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phenomenon in due time. Unreliable predictions, 
resulting in false or missing alarms, are still 
limiting the use of early warning systems 
(Gasparini et al. 2007). 

Real-time prediction of landslide occurrence 
can be obtained through the monitoring of either 
the potential trigger or the slope response to such a 
trigger. For rainfall-induced landslides, 
precipitation, here indicated as the precursor, 
represents the trigger, while water content, pore 
pressure change, displacement and displacement 
rate can be regarded as indicators of the slope 
response. 

Examples of operating early warning systems 
exist, some based on comparison of measured 
precipitations to empirical thresholds (Keefer et al. 
1987; Wilson et al. 1993; Wiley 2000; Ortigao and 
Justi 2004), others on monitoring of indicators 
(Flentje et al. 2005). In some cases, integrated 
systems based on both monitoring of incoming 
precipitations and of changes in soil state are 
being used to establish different levels of warning 
(Brand et al. 1984; Iwamoto 1990; Baum et al. 
2005; Chleborad et al. 2008). A recent review 
about operating early-warning systems in Europe 
is reported in Alfieri et al. (2012). 

Shallow landslides are a typical consequence 
of extreme rainfall events, but the identification of 
empirical rainfall thresholds for the prediction of 
their triggering is rarely feasible, as 
historical rainfall data associated to slope 
failures are required. Such landslides 
usually occur along steep slopes covered 
with unsaturated granular deposits, as in 
the case of landslides which occurred during 
the last decades in the hilly area of 
Campania, Southern Italy (Calcaterra et al. 
2004; Cascini and Ferlisi 2003; Crosta and 
Dal Negro 2003; Guadagno et al. 2005). 
Figure 1 shows the location of the largest 
landslides which occurred during the last 
decades. Here the involved slopes are 
covered with loose air-fall granular deposits 
originated by the eruptions of some volcanic 
complexes (Rolandi et al. 2003; Di 
Crescenzo and Santo 2005). In many cases, 
the failed soil mass attained a size of tens of 
thousands cubic metres and reached a 
velocity of metres per second (Faella and 
Nigro 2003). Such slopes are in equilibrium 

thanks to the contribution of soil suction to shear 
strength, which allows stability of slopes steeper 
than the friction angle of the material (Olivares 
and Picarelli 2003). Owing to the rainfall 
infiltration, a landslide can be suddenly triggered, 
as the resisting force no longer balances the 
driving force. In fact, the increase of water content 
causes an increase of soil weight and a decrease of 
suction and associated cohesion (Fredlund and 
Rahardjio 1993).  

The continuous monitoring of suction and/or 
of water content, as indicators of stability 
conditions, can therefore provide useful 
information. It is well known that these two 
variables are related through the non linear soil 
water retention curve (SWRC). Owing to the steep 
slope of the transition zone of the SWRC, near 
saturation small changes in suction correspond to 
great changes in water content. In the considered 
slopes, failure usually occurs in saturated or nearly 
saturated conditions. Monitoring data show that 
during the wet season, soil suction drops to very 
small values (Damiano et al. 2012; Sorbino and 
Nicotera 2013) of a order of a few kPa, while water 
content still remains far below saturation (Greco 
et al. 2014; Pirone et al. 2014). Thus, monitoring 
of water content seems more suitable than suction 
to reveal the incoming failure. 

Traditional monitoring performed with 

Figure 1 Rainfall-induced landslides occurred in Campania 
during the last century. 
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inclinometers, topographic or photogrammetric 
surveys are generally useless. In fact, such 
monitoring devices are suitable to monitor slow 
moving landslides, while shallow landslides in 
loose unsaturated granular soils usually show 
significant soil deformations only a short time 
before failure. In fact, when suction becomes very 
small, due to unusual precipitation, loose soils 
experience a strong decrease in the void ratio, 
denoted as volumetric collapse (Olivares and 
Picarelli 2003; Olivares and Damiano 2007), and 
tensile cracks develop along the slope, owing to 
shear strain (Olivares and Picarelli 2006; Picarelli 
2009). Adopting sensors, like optical fibers, 
capable of detecting in real time such soil 
deformations which can appear everywhere along 
the slope, could be another useful tool to predict 
the impending event. So far, optical fibers have 
been adopted for the monitoring of deep-seated 
landslides (Iten and Puzrin 2009). 

Hence, in situ monitoring of water content 
along the soil profile and of soil deformations 
along some slope sections could realize an 
effective early-warning system for prediction of 
shallow rapid landslides in pyroclastic soils, since 
the significant changes exhibited by such variables 
approaching failure, allow to adopt them as early 
indicators of failure. 

The aim of this study is to assess, through 
investigation on small scale model slopes, the 
reliability of Time Domain Reflectometry (TDR) 
probes, to measure soil water content, and of 
optical fibres, to detect soil deformation, to realize 
such an early warning system in slopes covered 
with unsaturated pyroclastic deposits. 

1    Materials and Methods  

1.1 Hydraulic and mechanical properties of 
air-fall ashes 

Figure 2 reports the grain size of the air-fall 
volcanic ashes, taken at Cervinara and Monteforte 
Irpino (Figure 1), used in the experiments 
described below. These two slopes, like many 
others in the area, are covered with a few meters 
of pyroclastic soils, resting upon a fractured 
limestone bedrock. The covers are layered, with 
alternating layers of ashes and pumices, and 

sometimes altered ashes located at the bottom of 
the profile (Damiano et al. 2012; Pirone et al. 
2012). The two investigated soils belong to ashy 
layers, which, as most of the similar deposits in 
Campania, consist of non plastic silty sands. Their 
porosity is quite high, ranging between 65% and 
75%.  

The water retention curves of both deposits, 
obtained during infiltration experiments in small-
scale model slopes, are shown in Figure 3. The 
curves display a low air entry value (3-5 kPa) and a 
steep slope in the transition zone. More details 
about the water retention properties of the 
investigated materials can be found in Damiano 
and Olivares (2010) and Sorbino and Nicotera 
(2013).  

The hydraulic conductivity of the Cervinara 
ash ranges between 10-6 and 10-8 m/sec, moving 
from a fully saturated condition to a degree of 

Figure 2 Grain size of Cervinara and Monteforte 
Irpino volcanic ashes (n = number of determinations) 
(modified after Damiano et al. 2012). 
 

Figure 3 Water retention curves of Cervinara and 
Monteforte Irpino ashes (modified after Damiano and 
Olivares 2010). 
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saturation of about 40% (Olivares and Picarelli 
2003). More data concerning the Monteforte 
Irpino ash, which displays similar values, are 
reported by Papa et al. (2010). 

The friction angle of the Cervinara and 
Monteforte Irpino ash is respectively 38° and 37°. 
Both soils show a negligible effective cohesion. 
Nonetheless, in unsaturated conditions, the 
apparent cohesion can grow up to more than 10 
kPa as a function of soil suction (Olivares 2001; 
Sorbino and Nicotera 2013). The deformability is 
quite high, owing to the high void ratio. As a 
consequence, significant volumetric strain 
(volumetric collapse) has been observed as the soil 
approaches saturation.  

1.2 Flume experiments to test the proposed 
indicators 

The aim of the research is to test a system 
based on two low-cost sensors of volumetric water 
content and strain, TDR probes (Topp et al. 1980) 
and optical fibers (Niklès et al. 1997), to check its 
suitability as an early-warning system for rainfall-
induced landslides in pyroclastic soils. The system 
has been tested trough infiltration experiments in 
an instrumented flume where small-scale slopes 
have been subjected to rainfall until failure. 

The flume has a length of 1.9 m, a width of 0.5 
m and a depth of 0.5 m. The slope inclination can 
reach an angle of 65°. The bottom of the flume 
allows to reproduce either pervious or impervious 

soil-bedrock interface. The slope can be 
instrumented with minitensiometers (range 0-
80kPa; sensitivity 1 kPa), pore pressure 
transducers (range 0-3.5 kPa; sensitivity 0.035 
kPa), TDR probes, laser transducers (range 0-100 
mm; sensitivity 20 mμ ) to measure settlements at 
ground surface, optical fibres. TDR probes and 
optical fibers are described in detail, in the 
following sections. A rain gauge, located at the toe 
of the slope, and a standard thermocouple, buried 
in the soil near the bottom of the flume around its 
centre, allow measurement of rainfall intensity 
and soil temperature during the tests. A sketch of 
the instrumented flume is shown in Figure 4. The 
position of the devices in the plan-view of Figure 
4c is approximate; for each experiment the exact 
locations of the transducers and minitensiometers 
are given in Table 1. More details regarding 
equipment and testing procedures can be found in 
Olivares et al. (2009). 

Several tests have been performed with the 
two described ashes, reconstituted at different soil 
porosities, various initial conditions and applied 
rainfall intensities (Greco et al. 2010). The results 
of three tests are shown in the following sections. 
To obtain uniform porosity and water content, the 
soil is laid down by the moist-tamping technique, 
in thin layers of around 0.5 cm. During formation 
of the slope, two strands of the same single-mode 
standard optical fibre are buried in the soil, at the 
middle of the layer, in the longitudinal direction of 
the flume (Figure 4a). The excess length of fibre 

 
Figure 4 Equipment for experiments on small-scale unsaturated slopes: a) installation of the optical fiber during 
the reconstitution of the soil deposit; b) the instrumented model slope at the beginning of the test; c) schematic plan-
view and cross-section of the monitoring system. 
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between the two buried strands is placed outside 
the slope. After formation of the deposit, 
minitensiometers and a TDR probe are inserted, 
and the surface is covered by a plastic membrane 
to prevent evaporation and attain an equilibrium 
condition. Then the flume is tilted to the 
established slope angle and the test starts. The 
experiments are conducted by imposing constant 
artificial rainfalls. The applied intensities reported 
in Table 2 have been chosen in order to limit the 
duration of the experiments around one hour. 
Such intensities ranging between 45 and 56 mm/h 
are not necessarily representative of real events, as 
the aim of the experiments is only testing the 
capability of the system to detect incoming failure, 
rather than reproducing the evolution of a real 
event usually lasting for 24-48 h (Pagano et al. 
2010; Damiano et al. 2012). 

The main characteristics of the three 
described tests are reported in Tables 1 and 2. As 
indicated in Table 1, the minitensiometers, the 
laser and the pore pressure transducers are 
grouped into two nests indicated as upslope (0.3-
0.5 m from the top of the flume) and downslope 
(0.8-1.0 m from the top of the flume). The 
minitensiometers are placed at a depth of 0.05 m 
(superficial) and 0.1 m (deep) below the ground 
surface. The TDR probe is inserted normally to the 

flume bottom and crosses the entire deposit. Pore 
pressure transducers are located at the base of the 
deposits whereas the laser transducers are located 
above the ground surface, with the optical axis 
perpendicular to it. 

1.3 Time Domain Reflectometry (TDR)  

The TDR technique has been applied for a 
long time to investigate the mean volumetric water 
content of the soil. The experimental device 
consists of an electromagnetic pulse generator 
connected, through a coaxial cable, to a metallic 
probe a few decimetres long, buried under the 
ground surface. An electromagnetic pulse is sent 
through the soil, and the reflected signal is 
acquired. The speed of electromagnetic waves 
propagating through soil depends on its bulk 
dielectric permittivity, εr, while the attenuation of 
the signal mainly depends on bulk electrical 
conductivity, σ. Both variables are in turn related 
to volumetric water content, θ (Campbell 1990): 
the εr(θ) and σ(θ) relationships can be 
experimentally determined in the laboratory. 
Measuring the travel time of the electromagnetic 
pulse provides the average bulk soil dielectric 
permittivity within a cylinder of soil coaxial to the 
probe. As a consequence, the mean volumetric 

Table 1 Position of the sensors during each flume experiment 

Test Upslope section Downslope 
section Superficial  Deep TDR probe Optical 

fiber Geogrid 

A L2, L4 
T2, T4, T5, T6, T7 
P1, P2, P5 

L1, L3, L5 
T1 
P3, P4 

-
T1, T4, T6 
- 

-
T2, T5, 
T7 
- 

yes
(downslope) 

yes no

B L1, L2, L4 
T1, T2 
P1, P4, P5 

L3, L5 
T3, T4, T6 
P2, P3, P6 

-
T2, T3, T6 
- 

-
T1, T4 
- 

yes
(downslope) 

no no

C L3, L5 
T4, T6 
- 

L1, L2, L4 
T2, T5, T7 
- 

-
T6, T7 
- 

-
T2, T4, 
T5 
- 

no yes yes

Notes: L = Laser sensor; T = Tensiometer; P = Pore pressure transducer. 

 
Table 2 Main characteristics of the tests 

Test Soil z (m) l (m) α(°) n0 (ua–uw)0 (kPa) Sr0 i (mm/h) 
A Monteforte Irpino 0.1 1.10 40 0.74 15 - 45 
B Cervinara 0.1 1.20 40 0.76 41 0.33 56 
C Cervinara 0.1 1.35 38 0.73 41 0.44 50 

Notes: z = Thickness; l = Length; α = Slope angle; no = Initial soil porosity; (ua–uw)0 = Initial mean suction; Sr0 
= Initial degree of saturation; i = Rainfall intensity. 
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water content is obtained, with an average error of 
±0.02 m3/m3 (Topp et al. 1980).  

Quite recently, a novel interpretation 
technique has been developed (Greco 2006; Greco 
and Guida 2008), which allows the inverse 
determination of the entire volumetric water-
content profile along the metallic probe. The 
spatial resolution of the retrieved water content 
profile depends on the rise time of the 
electromagnetic pulse transmitted through the soil 
along the metallic probe. With the commonly 
adopted measurement devices, such a resolution is 
around 2 cm. Such a technique is based upon the 
numerical integration of the transmission line 
equations, which describe the electromagnetic 
transient along the probe (Ramo et al. 1994). By 
minimizing the difference between the 
experimental TDR wave traces and the simulated 
wave traces, the distributions of bulk soil dielectric 
permittivity and electrical conductivity are 
obtained. The empirical relationships linking 
volumetric water content with bulk soil dielectric 
permittivity and electrical conductivity, which are 
obtained in the same way as for usual TDR 
measurements, allow estimation of the volumetric 
water content.  

Such a method allows use of longer probes 
than usual. In fact, measurement of the travel time 
requires the reflection of the electromagnetic wave 
at the end of the probe to be clearly detectable in 
the wave trace. Signal attenuation along the probe, 
mainly due to ionic electrical conductivity through 
soil water, reduces the amplitude and the 
steepness of the final reflection, making it very 
difficult to precisely locate the reflection time. As a 
consequence, especially for high water contents, 
the measurements based on the detection of travel 
time cannot be carried out with probes longer than 
20 to 30 cm. The described interpretation 
technique, instead, exploits the information about 
water content distribution provided by signal 
attenuation and can detect the 
reflection at the end of the 
probe even when it is extremely 
smoothed. Indeed, it has been 
successfully applied with probe 
lengths of 40 cm both in the 
laboratory (Greco 2006) and in 
the field (Greco and Guida 
2008). Acquisition of a TDR 

wave trace takes a few seconds, while the 
calculations for water content profile retrieval take 
a few minutes, thus real-time measurements can 
be obtained frequently. The knowledge of the 
water content profile over the entire soil thickness 
allows estimating the incoming saturation, better 
than with point measurements. For field 
applications, with cover thickness of few meters, 
the use of several TDR probes buried at various 
depth is required for the estimation of the water 
content profile. 

In the following sections, the use of TDR will 
be shown for the case of controlled infiltration 
experiments in small scale homogeneous model 
slopes. In this case, it is possible to assume a priori 
that soil water content monotonically grows 
upward, thus allowing to adopt the interpretation 
approach of Greco (2006), based on the use of a 
single TDR probe normal to the slope bottom. It 
has three metallic rods (diameter 3mm; spacing 
1.5cm) and a length of 10cm, thus crossing the 
entire soil deposit. 

Pyroclastic soils consist of light vesiculated 
(vesiculated) fragments with a wide range of 
particle sizes (from gravel to clay) characterised by 
internal voids, often unconnected, resulting in 
very low bulk densities, as shown in Table 3. Thus, 
specific experiments were performed to estimate 
the calibration relationship εr(θ) for Cervinara ash 
(Greco et al. 2010). In Figure 5 the obtained 
experimental relationship is compared to the 
“universal” curve proposed by Topp et al. (1980) 
and to those proposed by Regalado et al. (2003) 
for other pyroclastic materials. One of the plotted 
curves for pyroclastic soils is very close to the one 
characterising the Cervinara ash. This result is 
probably due to the very low density of volcanic 
soils, which strongly affects the εr(θ) relationship, 
as reported in literature (e.g., Malicki et al 1996). 
Adopting the relationship proposed by Topp et al. 
would lead to an underestimation by 10-20% of 

Table 3 Physical, mechanical and hydraulic properties of 
investigated soils 

Parameters Cervinara Monteforte 
Irpino 

Specific weight of solid particles 2.59÷2.64 2.57 
Bulk dry density (g/cm3) 1.4÷1.5 1.4 
Porosity 0.71÷0.74 0.71 
Saturated hydraulic conductivity ksat (m/s) 1⋅10-7 ÷ 5⋅10-7 7⋅10-7 
Effective friction angle φ’ (°) 38 37 
Cohesion c’ (kPa) 0 0 
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slope deformations continue and some cracks 
develop in the upper part of the slope (Figure 7c), 
the observed reduction of soil suction becomes 
very slow, until the slope failure, which occurs 
about 58 minutes after the beginning of the 
infiltration process. A similar behaviour has been 
observed not only during test B, as shown by 
Figure 8, but also during all the other infiltration 
tests (Greco et al. 2010). 

For test A, the time history of volumetric 
water content at three different depths is shown in 
Figure 9a. It looks clear that, once the wetting 
front reaches the considered depth, the increment 
of volumetric water content is much more gradual 
than the contemporary suction decrease. It is 
worth noting that in the last part of the 
experiment the soil at the bottom of the deposit 
becomes wetter than above, indicating that a 
water ponding is forming at the bottom, as 
confirmed by the readings of the pore pressure 
transducers (Figure 7a). 

Figure 9b reports some volumetric water 
content profiles obtained from TDR readings. 
While the limited spatial resolution and accuracy 
of the TDR technique does not allow revealing the 
wetting front during the early stage of infiltration, 
in the profiles retrieved after 8 minutes and later, 
the downward propagation of the wet front 
becomes more and more evident. In particular, the 
profiles obtained between 17 and 27 minutes after 
the beginning of the experiment are quite in a 
good agreement with the values of suction, 
showing a decrease of the water content from the 
top to the bottom. In such a phase, the soil 
remains far from saturation, as the wetter part of 
the profile retrieved after 27 minutes reaches a 
saturation degree of 62% calculated in the 

assumption of constant porosity. Unfortunately, 
for 15 minutes the TDR device did not work 
properly, so the following profile, acquired 42 
minutes after the beginning of the experiment, 
looks more uniform, with an average volumetric 
water content around 50% (corresponding to a 
saturation degree higher than 70%). The last 
profile, recorded 3 minutes before failure, does 
not reach the hypothetical maximum value of 0.74. 
Considering the positive value of pore pressure, 
that indicates the attainment of full saturation at 
the bottom (Figure 7a), this result may indicate 
the occurrence of volumetric collapse, leading to a 
reduction of soil porosity. Such a remark is 
confirmed by the settlements at the ground 
surface and by the opening of a large crack as wide 
as the slope (Figure 7c). 

The profiles of the volumetric water content 
retrieved during test B are reported in Figure 10. 
Again the figure shows the progressive downward 
advancement of the wetting front. About 20 
minutes from the start, the slope reaches nearly 
uniform water content, but during the last 5 
minutes the profiles present a different shape. In 

   
Figure 9 Volumetric water content measurements during test A: a) time history at three elevations; b) volumetric 
water content profiles. 

Figure 10 Volumetric water content profiles during 
experiment B. 
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particular, the last two profiles reveal that, in the 
upper part of the deposit, the saturated volumetric 
water content is being approached (the initial 
porosity is 0.76). In depth, instead, the profile 
shows smaller values of water content, which, at 
the bottom, attains only 0.6. Also in this case, this 
result can be ascribed to the volumetric collapse. 
In fact, the final average volumetric water content 
is around 0.73. Assuming that the last retrieved 
profile refers to nearly saturated conditions, and 
considering that during this test no significant 
crack appeared along the slope, the reduction of 
0.03 with respect to the initial porosity can be 
interpreted as a measurement of the volumetric 
strain. Such a value is quite in a good agreement 
with soil strain estimated from the settlements of 
the ground surface, which reaches nearly 4mm 
just before failure (Greco et al. 2010). 

Results of monitoring using optical fibres are 
reported in Figures 11 and 12 for the experiments 
A and C, respectively. In both the figures, the 
buried sections of the fibers are indicated by grey 
areas. The measurements reported in Figure 11a 
show a progressive increase in the shift frequency 
along the buried part of the fibre, which can be 
ascribed solely to a tensile strain increase, due to 
slope deformation, as soil temperature measured 
at the base of the slope remains constant during 
the experiment. Conversely, the decrease in the 
Brillouin shift frequency along the free spoil 
exposed to rain water in between the two buried 

strands is caused by the cooling due to fibres 
wetting. The estimated decrease in temperature, 
based on its correlation with the Brillouin shift 
frequency, is about 8°C. Figure 11b shows steadily 
increasing tensile strain measured by the second 
strand since the beginning of the test. The 
magnitude of the increase (about 8 MHz) 
indicates a strain of about 0.016% along the 
direction of the slope. Such a value is two orders of 
magnitude smaller than soil deformation normal 
to the slope, as estimated from ground settlements. 
Although the two components of deformation 
could be significantly different, this mismatch is 
probably due to the imperfect connection between 
the fibre and the soil, which allows relative 
displacements. Similar results were obtained in 
experiment B.  

The quality of readings can be improved by 
using geogrids to avoid relative movements 
between fiber and soil. With this respect, Figure 12 
reports pre-failure strains measured during test C. 
The profile at t=0 (Figure 12a) indicates an initial 
deformation, accumulated during previous 
infiltration phases, carried out before the 
beginning of test C. In this case the increase in 
Brillouin frequency shift is about 250 MHz, 
corresponding to a strain, measured just before 
rupture, of 0.5%, i.e. more than one order of 
magnitude higher than the value of 0.016% 
measured in experiment A (Figure 11b), when a 
slip between the soil and the fiber occurred, 

 
Figure 11 Experiment A: a) changes in the Brillouin shift frequency along the fibre; b) changes in the mean 
Brillouin frequency shift  vs. time along the right strand. 
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In all laboratory experiments the water 
content profiles proved to be consistent and 
reliable. In particular, obtaining continuous 
profiles of the volumetric water content along the 
entire rod length represents a significant 
improvement of the quality of monitoring. In 
addition, elaboration of data takes only a few 
minutes and readings can be automatically 
acquired. If probes are installed at different depths 
from the ground surface, this can contribute to a 
correct spatial and temporal interpretation of the 
evolution of the infiltration process from the 
ground surface. In fact, the probes clearly show 
the advancement of the wetting front in the early 
stage of infiltration. Afterwards, owing to the non 
linearity of the water retention curve, the gradual 
saturation of the soil can be better detected in 
terms of water content rather than with 
tensiometers. Therefore, they can provide useful 
information about the slope behaviour, as the 
volumetric collapse of loose soils close to full 
saturation. In addition, based on water retention 
curves, volumetric water content profiles can 
provide the fundamental information of 
distribution of suction with depth for slope 
stability analysis in unsaturated soils.  

Of course, further investigations are required 
to check the reliability of the device in more 
complex field conditions, in which stratigraphy 
and heterogeneities in the soil properties play a 
significant role. 

The use of optical fibres for monitoring of 
distributed soil strains is quite a novel technique, 
since most of the documented applications have 
been limited to structures or to structural 
elements embedded in the soil. Laboratory tests 
show that the fibre can be directly put into the soil. 
By adopting simple solutions to avoid relative 
displacements at the fibre-soil interface, internal 
soil deformation due to tension cracks, volumetric 
collapse or shear banding can be easily detected. 

In particular, cracking can be induced by either 
volumetric collapse or by local shear strains.  

The results of experiments on small-scale 
model slopes are encouraging. In such 
experiments, the first deformations were detected 
early, when the increase in the degree of 
saturation was only 10%. This confirms that such a 
technique could be very useful in loose soils which 
are susceptible to catastrophic landslides, where 
the volumetric deformation process starts quite 
early and could be detected in time to issue 
warnings. Also in this case, data elaboration takes 
few minutes and readings can be automatically 
stored or remotely transmitted. A prominent 
feature of this sensor is its ability to monitor 
distributed strains all along the fibre. This can 
help in detecting pre-failure deformations 
wherever they occur. In field applications, optical 
fibres can be directly laid in small trenches 
parallel or normal to the slope over long distances. 
If necessary, they can be protected from damage 
by installation inside small-diameter plastic tubes. 
In any case, reinforced fibres are now available, 
minimizing the risk of damage during installation. 

In conclusion, the proposed system could 
represent a useful tool for timely alerting landslide 
triggering, especially if integrated with other 
devices. Data from different sensors can provide a 
complete and robust framework for the evaluation 
of the hydrological slope response, reducing the 
probability of missing or false alarms.  
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