the LSI map, which can of course be filtered out. 
To reduce this effect, sampling strategy adaption 
and influence of spatial autocorrelation of sample 
data can be reduced (Micheletti et al. 2013; Yilmaz 
2010b; Nefeslioglu et al. 2008). 

The performance of statistical learning 
algorithms under varying sizes of training set is 
crucial to obtain correct answers to the problem 
domain; in this case landslide susceptibility. 
Usually, more landslides samples contain more 
information, and a learning algorithm might 
theoretically work better with enhanced 
information. In contrast, learning algorithms might 
perform worse, due to increased complexity of the 
problem. Random sampling of the entire training 

set into subsets also influences model performance. 
The effects of varying sizes of the training set are 
probably a combination of the size and the 
composition of the data. Although it is difficult to 
discriminate between these two effects, the 
fluctuations in LR and ANN demonstrate that the 
increase in sample sizes does not necessarily 
promote better performance. Steadily increasing 
performance of the SVM affirms its strong learning 
capability. 

7    Conclusion 

Three LSZ maps derived from LR, ANN and 
SVM algorithms on a regional scale, using nine 
environmental input parameters are evaluated 
based on LDA, ROC/AUC and Kappa index and 
tested with varying sizes of the training set. We 
conclude that the SVM algorithm is the best 
performing, followed by the ANN and LR 
algorithms, for preparing LSZ maps in large area 
such as Hanzhong City, with limited field-based 
landslide information. 

We further conclude that SVM is the most 
stable algorithm, followed by LR and ANN under 
varying sizes of the training set. The accuracy of 
SVM shows a steadily increasing trend and reaches 
a high level at a small size of the training set (30%), 
while accuracies of LR and ANN algorithms show 
distinct fluctuations.  

From a geomorphological perspective, SVM is 
the best performing model on all sizes of landslides, 
as it classifies the lowest landslide densities into 
the VLS and LS categories and the highest 
landslide densities into VHS and HS zones. The LR 
classifies higher percentages of landslides as HS 
and VHS zones than the ANN, across all sizes of 
landslide. Whereas, the ANN algorithm classifies a 
lower percentage of landslides as VLS and LS zones 
than the LR for medium-sized landslides. 

Overall, SVM is regarded to be the best 
performing model for LSZ analysis on a regional scale, 
given the same environmental parameters and 
landslide samples. For very large areas where only 
limited landslide samples are available and various 
sizes of landslides occur, SVM algorithm is potentially 
the most optimal choice for its strong learning 
capability, compared to ANN and LR algorithms. 
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