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Abstract: Primary productivity of ecosystem is 
important indicator about ecological assessment. 
Remote sensing technology has been used to monitor 
net primary productivity (NPP) of ecological system 
for several years. In this paper, the remotely sensed 
NPP simulation model of alpine vegetation in Qinghai 
Province of Tibet Plateau was set up based on the 
theory of light use efficiency. Firstly a new approach 
based on mixed pixels and Support Vector Machine 
(SVM) algorithm were used to correct simulated NPP 
values derived from Moderate Resolution Imaging 
Spectroradiometer (MODIS) data. Finally, spatial 
distribution and monthly variation characteristics of 
NPP in Qinghai Province in 2006 were analyzed in 
detail. The result showed that NPP of vegetation in 
Qinghai Province in 2006 ranged from 0 to 422 
gC/m2/a and the average NPP was 151 gC/m2/a. NPP 
gradually increased from northwest to southeast. NPP 
of different vegetation types were obviously different. 
The average NPP of broad-leaved forest was the 
largest (314 gC/m2/a), and sparse shrub was the 
smallest (101 gC/m2/a). NPP in Qinghai Province 
significantly changed with seasonal variation. The 
accumulation of NPP was primarily in the period 
(from April to September) with better moist and heat 
conditions. In July, the average NPP of vegetation 
reached the maximum value (43 gC/m2). In our 
model, the advantage of traditional LUE models was 
adopted, and our study fully considered typical 

characteristics of alpine vegetation light use efficiency 
and environmental factors in the study area. Alpine 
vegetation is the most important ecological resource 
of Tibet Plateau, exactly monitoring its NPP value by 
remote sensing is an effective protection measure. 
 
Keywords: Net primary productivity; Remote 
sensing; Light use efficiency model; Contextural 
approach; Support Vector Machine 

Introduction  

The research on vegetation ecological 
characteristics is an important application field of 
remote sensing. Spectral characteristics of 
vegetation can be used to efficiently identify 
vegetation types from other terrestrial objects in 
remote sensing images. In addition, different 
vegetation has its own spectral characteristic which 
is the basis of differentiating vegetation types and 
estimating net primary productivity (NPP). 
Vegetation absorption rate is obviously different on 
visible and near-infrared bands, and Normalized 
Difference Vegetation Index (NDVI) was 
mentioned to express the distinction. Since Tucker 
et al. (1985) addressed to research relationship 
between NDVI with vegetation photosynthesis, 
remote sensing has been a main technology of Received: 27 November 2012 
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observing vegetation distribution and productivity 
variation. Therefore, estimating vegetation NPP by 
remote sensing data has been an important and 
widely accepted research approach (Gehrung et al. 
2009; Yan et al. 2004). 

Estimating terrestrial vegetation NPP by 
remote sensing data is most prominent character of 
NPP model research and simulating method in the 
recent decade. Douglas et al. (2004) used light use 
efficiency (LUE) model based on remote sensing 
data to estimate NPP of northern temperate forest 
in Wisconsin, USA in 1999 and 2000. Pontus et al. 
(2007) constructed LUE model based on MODIS 
vegetation index products to calculate FPAR and 
NPP on Scandinavia peninsula, then they 
performed many experiments in the field to 
validate simulated results derived from the model. 
The U.S. National Aeronautics and Space 
Administration (NASA) Earth Observing System 
(EOS) produced the algorithm of gross primary 
productivity (GPP) and NPP products retrieved 
from MODIS data. The algorithm was in essence a 
modified model of LUE, since GPP was calculated 
from incident solar irradiance and absorptive 
coefficient of vegetation canopy according to the 
conception of LUE. The algorithm made leaf area 
index (LAI) retrieved from remote sensing data as 
a key parameter, and the consumption of 
autotrophic respiration was estimated through 
simply simulating physiological and ecological 
processes. Finally, GPP minus autotrophic 
respiration was calculated to retrieve NPP (David 
et al. 2006). Li et al. (2008) adopted satellite data 
and meteorology observing material to calculate 
NPP of grassland in Mongolia from 1982 to 2003 
by LUE model. Guo et al. (2009) analyzed 
temporal and spatial variations of farmland NPP in 
Sanjiang Plain based on MOD17A3 dataset from 
2002 to 2005. Michael et al. (2009) researched the 
global loss of NPP resulting from human-induced 
soil degradation in arid lands. Huemmrich et al. 
(2010) simulated tundra gross ecosystem 
productivity in northern Alaska, USA based on 
remote sensing data and LUE model, and they 
studied its response to various temperature and 
moisture conditions. Xiao et al. (2010) used GPP 
retrieved from MODIS to revise GPP derived from 
AmeriFlux data by regression trees. Comparing 
with other NPP estimation methods, the main 
advantages of NPP model based on remote sensing 

are: 1) rapidly update capability of multi-temporal 
data; 2) generalization ability of multi-scale data; 
and 3) extraction capacity of beyond the individual 
plant and non-uniform ground objects at pixel 
scale. Although advantages of remotely sensed NPP 
model are obvious, some questions should be 
further researched. 

In this paper, typical characteristics of 
vegetation LUE and environment in the study area 
were fully taken into account, and remotely sensed 
NPP model of alpine vegetation based on LUE was 
established. Then the contextural approach based 
on mixed pixels and Support Vector Machine (SVM) 
was adopted to correct simulated NPP values. 
Finally, spatial distributions and temporal 
variations of monthly NPP in Qinghai Province in 
2006 were simulated and analyzed. 

1    The Study Area 

The study area covers the whole Qinghai 
Province (89°35'E-103°04'E and 31°39'N-39°19'N). 
Qinghai Province is located in the northeastern of 
Qinghai-Tibet Plateau in West China (Figure 1). 
The climatic character in Qinghai Province is 
rapidly warming up in spring and fast cooling 
down in autumn. The average temperature in 
January is -13°C, and in July is 12°C. In general, 
precipitation is too few and very unevenly 

 
Figure 1 Location map of the study area in China. 
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distributed. The trend of precipitation in Qinghai 
Province is gradually decreasing from southeast to 
northwest. The annual precipitation is about 400 
mm in the southeast and only about 50 mm in 
Chaidamu Basin in the west. Qinghai Province is 
one part of Qinghai-Tibet Plateau, hence the 
climate has typical characteristics of Qinghai-Tibet 
Plateau climate. Unique natural environment in 
Qinghai Province determines the corresponding 
features of vegetation. Forest in Qinghai Province 
is sparse, mainly dominated by cold temperate 
coniferous forest and followed by temperate 
coniferous forest and deciduous broad-leaved 
forest. The area of natural grassland in Qinghai 
Province accounts for 50.46% of its total land area. 
The most widespread grassland is represented by 
alpine meadow. The shrubland is mainly 
dominated by alpine evergreen shrub and 
deciduous broad-leaved shrub (Shen et al. 1991). 

2    Data Sources and Preprocessing 

2.1 Remote sensing data 

Surface Reflectance 8-Day L3 Global 500 m 
(MOD09A1), Land Surface Temperature/ 
Emissivity 8-Day L3 Global 1km (MOD11A2), Land 
Cover Type Yearly L3 Global 1km (MOD12Q1), 
Vegetation Indices 16-Day L3 Global 1 km 
(MOD13A2), Leaf Area Index/FPAR 8-Day L4 
Global 1km (MOD15A2), Gross Primary 
Productivity 8-Day L4 Global 1km (MOD17A2), 
and Albedo 16-Day L3 Global 1km (MOD43B3) of 
MODIS land products were used in the paper to 
calculation and validation during the construction 
of NPP model. They were provided by LPDAAC 
(Land Process Distributed Active Archive Center，
U.S.A). Preprocessing procedure includes: MRT 
software programmed by USGS EROS data center 
was adopted to accomplish images mosaicking, 
geometric rectification and resampling; above 
multi-temporal MODIS data products were 
synthetically pretreated by Maximum Value 
Composite (MVC), that is, the value of each pixel in 
images was respectively replaced with the 
maximum value of this pixel for j days in order to 
reduce the effect from atmospheric clouds, 
particles, shadows, perspective and solar altitude 
angle; pixels with abnormal values in MODIS 

products were repaired by the linear relationship of 
adjacent temporal image. 

TM data used in the study were received by 
Landsat-5 launched on March 1, 1984. 5 scenes of 
TM images covering the whole Dari County were 
selected, of which path/row numbers were 132/37, 
133/36, 133/37, 134/36 and 134/37, respectively. 
Since receiving time of chosen TM images were all 
in July, images were better representative of 
reflecting the good period of vegetation growth in a 
year. And selective images with good quality 
ensured operability of image analysis and 
reliability of results. Geometric and atmosphere 
corrections were made to selected TM images. 
FlAASH (Fast Line-of-sight Atmospheric Analysis 
of Spectral Hypercube) was used as atmospheric 
correction method. After TM images were 
processed by FLAASH, their contrast was enhanced 
due to removing some mist. Images did not show 
obvious change on visual effects after atmospheric 
correction, but their spectral characteristics were 
very different. 

2.2 Meteorology data 

Various meteorological parameters were 
needed to input the NPP model. Meteorology data 
from 41 stations in Qinghai Province, such as 
average temperature (0.1°C), precipitation (0.1 
mm), average atmospheric relative humidity (%), 
sunshine duration (0.1 h), air pressure (0.1 hpa) 
and mean wind speed (0.1 m/s), were provided by 
Chinese Meteorological Center. Processing steps of 
meteorological grid maps were as follows: 1) 
according to latitude and longitude information 
provided by data, various meteorological data were 
converted to spatial vector data with geographical 
coordinates; 2) required parameters were added 
into vector data as attribute fields; and 3) Kriging 
interpolation algorithm were performed to 
meteorological vector data. 

2.3 Land cover classification map 

The land cover classification map of Qinghai 
Province has been published by Journal of 
Geographical Sciences (Wang et al. 2008), and it 
was adopted in this study. Based on field 
investigation and various methods of land cover 
classification, the classification approach of 
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Qinghai Province synthesized supervised 
classification, unsupervised classification and 
decision tree classification. There are 14 land cover 
classes in Qinghai Province, such as city, water 
body, snow/ice, desert, Gobi, dense grassland (DG), 
needle-leaved forest (NLF), broad-leaved forest 
(BLF), sparse grassland (SG), dense shrub (DS), 
sparse shrub (SS), middle density grassland (MDG), 
grassland mixed with farmland (GMF), and needle-
leaved and broad-leaved mixed forest (NLBLMF). 
Vegetation distributions, especially sparse 
vegetation distributions (including sparse 
grassland and sparse shrub), were emphasized in 
this classification approach. 

2.4 Measured data 

Measured data were used in the study, and 
they were gotten from the experiment conducted in 
Dari County of Qinghai Province. Grasslands were 
main experimental objects. Field investigations 
were taken in July 2006, because July was the best 
period of vegetation growth status. In the process 
of field investigations, Global Position System (GPS) 
was used to precisely locate typical sites. Then 
vegetation in the site was compared with remote 
sensing image, and vegetation types and cover 
status were recorded. The experiment mainly 
included: LI-6400 portable photosynthesis system 
was used to measure some physiological indicators 
of typical grasslands on Qinghai-Tibet Plateau, 
such as net photosynthetic rate, stomata 
conductance, transpiration rate, leaf temperature, 
and so on; SUNSCAN canopy analysis system was 
applied to observe incident photosynthetic active 
radiation (PAR) (including direct PAR and 
scattering PAR), PAR at the bottom of the canopy, 
etc; LAI-2000 vegetation canopy analysis system 
was used to measure LAI of typical grasslands; and 
grassland plots were reasonably chosen to measure 
the biomass. 

3    Methods 

3.1 The construction of NPP model 

Remotely sensed NPP model based on LUE 
has significant advantages of obtaining model 
parameters through remote sensing and be suitable 

to regional and global scale. Therefore, remotely 
sensed NPP model constructed in the study was 
based on LUE theory. It draws on advantages of 
many LUE models (e.g. MODIS-PSN, CASA, GLO-
PEM and VPM), while it fully considers typical 
characteristics of vegetation LUE and 
environmental factors for specific region.  

Remotely sensed NPP model can be expressed 
as: 

( ) maxWmin ε×××= ssTFPARPARNPP ， (1) 

where PAR is photosynthetic active radiation 
(MJ/m2), FPAR is fractional photosynthetic active 
radiation (unitless), sT is temperature stress factor 
(unitless), sW  is water stress factor (unitless), and 

maxε  is maximum LUE (gC/MJ). 
Figure 2 shows the flowchart of calculating 

NPP.  

3.1.1 Maximum LUE (εmax) 

According to literature and field experimental 
data, the study first collected a set of observational 
data including NPP, PAR, FPAR, temperature 
stress factor, and water stress factor for some 
vegetation. Afterwards, maximum likelihood 
estimate was adopted to simulate the value of 
maximum LUE for the vegetation (Zhu et al. 2006; 
Li et al. 2004; Pu et al. 2005). 

Maximum likelihood estimate is used to 
assume that V is the residual of NPP and maxε̂  is 
simulated value of maximum LUE (εmax). So the 
error equation is: 

( ) NPPTFPARPARV ss −×××= maxˆWmin ε， (2) 

The simulated value ( maxε̂ ) of maximum LUE 
(εmax) is finally deduced as: 

∑

∑

=

=

−

−
= n

i
i

n

i
ii

xnx

yxnyx

1

22

1
maxε̂                             (3) 

where maxε̂  is the simulated value of maximum 

LUE, ix  is the calculated value of 

( )ss WTFPARPAR ，min××  for the plant, iy  is the 

NPP value for the plant, i is the sample number for 
the plant, n is maximum sample number for the 
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In order to improve the simulation precision 
of maximum LUE (εmax) for various remotely 
sensed grassland and shrubland classes, the weight 
average value of maximum LUE values for main 
grass or shrub classes is calculated as the 
maximum LUE value of corresponding remotely 
sensed grassland or shrubland class: 

( )∑=
=

n

i
iicε

1
maxmax ε̂                              (4) 

where ci is area fraction of i grass (or shrub), 
( )imaxε̂  is simulated maximum LUE value of i grass 
(or shrub), i refers to i grass (or shrub), and n is the 
number of main grass (or shrub) classes. 

3.1.2 FPAR 

The nonlinearity relationship between FPAR 
and spectral vegetation index has been proven by 
many researches. Simple ratio (SR) and NDVI are 

two most common indices. The nonlinearity 
relationship between FPAR and NDVI illustrates 
the widely proposed phenomenon that NDVI is 
saturated when LAI is greater than 3. And it also 
implies the linear relationship between FPAR and 
SR (Chen et al. 2007). The relationship equation 
between FPAR and SR was constructed based on 
data in the study area: 
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−
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                  (5) 

where SRmin is assigned to a same value of 1.06 for 
all vegetation types, the value of SRmax is related to 
the vegetation type: 6.14 for broad-leaved forest, 
3.88 for needle-leaved and broad-leaved mixed 
forest, 3.44 for needle-leaved forest, 3 for dense 
grassland, 3.27 for dense shrub, 2.17 for middle 
density grassland, 1.94 for grassland mixed with 
farmland, 1.78 for sparse grassland, and 1.70 for 
sparse shrub. 

 
Figure 2 Flowchart of net primary productivity (NPP). 
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3.1.3 Water stress factor ( sW ) 

Water effect on photosynthesis is usually 
expressed by the formula of vapor pressure deficit 
(VPD) and soil moisture in some productivity 
models. But these two parameters are difficult to be 
accurately determined. In this study, evaporative 
fraction (EF) was used to estimate water stress 
factor. EF can better characterize water condition 
of ecosystems, and it also can be easily retrieved 
from remotely sensed vegetation indices and land 
surface temperature products (Yuan et al. 2007; 
Venturini et al. 2004). EF can be given by: 

HLE
LEEFWs +

==                         (6) 

where sW  is water stress factor, LE is latent heat 
flux (W/m2), and H is sensible heat flux (W/m2). 

3.1.4 Temperature stress factor ( sT ) 

The method derived from the Terrestrial 
Ecosystem Model (TEM) was used to estimate 
temperature stress factor (Akihiko, 2008): 

2
maxmin

maxmin

)())((
))((

opt
s TTTTTT

TTTTT
−−−−

−−=      (7) 

where T is air temperature, Tmin, Topt and Tmax are 
minimum, optimum and maximum temperature of 
photosynthesis, respectively. If air temperature is 
below Tmin or above Tmax, Ts will be set to 0°C. In 
the study, Tmin and Tmax were assigned to 0°C and 
36°C, respectively. In addition, assuming that 
plants have adapted well to growth environmental 
temperature, Topt may be set to long-term average 
temperature of the growing season. 

3.2 Correction of simulated NPP 

In this paper, vegetation NPP in Qinghai 
Province in 2006 was simulated by remote sensing 
model. Due to lower spatial resolution of MODIS 
data, simulated NPP values need to be modified. 
The contextural approach based on mixed pixels 
proposed by Anita et al. (2004) and SVM algorithm 
were used to correct simulated NPP values 
retrieved from MODIS data in the study. 

The contextural approach based on mixed 
pixels considers spatial heterogeneity issues 
existing in mixed pixels. It utilizes land cover data 
at high resolution to calculate area fractions of 

dominant pixels in mixed pixels at low resolution, 
then it uses scale effect correction factor to correct 
simulated NPP values retrieved from Low-
resolution remote sensing data. The study assumes 
that simulated NPP values from TM represent the 
true value of vegetation NPP and simulated 
NPPMODIS from MODIS are approximate NPP 
values needed to be corrected. Based on simulated 
NPP results retrieved from high-resolution remote 
sensing data of TM, correctedjMODISNPP _  can be 
achieved by scale effect correction to NPPMODIS 
derived from low-resolution remote sensing data of 
MODIS. Thus the precision of estimating NPP from 
remote sensing data at low resolution can be 
improved. The formula of correcting simulated 
NPP retrieved from MODIS data is: 

⎟
⎠

⎞
⎜
⎝

⎛ −×= ∑
=

n

i
ijijjMODIScorrectedjMODIS FCNPPNPP

1
_ 1

           (8) 

where Fij is the fraction of nondominant cover type 
i (in 30m-resolution TM images) in a pixel labeled 
as cover type j (in 1km-resolution images converted 
from 30m-resolution TM images), Cij is the 
regression coefficient between Rj (scale-effect 
correction factor) for a pixel labeled as cover type j 
and Fij of nondominant cover type i in this pixel, n 
is the number of nondominant cover types in a 
pixel labeled as cover type j, and jMODISNPP  is 
simulated NPP results retrieved from low-
resolution remote sensing data of MODIS for a 
pixel labeled as cover type j. 

In the process of correcting simulated NPP 
values, regression coefficient Cij between Rj (scale-
effect correction factor) for a pixel labeled as cover 
type j and Fij of nondominant cover type i in this 
pixel needs to be calculated. In this paper, SVM 
algorithm was adopted to establish the regression 
model between Rj and Fij. SVM is especially 
suitable for limited sample. Its goal is to get the 
optimal solution under existing information rather 
than the optimal solution that the amount of 
information tends to infinity. The algorithm 
eventually transforms into a problem of quadratic 
optimization, and it solves the inevitable problem 
of local extremum in neural network. SVM 
algorithm transforms the actual problem into high 
dimensional feature space by the nonlinear 
transformation, and it constructs a linear function 
in high dimensional space to realize nonlinear 
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discriminant function in the original space. SVM 
skillfully solves the dimension problem, and it 
makes the algorithm complexity independent of 
the sample dimension. Libsvm software adopted in 
the paper can solve problems of classification, 
regression, distribution estimation, etc, and it 
provides four common kernel functions including 
linear, polynomial, RBF, and S-shaped functions 
(Lin 2008).  

4    Results 

4.1 Comparison and 
validation of simulated 
vegetation NPP in 
Qinghai Province 

Nowadays different scholars 
have obtained different simulated 
NPP values by different methods, 
so the validation of simulated 
NPP is very important. In 
addition, NPP affected by 
geographical and environmental 
factors fluctuate in different years, 
so real-time ground measured 
data are the best data of 
validating results derived from 
the NPP model. However, as it is 
impossible to measure NPP at 
large areas at the same time 
(especially at the regional or even 
global scale), so most validations 
of simulated NPP results are only 
accomplished through indirect 
approaches. 

To validate the correctness of 
estimated NPP results in this 
paper, comparison and validation 
to simulated NPP have been 
performed through three aspects: 
1) comparison with MODIS17A2 
of NPP products in 2006; 2) 
comparison with relative 
simulated NPP results derived 
from other studies; and 3) 
comparison with field measured 
data. 

(1) Comparison between 

simulated NPP results in this paper and 
MODIS17A2 products in 2006; 

(2) Figure 3 shows vegetation NPP 
distributions in Qinghai Province in 2006 derived 
from MOD17A2. Comparing with simulated NPP in 
the study (Figure 4), the result shows: in MOD17A2, 
the average NPP of vegetation in Qinghai Province 
in 2006 was 90 gC/m2/a, and NPP ranged from 0 
to 794 gC/m2/a. But the mean NPP simulated in 
the study was 151 gC/m2/a, and NPP ranged from 0 
to 422 gC/m2/a. From the view of the spatial 
distribution of NPP, most parts of Qinghai 
Province are yellow (less than 100 gC/m2/a) in 

 
Figure 3 The spatial distribution map of vegetation NPP in Qinghai 
Province in 2006 (MOD17A2). 

 
Figure 4 The spatial distribution map of vegetation NPP in Qinghai 
Province in 2006 (our result). 
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MOD17A2, and NPP values are significantly lower 
than simulated NPP values in the study. In 
addition, in brownish red regions of eastern 
Qinghai Province in MOD17A2, NPP are generally 
greater than 400 gC/m2/a, and these areas should 
be forest cover regions. However, in contrast with 
relative vegetation distribution map, there are no 
large areas of forest in these regions. Only a small 
area of forest exists, and forests are scattered. 

(3) Comparison with results derived from 
similar studies 

Simulated NPP results of main vegetation 
types derived from various researchers are quite 
different. Years, data sources, used models, model 
steps, selected vegetation type maps, and the size of 
grid may affect simulation results. Therefore, large 
regional NPP estimates put forward higher 
requirements for data sources and the stability of 
estimation methods. Other researchers simulated 
the average NPP of various vegetation types in the 
China region or in the entire Qinghai-Tibet Plateau, 
but their study only estimated the mean NPP of 
different vegetation types in Qinghai Province. Due 
to the influence of geographical location and 
climatic conditions, simulated NPP values in this 
paper are less than national estimated NPP values, 
and they are closer to the estimation results of NPP 
in relatively small study area of Qinghai-Tibet 
Plateau. 

(4) Comparison with the measured data 
Grassland is the most important vegetation 

type in Qinghai Province. So this study focuses on 
the validation to NPP of grassland ecosystem 
simulated by the model. The validation of 
grassland NPP first used the observation data 
derived from the station of observing alpine 
meadow ecosystem flux in Haibei Prefecture of 
Qinghai Province (Yu et al. 2008). 3 sets of eddy 
covariance observing system were erected around 
Haibei station to observe Kobreisa humilis, 
Potentilla fruticosa and Kobresia tibetica. 
Observations show that NPP was 132 gC/m2/a for 
Kobreisa humilis, 131 gC/m2/a for Kobresia 
tibetica, and 124 gC/m2/a for Potentilla fruticosa, 
respectively. The average value of them was 129 
gC/m2/a. Simulated NPP value at the 
corresponding coordinate in our study was 172 
gC/m2/a.  

As it is very difficult to measure NPP, NPP 
data converted from biomass are often used 

instead of measured NPP data. In the study, 
grassland biomass data measured in Dari County of 
Qinghai Province in July 2006 were converted to 
NPP values. Spatial locations of measured NPP 
data and simulated NPP data were matched, and 
accuracy test of simulated values was implemented 
(Figure 5). Test results showed that simulated 
values were consistent with measured values 
(R2=0.9348). 

4.2 The spatial distribution characteristics 
of vegetation NPP in Qinghai Province 

Qinghai Province with high altitude and cold 
climate is a component of Qinghai-Tibet Plateau. 
The specific natural environment decides that local 
vegetation has the characteristic of adapting to 
alpine environment. Meanwhile, due to the 
restriction of the harsh natural environment, 
comparing with vegetation at the same altitude in 
the eastern region of China, vegetation in Qinghai 
Province with relatively short growing season and 
slow bioaccumulation has comparatively low NPP. 

From the spatial distribution map of 
vegetation NPP in Qinghai Province in 2006, it was 
showed that estimation results of vegetation NPP 
in Qinghai Province in 2006 ranged from 0 to 422 
gC/m2/a and the average NPP was 151 gC/m2/a. 
NPP gradually increased from northwest to 
southeast. Vegetation NPP in most regions of 
northwestern Qinghai Province which was desert 
and Gobi (e.g. Chaidamu Basin) were low and 

Figure 5 Comparison of simulated NPP value and 
measured NPP value. 
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ranged from 40 to 80 gC/m2/a (such as 71 gC/m2/a 
in Golmud). NPP of vegetation in the southeast 
were high and ranged from 174 to 401 gC/m2/a 
(such as 298 gC/m2/a in Dari County, 367 gC/m2/a 
in Maqin County, 376 gC/m2/a in Gander County). 
NPP in the south of Qinghai Province were also 
high and ranged from 152 to 350 gC/m2/a (such as 
250 gC/m2/a in Yushu County, 236 gC/m2/a in 
Qumalai County, 325 gC/m2/a in Nangqian 
County). NPP of vegetation around Qinghai Lake 
were high and varied from to 336 gC/m2/a (such as 
214 gC/m2/a in Huangyuan County, 193 gC/m2/a 
in Gangcha County, 203 gC/m2/a in Haiyan 
County). From the statistics, NPP values in the 
southeast, the south and regions around Qinghai 
Lake were larger than other areas of Qinghai 
Province. 

Administrative divisions of Qinghai Province 
include Xining City, Haidong Prefecture, Haibei 
Tibetan Autonomous Region, Hainan Tibetan 
Autonomous Region, Huangnan Tibetan 
Autonomous Region, Guoluo Tibetan Autonomous 
Region, Yushu Tibetan Autonomous Region, and 
Haixi Mongolian Tibetan Autonomous Region. 
Total NPP of vegetation in Qinghai Province in 
2006 were 60.33 TgC/a. NPP in various 
administrative division regions were largely 
different (Figure 6). Annual total NPP of vegetation 
in Yushu Tibetan Autonomous Region were the 
largest (20.84 TgC/a), and they accounted for 
about 35.2% of Qinghai Province's annual total 
NPP. Guoluo Tibetan Autonomous Region with 
annual total NPP of 14.87 
TgC/a was second (25.7%). 
Haixi Mongolian Tibetan 
Autonomous Region with 
annual total NPP of 6.83 
TgC/a was third (11.4%). 
Annual total NPP of 
vegetation in Xining City 
were least (1.33 TgC/a), and 
they accounted for about 
2.3%. The average NPP per 
unit area in Huangnan 
Tibetan Autonomous 
Region was the largest (255 
gC/m2/a). The second 
largest average NPP per 
unit area was in Guoluo 
Tibetan Autonomous 

Region (218 gC/m2/a), followed by Xining City 
(185 gC/m2/a). Next, in the order of the decreasing 
average NPP per unit area, the remaining regions 
were Haibei Tibetan Autonomous Region (177 
gC/m2/a), Hainan Tibetan Autonomous Region 
(168 gC/m2/a), Yushu Tibetan Autonomous Region 
(162 gC/m2/a), Haidong Prefecture (131 gC/m2/a) 
and Haixi Mongolian Tibetan Autonomous Region 
(97 gC/m2/a). 

NPP of various vegetation types are obvious 
different. The average NPP per unit area of forests 
was the highest. Among forests, the average NPP 
per unit area for broad-leaved forest was the 
largest (314 gC/m2/a), followed by needle-leaved 
and broad-leaved mixed forest (279 gC/m2/a), and 
then needle-leaved forest (267 gC/m2/a). Next, in 
the order of the decreasing average NPP per unit 
area, the remaining vegetation types were dense 
shrub (213 gC/m2/a), dense grassland (194 
gC/m2/a), middle density grassland (157 gC/m2/a), 
grassland mixed with farmland (146 gC/m2/a), 
sparse grassland (121 gC/m2/a), and sparse shrub 
(101 gC/m2/a). Based on areas covered by different 
vegetation types, total NPP of various vegetation 
types were calculated, respectively. The total NPP 
of dense grassland was the largest (18.32 TgC/a) 
(1Tg=1012g), followed by grassland mixed with 
farmland (18.00 TgC/a), and then middle density 
grassland (15.42 TgC/a). Next, in the order of the 
decreasing total NPP, the remaining vegetation 
types were dense shrub (3.51 TgC/a), sparse 
grassland (2.36 TgC/a), sparse shrub (1.57 TgC/a), 

 
Figure 6 Annual total NPP of vegetation in different regions of Qinghai Province in 
2006. 
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needle-leaved forest (0.55 TgC/a), needle-leaved 
and broad-leaved mixed forest (0.31 TgC/a) and 
broad-leaved forest (0.30 TgC/a). Annual total 
NPP of the whole grassland ecosystem including 
sparse grassland, middle density grassland and 
dense grassland was 36.1 TgC/a, and it accounted 
for about 59.9% of the total NPP in Qinghai 
Province. Annual total NPP of shrubland ecosystem 
including sparse shrub and dense shrub was 5.08 
TgC/a (8.4% of Qinghai Province’s annual total 
NPP). Annual total NPP of forest ecosystem 
including needle-leaved forest, needle-leaved and 
broad-leaved mixed forest, and broad-leaved forest 
was 1.16 TgC/a (1.9%). 

4.3 Monthly variable characteristics of 
vegetation NPP in Qinghai Province 

Figure 7 shows that 
NPP of Qinghai Province 
significantly changed with 
seasonal variation. The 
maximum value of NPP was 
61 gC/m2 in July. Under 
various conditions of water 
and heat, NPP in each 
month of a year is different. 
From late March, 
temperatures began to rise 
above 0°C during the day, 
and frozen soil began to 
melt from the surface. So 
the phenomenon of melting 
during the day and freezing 
at night appeared. Due to 
different radiation 
absorptions and 
transmissions for various 
vegetation types, the driving 
influences from frozen soil 
and vegetation cover were 
different on soil energy 
distribution. Regional NPP 
values evidently increased, 
and the average NPP of 
vegetation reached 15 
gC/m2 in March. From 
March to April, regional 
frozen soil was in the 
process of spring melting, 

and vegetation also grew as temperature increased. 
In April, the mean NPP of vegetation increased to 
26 gC/m2. From May to June, water, light and heat 
started to became adequate. The growth of 
vegetation was into the development period, and 
the value of NPP increased rapidly. In May, 
vegetation NPP increased rapidly to 38 gC/m2. 
Affected by the impact of less precipitation in June, 
the average NPP of vegetation slightly decreased to 
35 gC/m2. In July, the growth of vegetation was the 
most luxuriant, and vegetation NPP reached the 
maximum value (43 gC/m2). From August to 
September, vegetation was in final growth period 
and leaves started to turn yellow or to physiological 
maturity, then NPP in August was 39 gC/m2. From 
late September, vegetation in the study area began 
to rapidly wither due to the sharp decline of 
temperature. The soil took on different degrees of 

 
Figure 7 The monthly variable map of vegetation NPP in Qinghai Province in 2006. 
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freezing, and water absorption capacity of 
vegetation sharply declined. In September, the 
average NPP of vegetation decreased rapidly to 30 
gC/m2. From late November, vegetation withered 
and water was in the solid-ice state, so NPP was 
very small at this stage. The average NPP of 
vegetation in Qinghai Province in winter was 
generally less than 8gC/m2. It can be seen that the 
accumulation of NPP mainly occurred from April 
to September with good water and heat. The 
amount of NPP for these 6 months accounted for 
79.8% of annual total NPP. From the perspective of 
seasonal changes, seasonal average NPP in Qinghai 
Province was 79 gC/m2 in spring (29.8%), 117 
gC/m2 in summer (44.3%), 51 gC/m2 in autumn 
(19.2%), and 18 gC/m2 in winter (6.7%), 
respectively.  

The results showed that NPP variations of 
three kinds of grasslands in 2006 present the 
similar trend. NPP from April to September was 
obviously larger than NPP in other months. NPP of 
sparse grassland was about 10 gC/m2; NPP of 
middle density grassland was about 15 gC/m2; and 
NPP of dense grassland was about 20 gC/m2. The 
accumulation of NPP was primarily in the period 
(from April to September) with better water and 
heat conditions. The accumulation ratio of NPP 
(NPP accumulated for these 6 months divided by 
annual total NPP) was 73.9% for sparse grassland, 
74.5% for middle density grassland, and 72.8% for 
dense grassland, respectively. NPP reached the 
highest value in July (e.g. 19 gC/m2 for sparse 
grassland, 30 gC/m2 for middle density grassland, 
36 gC/m2 for dense grassland). In the growing 
season, NPP had the largest increase from April to 
July, and NPP had the biggest decline from August 
to October. In June, affected by less precipitation, 
NPP of grasslands was slightly lower than NPP in 
May or July (e.g. 16 gC/m2 for sparse grassland, 19 
gC/m2 for middle density grassland, 26 gC/m2 for 
dense grassland). 

The variable tendency of shrubland NPP was 
similar to that of grassland. NPP in the period 
(from April to September) was evidently larger 
than NPP in other months. NPP of sparse shrub 
was about 8 gC/m2, and NPP of dense shrub was 
about 21 gC/m2. The accumulation of NPP was 
mainly in the period (from April to September) 
with better water and heat environment. The 

accumulation ratio of NPP (NPP accumulated for 
these 6 months divided by annual total NPP) was 
76.3% for sparse shrub and 72.3% for dense shrub, 
respectively. The value of NPP was the largest in 
July (e.g. 17 gC/m2 for sparse shrub, and 42 gC/m2 
for dense shrub). NPP from April to July had the 
largest increase, and NPP from August to October 
had the biggest decline. Restricted by less water, 
NPP of shrubland in June was appreciably less 
than NPP in May or July (e.g. 12 gC/m2 for sparse 
shrub, and 35 gC/m2 for dense shrub). In winter, 
NPP of sparse shrub was about 4 gC/m2, and NPP 
of dense shrub was about 13 gC/m2. 

5    Conclusion 

(1) Estimations of various input parameters 
for remotely sensed NPP models consider 
vegetation LUE and environment in the study area 
in detail. Therefore, simulated NPP results in this 
paper are more accurate than other simulations. 

(2) Simulated maximum LUE of main 
vegetation types by maximum likelihood estimate 
are based on literature and measured NPP data, so 
they are in accord with the real situation in the 
study area. In addition, as grassland is the main 
vegetation type in the study area, simulations of 
grassland maximum LUE are specially processed to 
reduce errors. 

(3) The calculation of environmental influence 
factors is simpler, and spatial distribution trends 
reflected by them conform to actual situations. 

(4) Simulated NPP derived from low-
resolution remote sensing data of MODIS are 
corrected by SVM algorithm and the contextural 
approach based on mixed pixels in order to 
improve the effect on the NPP model from scale 
effect. 
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