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Introduction  

The catastrophic “4.20” Lushan earthquake 
with magnitude Ms7.0 (Mw6.6, USGS) occurred on 
April 20, 2013 in Lushan county, Sichuan province, 
China. The epicenter was located at 103°E and 
30.3°N, and the focal depth was 13 km (China 
Earthquake Administration 2013; Xu et al. 2013; 
Chen et al. 2013). The maximum earthquake 
intensity was 9 degrees, and the area of 
earthquake-affected regions with earthquake 
intensity over 6 degrees was about 15,720 km2. 
More than 2000 aftershocks were monitored, of 
which 90 aftershocks were greater than magnitude 
Ms3.0, the greatest of which was magnitude Ms5.4. 
Focal mechanism analysis shows that this 
earthquake resulted from the thrust campaign of 
the southern section (Dachuan-Shuangshi fault) of 
Longmenshan fault with strike NE-SW and dip NW 
(Xu et al. 2013). The earthquake has resulted in a 
large number of casualties (193 killed and 12,211 
wounded) and economic loss. 

A large number of co-seismic geological 
hazards have occurred with higher frequency and 
greater intensity compared with before earthquake. 
Earthquakes can significantly affect geological 
conditions, for example making more cracks in 
rock masses, reducing the integrity of rock masses, 
and changing the original structure and physical 
and mechanical properties of rock masses (Miles 
and Keefer 2009; Vidrih et al. 2001; Cui et al. 2008; 
Liang et al. 2009). The earthquake played an 
important role in triggering most of the pre-
existing and some of the potential geological 
hazards in earthquake-affected regions. It 
significantly increased their magnitude and 
occurrence frequency and finally exacerbated their 
likelihood and destruction capability. Post-
earthquake landslide types are mainly rock and soil 
slides with shallow or moderate thickness. Viscous 
debris flows with soil material are the dominant 
type of post-earthquake debris flows. At the same 
time, the earthquake made many slopes unstable 
and produced abundant loose sediments and 
deposits, which are likely to be transformed into 
landslides or debris flows under subsequent 
intense rainfall.  

Rainfall is one of the most significant 
triggering factors for landslide occurrences, about 
90% of which coincide with intense rainfall (Lan et 

al. 2003). Rainfall can not only increase the 
saturation of rock masses to reduce their shear 
strength but can also result in increasing pore 
water pressure and a softer and more lubricated 
sliding surface, which are extremely unfavorable 
for slope stability (Simoni et al. 2004; Schulz et al. 
2009; Baum et al. 2010; Muntohar and Liao 2010). 
To account for the effect of rainfall on the slope 
stabilities, the Stability Index MAPping model 
(SINMAP) is adopted. It combines the infinite 
slope stability model and hydrological distribution 
model based on Digital Elevation Model (DEM), 
and is implemented on the GIS platform (Pack et al. 
1998; Pack et al. 2005). It fully takes into account 
the crucial impact of rainfall-induced groundwater 
distribution on landslide occurrences, and 
effectively solves the uncertainty of model 
parameters through probabilistic methods (Lan et 
al. 2003). It is more suitable for shallow landslides 
such as the dominant landslide type in the Lushan 
area and has been successfully applied in many 
studies and regions (Lan et al. 2004; Deb and El-
Kadi 2009; Terhorst and Kreja 2009; Meisina and 
Scarabelli 2007). 

The severely earthquake-affected regions in 
Lushan are also highly vulnerable to the rainfall-
triggered landslides which pose an inevitable threat 
to the post-earthquake reconstruction. Based on 
landslide inventory and historical rainfall records, 
the post-earthquake slope stability assessment was 
conducted under different rainfall scenarios (light 
rainfall, moderate rainfall, heavy rainfall and 
rainstorm). The associated slope stability 
distribution maps help understand the spatial 
distribution and characteristics of post-earthquake 
rainfall-induced landslides at a regional scale. 

1     Study Area 

The selected study area affected by the Lushan 
earthquake is located in the middle of Sichuan 
province, China with longitude 120.27°-103.39° 
east and latitude 29.48°-30.95° north, which 
covers about 10,334 km2 (Figure 1). It is also 
located at the sharp transition zone from the 
Qinghai-Tibet Plateau to the Sichuan Basin with 
complex topography and large elevation differences. 
On the whole, the northwest regions are higher 
with a maximum elevation of 5293 m, and the 
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southeast regions are lower with a minimum 
elevation of 528 m. This area belongs to the 
northeast binding site of the Kangdian tectonic belt, 
Longmenshan tectonic belt and Sichuan Basin, and 
crosses two tectonic units: the southern section of 
the Longmenshan tectonic belt and the Sichuan 
Basin. Folds and faults are predominant geological 
structures, which are well developed. Affected by 
Longmenshan tectonic belt with NE orientation, 

the most regional tectonic structures have NE 
orientation, including Baoxing anticlinorium, 
Lushan syncline, Shuangshi-Dachuan thrust fault. 

The main geomorphology types include the 
fluctuating mountains formed by erosion and 
denudation and steep-deep valleys. There are a 
small number of mesas, hills and plains in the 
southeast of the study area. The population density 
of western and northern mountainous regions is 

 
Figure 1 Overview of the study area and the distribution of geo-hazards. The left-top red rectangle indicates the 
location of the study area. 
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not high, but the resident locations are much 
dispersed, which brings difficulties for the 
geological hazards prevention and mitigation. The 
transport facilities are deficient in mountainous 
regions, for example there is only one provincial 
highway across Baoxing county, which can easily 
cause traffic disruption and delay the process of 
emergent rescue mission. 

2     Landslide Inventory, Rainfall 
Conditions and Other Materials 

Accurate landslide inventory is an essential 
element for a successful hazard assessment. It is 
the first crucial step during the assessment and 
analysis of landslide hazard (Deb and El-Kadi 2009; 
Terhorst and Kreja 2009; Guzzetti et al. 1999; 
Aleotti and Chowdhury 1999). According to the 
post-earthquake emergent field investigation 
conducted by the Ministry of Land and Resources 
of the People’s Republic of China, there were about 
840 geo-hazard events (including avalanches, 
landslides and debris flows) in the study area. In 
addition, 338 geo-hazard events were observed 
through the remote sensing interpretation of 
Unmanned Aerial Vehicle (UAV) images. They are 
mainly distributed in Baoxing County and many 
towns near the epicenter. Figure 2 presents the 
post-earthquake geo-hazard distribution in the 
urban area of Baoxing County through remote 
sensing interpretation of UAV images. 

The historical geological hazards were also 
collected, which were mainly developed in valley 
regions. The valley regions are mainly inhabited 
areas, where there are intense human engineering 
and economic activities that result in abundant 
broken rock masses and loose sediments and 
deposits. Debris flows often distribute across 
multiple geomorphological units, and the 
accumulation regions are generally located in a 
canyon. Material resource regions of debris flows 
are sometimes higher than the deposition regions 
by hundreds of meters. The distribution of 
earthquake-triggered geological hazards is strongly 
correlated with earthquake intensity (Zhang et al. 
2013). These hazards are not concentrated in valley 
regions; rather, they are mainly distributed in the 
regions with earthquake intensity of 7-9 degrees, 
such as Lushan county, southern Baoxing county, 

eastern Tianquan county and western Qionglai 
county. 

The DEM was derived from national digitized 
topographic maps with scale of 1:50,000 and a 
contour size of 10 m, which were interpolated to 
create the 20 m × 20 m raster dataset. Then, this 
DEM was used to generate the slope angle, slope 
aspect, flow direction, catchment area and other 
thematic data. Other necessary data include: the 
earthquake intensity map derived from China 
Earthquake Administration, a geological map with 

Figure 2 The distribution of post-earthquake geo-
hazards in the urban area of Baoxing county through 
remote sensing interpretation of Unmanned Aerial 
Vehicle (UAV) images conducted by the Chengdu 
University of Technology. 
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scale at 1:500,000, a tectonic fault map with scale 
at 1:2,500,000, a geomorphology map with scale at 
1:1,000,000 and a drainage map with scale at 
1:50,000. The landslide inventory was stored in a 
vector dataset and all other thematic data were 
stored in the raster dataset with spatial resolution 
of 20 m × 20 m. 

The rainfall is abundant in the study area, but 
its spatial and temporal distribution is non-
homogeneous. During rainy and flood seasons, the 
rainfall intensity is relatively higher, and the 
maximum rainfall mainly occurs in July and 
August. Based on the historical rainfall records 
(1951a – 2010a) from 21 rainfall monitoring sites 
and 48 secondary rainfall monitoring sites in the 
study area and its surrounding regions, the spatial 
distribution of average annual rainfall (Figure 3) 
was obtained using the Kriging interpolation 
method. The analytical results show that the 
average annual rainfall ranges from 697 mm/a to 
1612 mm/a, and the southeast regions (e.g. 
Yucheng, Mingshan, southern Lushan, eastern 
Tianquan and Qionglai) have relatively higher 
rainfall intensity while other regions have relatively 
lower intensity. The total rainfall is characterized 

by a large number of night rainfall events of short 
duration and high intensity. 

3    Slope Stability Assessment 

3.1 Methods 

Based on many previous studies (Montgomery 
and Dietrich 1994; Dietrich et al. 1995), Pack et al 
(1998, 2005) established the SINMAP model, 
which effectively integrates the infinite slope 
stability model, the DEM-based hydrological 
distribution model and the GIS platform, and fully 
takes into account the crucial impact of rainfall, 
lithology and topography on slope stability. The 
slope safety factor (FS) (ratio of stabilizing to 
destabilizing forces) is given by Equation (1), where 
C is cohesion (Pa), γs is soil weight (kg/m3), γw is 
water weight (kg/m3), φ is internal friction angle 
(°), and θ is slope angle (°), h is soil depth (m), and 
hw is the height of the water table within the soil 
layer. =  / ℎ + (ℎ − ℎ ) + ( − )ℎ  

                   cos tan / ℎ sin                                   (1) 

Because the model parameters have temporal 
and spatial uncertainty, it is very difficult to 
determine exact model parameters. The SINMAP 
model introduces the concept of slope stability 
index (SI) and provides a probabilistic method to 
solve parameter uncertainty. The SI is defined as 
the probability that a location is stable assuming 
uniform parameter distributions over these 
uncertainty ranges (Pack et al. 2005).  

In the case of FSmin > 1, namely Probability 
(FS > 1) = 1, then 

                                  =                                     (2) 

In the case of FSmin <= 1, then 

               = Probability ( > 1)                    (3) 

Table 1 presents the classification rules of 
slope stability in terms of SI. The slopes in the 
regions with “Stable”, “Moderately stable” and 
“Quasi-stable” conditions could maintain stability 
even under worse environmental conditions, and 
whose instability occurrence would need other 
significant destabilizing factors. The possibility of 
slope instability in lower threshold regions and 

Figure 3 Average annual rainfall (mm/a) derived from 
the historical rainfall records (1951a – 2010a) using the 
Kriging interpolation method. 
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upper threshold regions is lower and greater than 
50%, respectively. Slopes in defended regions will 
fail to maintain their stability with a significant 
likelihood under given range of model parameters 
(Lan et al. 2003; Pack et al. 2005). 

3.2 Modeling procedure and calibration 

Usually, the modeling procedure involves 
following several steps (Lan et al. 2003; Pack et al. 
2005): (1) DEM pit filling corrections; (2) 
Computation of slope angle and flow direction 
from DEM; (3) Computation of specific catchment 
area and saturation index based on hydrological 
analysis; (4) Computation of FS, SI and slope 
stability zoning. 

Comprehensively considering regional 
geographical, geological and geomorphological 
characteristics, the entire study area was divided 
into 5 individual geological units as shown in 
Figure 4, which have different susceptibility for 
landslide occurrences. The initial model 
parameters were assigned by referring to the 
Engineering Geology Manual (fourth edition) 
(Chang and Zhang 2006) and some experiential 
parameters derived from relative literatures (Pack 
et al. 1998; Pack et al. 2005; Terhorst and Kreja 
2009; Lan et al. 2003; Lan et al. 2004). 

The rainfall conditions are taken into account 
in the model by the parameter of T/q. Due to the 
significant influence of strong earthquakes on 
geological settings, it is likely that the accumulated 
rainfall threshold and the critical hourly rainfall 
intensity necessary to initiate landslides should be 

reduced compared with before earthquake (Lin et 
al. 2004; Lin et al. 2006; Tang et al. 2009; Shieh et 
al. 2009; He et al. 2011; Zhang et al. 2011). For 
example, after the Wenchuan earthquake, the 
accumulated rainfall threshold decreased by 15%–
22% and the critical hourly rainfall intensity 
decreased by 25%–32% for landslide occurrences 
(Tang et al. 2009; Zhang et al. 2014). After the Chi-

Table 1 Classes of slope stability in terms of stability index (SI) derived from SINMAP model (Pack 
et al. 2005; Deb and El-Kadi 2009) 

Condition Hazard state Parameter range Possible influence of factors not 
modeled 

SI>1.5 Stable Range cannot model instability Significant destabilizing factors are 
required for instability 

1.5>SI>1.25 Moderately stable Range cannot model instability Moderate destabilizing factors are 
required for instability 

1.25>SI>1.0 Quasi-stable Range cannot model instability Minor destabilizing factors are required 
for instability 

1.05>SI>0.5 Lower threshold Pessimistic half of range 
required for instability 

Destabilizing factors are not required for 
instability 

0.5>SI>0.0 Upper threshold Optimistic half of range required 
for instability 

Stabilizing factors may be responsible 
for stability 

SI=0 Defended Range cannot model stability Stabilizing factors are required for 
stability 

Note: “Parameter range” indicates the given range of model parameters for parameter uncertainty. 

 
Figure 4 Division of geological units of the study area. 
Unit 1 is least prone to landslide occurrences, and unit 5 is 
most prone to landslide occurrences, and unit 2, 3 and 4 
are moderately prone to landslide occurrences. 
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Chi earthquake, the accumulated rainfall threshold 
and the critical hourly rainfall intensity decreased 
to as low as 1/3 of the pre-earthquake figures (Lin 
et al. 2004). Similarly, considering the significant 
influence of Lushan earthquake on the geological 
setting of the study area, we made a rough 
reduction of initial model parameters by 30% in 
terms of previous study results. Then, these model 
parameters were carefully calibrated using iterative 
cross-validation between preliminary modeling 
results and landslide inventory. When the most 
landslides are distributed in the regions with SI < 1, 
we assume that the model parameters are 
reasonable and the analytical results are reliable. 
The detailed description of parameter calibration 
and validation has been presented in the SINMAP 
user’s manual (Pack et al. 2005). 

Table 2 shows the simulated different rainfall 
conditions. Table 3 shows the final geological 
parameters for the model. Table 4 shows the final 
model parameters of T/q, the original values of 
which were assigned in terms of different rainfall 
conditions in the Table 2. It should be pointed out 
that the parameter T/qmax under light rainfall in 
Table 4 was assigned a value of 106, which indicates 
a significant value during practical calculation. The 
constant parameters γs and γw were assigned values 
of 2.0×103 kg/m3 and 1.0×103 kg/m3, respectively. 

The soil depth was assigned a value of 2-3 m in 
terms of the emergent field investigation after 
Lushan earthquake.  

4    Results and Analysis 

After the above preliminary preparation and 
analysis, the final slope stability index of the study 
area was obtained using a final calibrated model 
with different parameters for different rainfall 
scenarios (light rainfall, moderate rainfall, heavy 
rainfall and rainstorm). Then, the slope stability 
zoning was conducted using the classification rules 
of slope stability in Table 1. The entire study area 
was divided into 6 regions with different slope 
stabilities: stable region, moderately stable region, 
quasi-stable region, lower threshold region, upper 
threshold region and defended region shown in 
Figure 5. 

Overall, there are obvious spatial differences of 
slope stability distribution in the study area in spite 
of different rainfall conditions, which can be 
reflected by the various colored regions with 
different slope stability in Figure 5. Although the 
rainfall is relatively greater in the southeast regions 
of the study area, the dominant topography is the 
flat and mild slopes, which are not conducive to 
landslide occurrences. So, there are not sufficient 
topographical conditions for landslide initiation 
and the unstable slope distribution is relatively less 
frequent in these regions. In the middle and 
middle-west regions of the study area, there is 
steep topography, developed valleys and large slope 
angles. For example, the Baoxing urban area is 
located in a narrow valley area with many high and 
steep mountains on both sides. In these regions, 
the rainfall is relatively less, but the complex 
topography predicts high landslide susceptibility 
and a low rainfall threshold. So, the unstable slope 
distribution is relatively extensive, which indicates 
a high rainfall-triggered landslide hazard level. 

The slope stability distribution under different 
rainfall conditions is strongly correlated with 
earthquake intensity distribution. The unstable 
slopes are mainly distributed in the northwest of 
the regions with an earthquake intensity of 7-9 
degrees. Although the southeast of the regions with 
earthquake intensity of 7-9 degrees also suffered 
strong earthquake effects, for example the 

Table 2 Rainfall conditions 
Rainfall (mm) 24 hours  12 hours
Light rain  <10.0 <5.0
Moderate rain  10.0-24.9 5.0-14.9
Heavy rain 25.0-49.9 15.0-29.9
Rainstorm 50.0-99.9 30.0-69.9
 
Table 3 Parameters of geological units 
ID (geological units)  Cmin Cmax φmin φmax

1 0.14 0.36 36 52
2 0.12 0.34 34 50
3 0.10 0.32 32 48
4 0.06 0.27 29 44
5 0.05 0.25 27 42

Note: The ID of geological units corresponds to the 
number of geological unit legend in Figure 4. 

 
Table 4 Parameter T/q under different rainfall 
conditions 
Rainfall T/qmin T/qmax 
Light rainfall 6600 +∞ 
Moderate rainfall 3400 6800 
Heavy rainfall 1800 3600 
Rainstorm 1000 2000 
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(a)                                                                                                                          (b) 

      

(c)                                                                                                                             (d) 

Figure 5 Slope stability distribution maps under different rainfall conditions. (a) Light rainfall, (b) Moderate rainfall, 
(c) Heavy rainfall, (d) Rainstorm. 
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abundance of destroyed infrastructure, the 
dominant topography with flat and mild slopes is 
not conducive to landslide occurrences and the 
distribution of unstable slopes is not extensive. 

Rainfall infiltrates hillsides and becomes 
groundwater that can increase the saturation of 
shallow slopes, and decrease rock mass strength 
and stabilizing force, which should cause slope 
instability and increase the likelihood of landslide 
occurrences (Wu et al. 2011). In the regions near 
mountain ridges where groundwater diverges, 
slopes have smaller specific catchment areas and 
their instability needs a higher slope angle and 
more intense rainfall to trigger. However, in the 
regions near valley where groundwater converges, 
the slopes have larger specific catchment areas and 
their instability needs a lower slope angle and less 
rainfall. 

In order to further analyze the detailed 
characteristics of the rainfall-triggered landslide 
distribution, we got the area of various regions with 
different slope stabilities under different rainfall 
conditions, whose proportion and variation 
patterns are shown in Figure 6. The area variation 
between various slope stability regions obviously 
reflects the significant influence of rainfall on slope 
stability in the study area. With the gradual 
increase of rainfall, the area and proportion of 
stable regions decreased remarkably, while the area 
and proportion of unstable regions increased 
remarkably. The area of stable and moderately 
stable regions decreased from 77.2% under light 
rainfall to 27.4% under rainstorm. Meanwhile, the 
area of upper threshold and defended regions 
increased from 0.9% under light rainfall to 15.1% 
under rainstorm. The area of regions that 
transition from stable regions to unstable regions, 

including quasi-stable and lower threshold regions, 
has relatively little increase from 21.9% under light 
rainfall to 57.5% under rainstorm, which mainly 
occurs during the transitional stage from light 
rainfall to moderate rainfall. 

The Lushan earthquake had an adverse 
influence on geological settings and triggered a 
large amount of rock avalanches in earthquake-
affected regions, which resulted in abundant loose 
deposits and sediments. These deposits and 
sediments on hillsides provide crucial material for 
subsequent rainfall-triggered landslides and debris 
flows. So, the geological setting will be more 
conducive to landslide occurrences and the rainfall 
threshold of triggering landslides decreased to 
some extent in the study area after the Lushan 
earthquake. It can be predicted that the landslide 
frequency and intensity will be relatively higher for 
a period of time after earthquake than before 
earthquake under the same rainfall conditions. 

5    Discussions and Conclusions 

The detailed co-seismic landslide inventory 
was acquired through post-earthquake emergent 
field investigation and high resolution remote 
sensing interpretation. The secondary geological 
hazards induced by Lushan earthquake are 
dominated by shallow landslides. The distribution 
of co-seismic geological hazards has high 
relationship with the distribution of earthquake 
intensity while the pre-earthquake distribution is 
correlated with the characteristics of 
geomorphology. 

In addition, the resultant abundant loose 
materials are prone to post-earthquake landslides 
especially under different rainfall conditions. The 
rainfall analysis is conducted using historical 
rainfall records during the period from 1951 to 
2010. Results reveal the heterogeneous 
characteristics of spatial distribution of rainfall. 
The post-earthquake slope stability under different 
rainfall conditions is evaluated by the Stability 
Index MAPping (SINMAP) model which is suitable 
for shallow slope stability analysis. The model 
parameters were calibrated to reflect the significant 
influence of strong earthquakes on geological 
setting and the effect of different rainfall conditions 
on hydraulic parameters. The slope stability maps 

 

Figure 6 The percentage of area of different lands 
having different degree of slope stability under different 
rainfall conditions. 
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triggered by different rainfall scenarios are 
produced at a regional scale. The expanding trend 
of the unstable area was quantitatively assessed 
with the gradual increase of critical rainfall 
intensity. They provide a new insight into the 
spatial distribution and characteristics of post-
earthquake rainfall-triggered landslides in the 
Lushan seismic area. 

There is evidence of a correlation between 
slope stability and rainfall. With the increase of 
rainfall, the unstable regions increase significantly. 
Strong earthquakes can seriously affect geological 
conditions and result in the decrease of the rainfall 
threshold of triggering landslides to some extent. 
Under the same rainfall conditions, the landslide 
frequency and intensity will be higher for a period 
of time after an earthquake than before the 
earthquake until the absolute disappearance of the 
earthquake effect. The heterogeneous distribution 
of landslides is highly relative to the distribution of 
earthquake intensity in spite of different rainfall 
conditions. The results suggest that the both 
seismic intensity and rainfall are two crucial factors 
for post-earthquake landslide assessment. 

It should be noted that the uncertainty of 
modeling should be taken into account for the 
interpretation of modeling results. Some elements, 
such as DEM resolution, the completion of a 
landslide inventory, rainfall process and properties 
of rock masses have high impact on the uncertainty 
of the slope stability distribution map. In our study, 
the geological conditions are significantly affected 
by the Lushan earthquake and it is sometimes 

difficult to determine precise parameters of 
modeling geological units, which results in high 
uncertainty. The presented assessment results of 
rainfall-triggered slope stability in the current 
study are only suitable for a certain period after an 
earthquake. With the gradual decrease of the 
earthquake effect, the environmental factors that 
significantly affect landslide occurrences will 
gradually recover to the condition prior to 
earthquake. The assessment on rainfall-triggered 
slope stability should be adjusted appropriately to 
adapt for variable environmental factors for the 
different periods after earthquake. Nevertheless, 
this study provides important references for 
landslide prevention and mitigation in the Lushan 
area after the earthquake. 
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