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Abstract
Sesame (Sesamum indicum L.) is the oldest important edible oilseed crop found throughout many tropical and subtropical 
regions of the world. India ranks second in its domestication with a total production of 0.67 million tons. The growth index of 
sesame in Asia, Africa, and South and Central America is 54.9%, 40.8%, and 4.3%, respectively. The crop has high economic 
potential but stress factors like temperature sensitivity, early senescence, pest attack, water logging, and disease infestations 
limit its productivity worldwide. Its recalcitrant nature, sexual incompatibility, and post fertilization barriers greatly restrict 
the generation of new varieties, via tissue culture and traditional breeding strategies. Thus, genetic engineering appears to be 
the best alternative to improve its yield by developing stress-tolerant plants. The callus induction and regeneration frequency 
in sesame is highly genotype dependent. Regeneration is observed in different cultivars via callus phase or directly from 
different explants mainly on Murashige and Skoog basal medium (MS) with high cytokinin and low auxin concentrations. 
The attempts towards developing genetic transformation protocols has resulted in very limited success. The present review 
highlights the history and discusses the detailed progress of sesame tissue culture and genetic transformation research with 
respect to genotype dependency, different medium compositions, plant hormones, and explant age.
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Introduction

The sesame (Sesamum indicum L.; 2n = 26) belongs to the 
family Pedaliaceae. According to Kobayashi et al. (1990), 
genus sesame comprises 36 species found mainly in Africa 
and Asia. Depending on the chromosome number, the thirty-
six sesame species fall in three groups including 2n = 26, 32, 
and 64; however, the cytology of 12 species still needs to 
be studied (Nimmakayala et al. 2011). The archaeological 
findings revealed that cultivated sesame was derived from 
the wild species S. malabaricum. Sesame cultivation was 
established in South Asia at the time of the Harappan 
civilization and later spread west to Mesopotamia before 

2000 B.C. (Fuller 2003). Sesame is cultivated worldwide, 
and the top ten sesame countries in terms of production are 
Sudan, India, China, Myanmar, Sudan (former), Nigeria, the 
United Republic of Tanzania, South Sudan, Ethiopia, and 
Uganda (FAO 2020). Globally, sesame is cultivated in 13.96 
million hectares (mha) with a total production of 6.8 million 
tons. The sesame seed production index in Asia, Africa, and 
America is 53.1%, 42.5%, and 4.3%, respectively. Sudan 
ranks first with a production of 0.79 million tons, whereas 
India ranks second with 0.67 million tons (FAO 2021). India 
is the largest exporter of sesame seeds (Kumaraswamy et al. 
2015), and the maximum sesame production was found in 
West Bengal followed by Gujarat state.

Sesame is an annual herb, completing its life cycle 
in 90 to 150 d, and reaches 60 to 120 cm in height with 
moderate branching or unbranched, ovate to lanceolate 
leaves with or without hairs and campanulate flowers 
varying from purple to white in color. The capsule size 
varies and possesses > 100 seeds, with seed color varying 
from black to white (Andrade et al. 2014). Sesame 
seeds contain 50 to 60% oil, 20% protein, and 13 to 14% 
carbohydrate (Morris 2002). Sesame, referred to as the 
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“Queen of Oilseeds” (Lakhanpaul et al. 2012), is rich in oil 
and essential minerals and, thus, is largely (70%) employed 
for oil production and forms an important ingredient 
in cuisines, cosmetics, and medicines. The presence 
of antioxidants, lignins (sesamin and sesamolin), and 
tocopherols in sesame impart health-promoting attributes. 
The availability of antioxidants increases its demand as 
a food, enhances the shelf life, and reduces rancidity of 
the sesame oil (Dossa et al. 2017). The oil contains 35% 
monounsaturated fatty acids and 44% polyunsaturated 
fatty acids (Islam et al. 2016); it also contains other fatty 
acids, including oleic and linoleic acids, which constitute 
almost 40 to 45% each (Zhang et al. 2013), and palmitic 
and stearic acids (Kamal-Eldin et al. 1992). The roasting 
of sesame converts the sesamolin to sesamol, enhancing its 
antioxidant anticancer activities (Islam et al. 2016). The 
traditional methods of medicines in ayurveda, Chinese, and 
Tibetan forms consider sesame to be a vital source of anti-
inflammatory, anti-proliferative, anti-hypertensive, anti-
neurodegenerative, and anticancer constituents. Sesame 
has also attained interest in a wide commercial sector, as 
its leaves and roots are used in the production of hair dyes, 
in emollient plaster in Sri Lanka (Wesis 1971), and as a 
cattle feed from the oil cake that is produced.

Sesame production suffers heavy yield losses due to 
biotic factors (Tiwari et al. 2011), abiotic factors (Rao and 
Ravishankar 2002), indeterminate growth, uneven capsule 
ripening, and seed shattering. The pathogenic diseases like 
root or stem rot and phytophthora blight (Gangopadhyay 
et al. 1998) and charcoal rot by Macrophomina phaseolina 
fungus (Silme and Cagirgan 2010; Enikuomehin et al. 
2011; Chowdhury et al. 2014) are serious threats to 
sesame production. It has been reported that by 2030 the 
sesame consumption would reach 100 million metric tons 
(Troncoso-Ponce et al. 2011). Therefore, it is important 
to develop sesame varieties for increasing seed yield, oil 
or fatty acid quality and quantity, functional bioactive 
compounds, and biotic and abiotic stress tolerance (Rao 
and Ravishankar 2002). Breeding efforts in sesame have 
focused on developing improved cultivars with traits, 
such as higher yield, disease resistance, drought tolerance, 
improved oil quality, and desirable agronomic characteristics 
(Teklu et al. 2022). The important aspect of breeding is 
genetic diversity; however, sesame is known for its narrow 
genetic base (Bhat et al. 1999), which poses challenges for 
breeders. To overcome this limitation, various approaches 
have been used to introduce genetic diversity into breeding 
populations, including the use of wild relatives, landraces, 
and diverse germplasm collections (Yermanos et al. 1972). 
These diverse genetic resources provide a valuable pool of 
traits that can be incorporated into cultivated sesame.

Traditional breeding methods, such as mass selection and 
pedigree breeding, have been employed to improve sesame 

cultivars (Tripathy et al. 2019). More recently, molecular 
breeding techniques have been applied to sesame breed-
ing, allowing for more precise selection and faster progress. 
Molecular markers, such as simple sequence repeats (SSRs, 
Dixit et al. 2005; Spandana et al. 2012; Badri et al. 2014; 
Yan-Xin et al. 2014; Uncu et al. 2015; Wang et al. 2017) and 
single nucleotide polymorphisms (SNPs, Wei et al. 2014; Du 
et al. 2019), have been used for genetic analysis and marker-
assisted selection (MAS; Wei et al. 2009; Ali et al. 2007) in 
sesame breeding programs. These techniques enable breed-
ers to select plants with desired traits at the molecular level, 
facilitating more efficient and targeted breeding efforts.

The advancements in genomic technologies, including next-
generation sequencing and genotyping-by-sequencing, have 
provided valuable genomic resources for sesame breeding. 
With the availability of assembled whole genome sequence of 
the S. indicum and detailed information of the oil biosynthetic 
pathways and stress-responsive genes (Wang et al. 2014, 2015, 
2021; Dossa et al. 2017; Wei et al. 2017), it is possible to under-
stand the different regulatory mechanisms and employ different 
genetic engineering techniques to enhance the economic poten-
tial of the sesame crop. The advantage of this highly important 
genome data can be very useful for the improvement of sesame 
crop either by overexpression for gain of function or editing 
advantageous genes by CRISPR-Cas9 or other molecular tools.

The recalcitrant nature of sesame significantly reduces the 
regeneration and genetic transformation efficiency (Baskaran 
and Jayabalan 2006; Zimik and Arumugam 2017). To date, 
the regeneration protocols with different cultivars of sesame 
are reported; however, only few reports with limited success 
on genetic transformation are available. In this review, we have 
highlighted the regeneration protocols developed with different 
varieties of sesame. The effect of major factors on regeneration 
efficiency in the sesame, like type of explants, age of explants, 
medium compositions, basal medium, and different hormone 
compositions, is discussed (Fig. 1). The review also empha-
sizes the efforts on sesame transformation, which are very 
miniscule and have limited success. The problems in sesame 
regeneration and genetic transformation are also discussed.

Plant regeneration

Plant tissue culture is the in vitro technique used to 
regenerate plants from different tissues and organs in sterile 
condition for better traits or a large number of genetically 
similar plants. Since the last couple of decades from the 
advent of the totipotency phenomenon, the tissue culture 
process has shown successful results in a large number of 
plants. Different methods, like micropropagation, somatic 
embryogenesis (SE), anther culture, meristem culture, and 
somaclonal and gametoclonal variations, have provided 
opportunities to develop the new varieties of plants. The 
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Callus formation (12-100%)
Genotype: Ansan, Danbeak, DS-1, E-
8, GLW, TL, W-II, AHT 123, CO 1, 
VRI 1, VRII, DS -1, DSS-9, KNL, 
RT-273, TNL, WII

Basal media: MS

Explant: Hypocotyl, embryo, shoot 
tip and cotyledon

PGRs: 2,4- D, NAA, BAP, TDZ

Adjuvants: Casein hydrolysate,                                
Coconut milk 

Callus formation (75-98%)
Genotype: Giza 32, Shandweel 3, Sohag
1, TMV-7, G-1, Rama

Basal media: MS

Explant: Hypocotyl, embryo  and 
cotyledon

PGRs: 2,4-D, NAA, BAP, TDZ

Adjuvants: B5 vit

Somatic embryogenesis 
(42-95%)

Genotype: TMV 6, Nigrum, E8, 
Gulbarga local, RT-273, Darab1

Basal media: MS

Explant: Hypocotyl and cotyledon

PGRs: 2,4-D, NAA, BAP, KIN

Adjuvants: Casein hydrolysate

Shoot regeneration              
(14-100%)

Genotype: 54# cultivars studied

Basal media: MS, N6, B5

Explant: De-embryonated cotyledon, 
node, shoot tip and plumule

PGRs:  NAA, BAP, TDZ, IAA, ABA 

Adjuvants: Sucrose, AgNO3

Genetic transformation (1-43%)
Basal media: MS, B5 
Genotype: Özberk, HT -1, Sohag 1, VRI-1, Rama, TMV-7, G98
Explant: De-embryo cotyledon, hairy roots and plumule
PGRs: NAA, BAP, TDZ, IAA, ABA 
Adjuvants: Sucrose, AgNO3

Abiotic-Biotic stress tolerant / Enhanced quality and 
quantity of seed and oil yielding sesame  

No regeneration Shoot  regeneration

Figure  1.   Schematic representation factors affecting callus forma-
tion, somatic embryogenesis, shoot regeneration and genetic trans-
formation in Sesamum indicum L.  # denotes following cultivars: 
Busia, Ex-El, Indian, Koyonzo, Mbale, McWhite, Mtwara-2, Siaya, 
Dasak, HT -1, TKG-55, Pb No. 1, GT-2 Himalayan, Sohag 1, SVPR 

– 1, DS-1, E-8, GLW, TLB, WII, DS-1, DSS-9, KNL, RT-273, TNL, 
WII, VRI-1, HT-1, DS-1, DSS-9, KNL, RT-273, TNL, WII, SVPR-1, 
TMV-7, AKT 64, Rajeshwari, RT127, TC 25, TMV 3, TMV 4, TMV 
5, TMV 6, UMA, VRI1, TMV-3, JK-1, JT-7, PADMA, PHULE-TIL1, 
RT-103, TAPI-A, Rama, GT-3, GT-4.
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regeneration of whole plant from single cell was reported over 
50 yr ago by Steward et al. (1970). The success for regeneration 
of whole plant varies from species to species where the medium 
compositions, plant growth hormones, and other adjuvants play 
a major role. The high-frequency regeneration is a prerequisite 
for the improvement of different crops by genetic engineering. 
The regeneration protocols in different oleiferous species 
are developed for enhanced agriculture traits. In sesame, 
the regeneration protocols are highly dependent on different 
cultivars. The proper regeneration system is still a major 
drawback, and, therefore, genetic engineering of this crop has 
limited success (Were et al. 2006; Seo et al. 2007; Yadav et al. 
2010; Chowdhury et al. 2014; Zimic and Arumugam 2017). 
Lee et al. (1985) published the first report on shoot regeneration 
from the shoot tip explant. Furthermore, George et al. (1987) 
showed regeneration in sesame via SE and multiple shoot 
production from shoot tips. Since then, sesame tissue culture 
has been reported using different explants to enhance shoot 
formation capacity (leaf, cotyledon, shoot tips, mature embryo, 
anther, hypocotyl, de-embryonated cotyledon, and plumule 
explant). The details of the regeneration protocols are discussed 
in the following sections.

Plant regeneration via somatic embryogenesis

In vitro SE is a developmental process in which a somatic cell 
can differentiate into non-zygotic embryos that can develop 
into a new plant under appropriate conditions. SE follows 
two main stages called induction and expression (Jimenez 
2005). During the induction phase, cells pass through the 
physiological changes and altered gene expression for 
acquiring the embryogenic characteristics (Feher et al. 
2002). Furthermore, in appropriate culture medium and plant 
growth regulators (PGRs), the induced cell develops into full 
embryos (Jimenez 2005). The somatic embryos (SEs) can 
be formed indirectly via callusing phase or directly without 
callusing phase. In sesame, different cultivars, like TMV 6, 
Nigrum, Darab 1, and E8, showed SEs. Different explants, 
like cotyledons, shoot tips, hypocotyls, and PGRs alone or 
in combinations, were used for the formation of SEs. In 
sesame until now, only five reports were published on SEs 
formation, where four reports show the SE via callus phase 
(Mary and Jayabalan 1997; Xu et al. 1997; Shashidhara et 
al. 2011; Chamandoosti 2016). Until now, the highest SE 
frequency was observed by Honnale and Rao (2013) directly 
from cotyledonary and hypocotyl explants from 5-d-old 
seedlings. The cotyledon explants showed a higher number 
of SEs compared to hypocotyls (Honnale and Rao 2013). 
The 95% cotyledon explants showed SE with a large number 
of SEs (59.16 ± 4.30) on 3.0 mg L−1 2,4-D + 1.0 mg L−1 
BAP (Honnale and Rao 2013; Table 1). The 2,4-D was found 
to be very efficient for induction of SEs compared to other 
auxins, and further addition of low concentrations of BAP 

enhanced the frequency of SE (Honnale and Rao 2013). It 
was observed that 2,4-D was the key PGR used in all the 
studies for embryo formation. In addition to 2,4-D, BAP, 
Kinetin, and NAA also helped in SEs formation in sesame. 
The addition of both 2,4-D and BAP is suggested in several 
reports as an important factor for inducing and developing 
SEs in different crops (Jimenez 2005).

Plant regeneration via callus induction

In sesame, different cultivars, like E-8, G-1, Giza 32, Rama, 
Sohag 1, Shandweel 3, and TMV-7, showed only callus 
induction, which eventually did not regenerate in shoot 
buds (Al-Shafeay et al. 2011; Pusadkar et al. 2015; Gayatri 
and Basu 2020; Table 2). Al-Shafeay et al. (2011) reported 
high-frequency callus induction from embryo, cotyledon, 
and hypocotyl explants in Giza 32, Sohag 1, and Shan-
dweel 3 varieties. The callus cultures, when transferred on 
MS (Murashige and Skoog 1962) medium with BAP, Kinetin, 
and IAA, turned brown and did not support shoot induction. 
However, the de-embryonated cotyledon explants cultured on 
MS medium with BA and IAA directly regenerated shoots 
without callus phase (Al-Shafeay et al. 2011). Pusadkar et al. 
(2016) obtained callus in TMV 7 and G-1 varieties in both 
hypocotyl and cotyledon on MS medium with different com-
binations of PGRs. NAA (0.5 mg L−1) and TDZ (1.0 mg L−1) 
showed the highest callus percentage in both TMV 7 (93.3%) 
and G 1 (90%). Similarly, Gayatri and Basu (2020) reported 
the callus production using different concentrations of 2,4-D, 
Kinetin, and BAP in the variety Rama. The highest frequency 
of callus formation (approximately 89%) was found on MS 
medium supplemented with 2.0 mg L−1 2,4-D and 1.5 mg 
L−1 BAP. In this case, also the cotyledon explants showed 
the highest callus formation as reported by Al-Shafeay et 
al. (2011). According to the findings presented in Table 2, it 
can be observed that the varieties listed do not yield shoots 
through callus. However, exceptions were found in the cases 
of Sohag 1 (Al-Shafeay et al. 2011) and Rama (Gayatri and 
Basu 2020) varieties, where direct regeneration was success-
fully accomplished (Table 4). It appears that PGRs are not 
solely responsible for further shoot regeneration in these vari-
eties as callus obtained on combination of 2,4-D and BAP 
has shown shoot regeneration in other sesame varieties as 
discussed in the next section (Kwon et al. 1993; Saravanan 
and Nadarajan 2005). Therefore, it is apparent that the dif-
ferential callus response is highly genotype dependent.

In sesame, different cultivars, like Ansan, AHT 123, 
CO-1, Danbeak, DS-1, DSS-9, E-8, GLW, KNL, RT-273, 
SVPR-1, TMV 3, TL, TNL, VRI 1, VRII, and W-II, showed 
callus induction, and, subsequently, shoot regeneration 
(Table 3). The callus induction was reported from 0- to 
10-d-old seedlings, cotyledons, embryos, leaf, shoot tips, 
and hypocotyl explants (Table 3). In all the reports, the 
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calluses were obtained on different auxins (2,4-D, IAA, and 
NAA) at variable concentrations. When these calluses were 
transferred on low concentration of auxin along with high 
concentration of BAP, the multiple shoots were observed. 

Kwon et al. (1993) reported the highest number of shoots 
per explant (2 to 13) from the callus explant on casein hydro-
lysate (CH)-supplemented medium. In contrast, other studies 
have reported significantly low rates of regeneration (1 to 

Table 1.   Effect of explant, hormones, and media adjuvants on somatic embryogenesis in different cultivars of Sesamum indicum L

The basal medium used was MS. CH casein hydrolysate, KIN kinetin. *Denotes number of somatic embryos per explant

S. No Cultivars Explants Explant conditions Plant growth regula-
tors

Other adjuvants Embryogenic 
frequency/No. of 
embryos

References

1 TMV 6 Hypocotyl 7-d-old seedlings 2,4-D 
(18.1 μM) + NAA 
(2.2 μM)

- 62.3%/9.4* Mary and Jayabalan 
1997

2 Nigrum Cotyledon 6-d-old seedlings 2,4-D (0.5 mg 
L−1) + BAP (0.5 mg 
L−1)

500.0 mg L−1 CH 42% Xu et al. 1997

Hypocotyl 6-d-old seedlings 2,4-D (0.5 mg 
L−1) + BAP (0.5 mg 
L−1)

- 51%

3 E8 Hypocotyl 7-d-old seedlings 2,4-D (2.0 mg L−1), 
KIN (0.5 mg L−1) 
— callus

- 66.6% Shashidhara et al. 2011

4 Gulbarga local 2,4-D (2.0 mg L−1), 
KIN (0.5 mg 
L−1) — callus

- 50%

5 RT-273 2,4-D (2.0 mg L−1), 
KIN (0.5 mg L−1) 
— callus

- 40%

6 E8 Cotyledon 5-d-old seedlings 2,4-D (3.0 mg 
L−1) + BAP (1.0 mg 
L−1)

- 95%/59* Honnale and Rao 2013

Hypocotyl 5-d-old seedlings 2,4-D (4.0 mg L−1) - 80%/17*
7 Darab1 Hypocotyl 7-d-old seedlings 2,4-D (3.0 mg 

L−1) + KIN (0.5 mg 
L−1)

- 57% Chamandoosti 2016

Table 2.   Callus formation from different cultivars of Sesamum indicum L

B5 Gamborg medium (Gamborg et al. 1968)

S. No Cultivars Explants Explant conditions Plant growth regulators Other adjuvants Frequency References

1 Giza 32 Cotyledon 0-d-old seedlings 2,4-D (0.4 mg L−1) B5 vit 74.8% Al-Shafeay et al. 2011
Embryo 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 90.7%
Hypocotyl 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 64.8%

2 Shandweel 3 Cotyledon 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 97.2%
Embryo 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 89.2%
Hypocotyl 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 95.7%

3 Sohag 1 Cotyledon 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 92.5%
Embryo 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 97.7%
Hypocotyl 0-d-old seedlings 2,4-D (0.5 mg L−1) B5 vit 96.3%

4 TMV-7 Hypocotyl 14-d-old seedlings TDZ (1.0 mg L−1) + NAA (0.5 mg 
L−1) — callus

- 93.3% Pusadkar et al. 2015

5 G-1 Hypocotyl 14-d-old seedlings TDZ (1.0 mg L−1) + NAA (0.5 mg 
L−1) — callus

- 90%

6 Rama Cotyledon 2-d-old seedlings 2,4-D (2.0 mg L−1), BAP (1.5 mg 
L−1) — callus

- 88. 9% Gayatri and Basu 2020
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Table 3.   Effect of different hormones and other factors on shoot regeneration via callus formation in different cultivars of Sesamum indicum L

S. No Cultivars Explants Explant conditions Plant growth regulators Other adjuvants Callus formation 
%/number of 
shoots

Reference

1 Ansan Cotyledon 5–7-d-old seedlings NAA (2.0 mg L−1) + BAP 
(0.2 mg L−1) — callus

- 96% Kwon et al. 1993

1-m-old callus BAP (2.0 mg L−1) + NAA 
(0.1 mg L−1) — shoots

CH (2.0 g L−1) 16%/2*

Hypocotyl 5–7-d-old seedlings NAA (2.0 mg L−1) + BAP 
(0.6 mg L−1) — callus

- 96%

1-m-old callus BAP (3.0 mg L−1) + NAA 
(0.1 mg L−1) — shoots

CH (2.0 g L−1) 36%/10*

2 Danbeak Cotyledon 5–7-d-old seedlings 2,4-D (2.0 mg L−1) + BAP 
(0.4 mg L−1) — callus

- 98%

1-m-old callus BAP (4.0 mg L−1) + NAA 
(0.1 mg L−1) — shoots

CH (2.0 g L−1) 12%/4*

Hypocotyl 5–7-d-old seedlings NAA (2.0 mg L−1) + BAP 
(0.2–0.6 mg L−1) — 
callus

- 100%

1-m-old callus BAP (2.0 mg L−1) + NAA 
(0.1 mg L−1) — shoots

CH (2.0 g L−1) 44%/13*

3 DS-1 Hypocotyl 0-d-old seedlings MS — callus - - Wadeyar et al. 2013
30-d-old callus TDZ (25.0 µM) + IAA 

(3.0 µM) — shoots
- 83.3%/2*

4 E-8 Hypocotyl 0-d-old seedlings MS — callus - -
30-d-old callus TDZ (25.0 µM) + IAA 

(3.0 µM) — shoots
- 58%/1.5*

5 GLW Hypocotyl 0-d-old seedlings MS — callus - -
30-d-old callus TDZ (25.0 µM) + IAA 

(3.0 µM) — shoots
- 41.6%/1.6*

6 TL Hypocotyl 0-d-old seedlings MS — callus - -
30-d-old callus TDZ (25.0 µM) + IAA 

(3.0 µM) — shoots
- 58%/1.8*

7 W-II Hypocotyl 0-d-old seed MS — callus - -
30-d-old callus TDZ (25.0 µM) + IAA 

(3.0 µM) — shoots
- 41.6%/1.6*

8 AHT 123 Embryo - 2,4-D (3.5 mg L−1) — 
callus

CH (0.1 g L−1) 57.5% Saravanan and Nadarajan 
2005

- IAA (0.5 mg L−1) + BAP 
(1.0–1.5 mg L−1) + KIN 
(1.25 mg L−1) — shoots

- -/6.00*

9 CO 1 Embryo - 2,4-D (3.0 mg L−1) — 
callus

CM (0.1 g L−1) 62.8%

- IAA (0.5 mg L−1) + BAP 
(1.0 mg L−1) + KIN 
(1.25 mg L−1) — shoots

- -/6.2*

10 TMV 3 Embryo - 2,4-D (3.5 mg L−1) — 
callus

CM (0.1 g L−1) 62.1%

- IAA (0.5 mg L−1) + BAP 
(1.0–1.5 mg L−1) + KIN 
(1.25 mg L−1) — shoots

- -/6.1*

11 VRI 1 Embryo - 2,4-D (3.0 mg L−1) — 
callus

CM (0.1 g L−1) 64.9%
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2 shoots per callus explant) were observed, indicating the 
highly challenging and recalcitrant nature of sesame towards 
plant regeneration. Casein hydrolysate is considered rich 
in minerals, microelements, and vitamins and eliminates 
the problem of phosphate deficiency in the regenerating 
explants. The variable response towards shoot regeneration 
could be due to varietal differences and the endogenous 
auxin concentrations between genotypes (Khemkladngoen 
et al. 2011; Zimik and Arumugam 2017). The regeneration 
of shoots from the callus tissue after transferring on BAP 
medium is in agreement with other previously published 
reports from different crops species, like Malus domestica 

(Caboni et al. 2000), Holostemma ada-kodien (Martin 
2002), and S. indicum cultivar SVPR-1 (Raja and Jayabalan 
2010).

Plant regeneration via direct shoot induction/shoot 
morphogenesis

The regeneration via callus formation can lead to somaclonal 
variation, and moreover, the transformation is difficult via 
callus phase; therefore, direct regeneration was attempted 
using different cultivars in sesame (SVPR-1, WII, DS-1, E-8, 
GLW, TLB, and RT-273; Table 4). Explants, like cotyledons, 

* Denotes number of shoots per explant. CH casein hydrolysate, CM coconut milk, KIN kinetin

Table 3.   (continued)

S. No Cultivars Explants Explant conditions Plant growth regulators Other adjuvants Callus formation 
%/number of 
shoots

Reference

- IAA (0.5 mg L−1) + BAP 
(1.0–1.5 mg L−1) + KIN 
(1.25 mg L−1) — shoots

- -/5.16*

12 VRII Shoot tip 10-d-old seedlings KIN (4.6 µM) + BAP 
(35.5 µM) — callus and 
shoots

- 100/11.5* Baskaran and Jayaba-
lan 2006

13 DS-1 Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 81.7% Savitha et al. 2016

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 91.7%/1.9*

14 DSS-9 Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 73.3%

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 83.3%/1.8*

15 KNL Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 68.3%

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 75%/1.7*

16 RT-273 Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 70.8%

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 100%/2.5*

17 TNL Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 65%

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 58.3%/1.6*

18 WII Hypocotyl 7-d-old seedlings KIN (1.5 mg L−1) + NAA 
(0.5 mg L−1) + BAP 
(1.5 mg L−1) — callus

- 75.8%

2-m-old callus KIN (1.0 mg L−1) — 
shoots

- 66.7%/1.7*
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de-embryonated cotyledons, cotyledonary nodes, nodes, 
shoot tips, plumule, hypocotyls, and PGRs, alone or in 
combinations were used for direct shoot induction (Fig. 1). 
For the majority, regeneration was achieved from cotyle-
dons and de-embryonated cotyledons (Table 4). From the 
plumule explants, high-frequency direct shoot regeneration 
(94.44%) and the maximum number of shoots per explant 
(15.96) were achieved in the Rama cultivar (Gayatri and 
Basu 2020). Malaghan et al. (2013) achieved the highest 
shoot regeneration, for example, 100% (½ MS with 20.0 µM 
TDZ, 2.5 µM IAA, and 25.0 µM BAP) with 8.15 shoots 
per cotyledon in RT-273 cultivar. Despite reports of regen-
eration in various media supplemented with TDZ and IAA 
(Were et al. 2006; Seo et al. 2007; Al-Shafeay et al. 2011; 
Wadeyar et al. 2013) as well as BAP and IAA (Were et al. 
2006), the overall frequency of regeneration remains low. As 
a result, researchers have also explored the use of adjuvants 
to enhance the efficiency of regeneration.

Effect of AgNO3 on regeneration

In this context, fortification of MS medium with various 
concentrations of AgNO3 along with BAP and IAA improved 
the frequency of regeneration (Table 4). AgNO3 is used as 
an ethylene action blocker in in vitro cultures (Mohiuddin 
et al. 1997). Many plants, including sesame (Seo et al. 
2007; Abdellatef et al. 2010; Al-Shafeay et al. 2011), have 
shown the ability of AgNO3 to enhance in vitro regeneration 
(Williams et al. 1990; Ashwani et al. 2017; Panigrahi et 
al. 2017). Low concentrations of silver ions inhibited the 
impact of ethylene on plant cells by likely substituting the 
copper co-factor of the cell’s ethylene receptor (ETR1) and 
rendering it resistant to ethylene, as previously demonstrated 
(Moshkov et al. 2008; Kumar et al. 2009).

The application of AgNO3 dramatically accelerated 
regeneration in sesame (Seo et al. 2007; Chowdhury et al. 
2014; Zimik and Arumugam 2017; Debnath et al. 2018; 
Rajput et al. 2022; Table 4). In addition, several other crops, 
including Coffea camephora (Kumar et al. 2007), Zea mays 
(Songstad et al. 1988), Cucumis melo (Roustan et al. 1992), 
Brassica campestris (Zhang et al. 1998), Brassica juncea 
(Pua and Chi 1993), and Capsicum annuum (Hyde and 
Phillips 1996), showed improved organogenesis from the 
addition of AgNO3.

Effect of sucrose on regeneration

In the development of shoots, carbohydrates have been 
shown to serve as both an osmoticum and an energy source 
(Brown et al. 1979). Different investigations have shown 
the specific physiological role of sucrose in the induction of 
shoots (Brown et al. 1979; Strickland et al. 1987; Ramage 
and Leung 1996). In Capsicum annuum hypocotyl explants, 

an external source of sucrose is required for at least the 
first 4 d of cultivation (Ramage and Leung 1996). In Aloe 
saponaria, shoot organogenesis required a 4% sugar content 
(Kim et al. 2016). In sesame, the regeneration frequency 
improved in the presence of high sucrose concentrations in 
the medium (6 to 9%; Seo et al. 2007; Chowdhury et al. 
2014; Pusadkar et al. 2016; Debnath et al. 2018; Table 4). 
High sucrose pre-treatment in these studies has enhanced 
adventitious shoot production by resulting in high sucrose 
uptake in explants. Generally, the explants are pre-cultured 
on high sucrose (6 to 9%) medium for 7 to 15 d and then 
transferred on 3% sucrose. According to Seo et al. (2007), 
pre-culturing cotyledon explants for 2 wk on 9% sucrose 
and then sub-culturing to medium containing 3% sucrose 
significantly improved adventitious shoots production in 
sesame; however, prolonged incubation on 9% was not use-
ful and explants turned brown. According to Chowdhury et 
al. (2014) and Debnath et al. (2018), the addition of sucrose 
along with ABA in the culture medium promoted regenera-
tion. It was discussed that ABA might be facilitating the 
uptake of sucrose, and interestingly, both ABA and sucrose 
synergistically improved adventitious shoot formation (Seo 
et al. 2007). However, the detailed experiments are required 
to prove and justify the role of ABA in sucrose uptake in 
sesame explants.

Effect of ABA on regenerations

Abscisic acid (ABA) is an important plant hormone, 
which plays a pivotal role in embryo and seed maturation 
(Zeevaart and Creelman 1988). It prevents the precocious 
germination of embryos in developing seeds. According 
to Choi and Jeong (2002) and García-Martín et al. (2005), 
ABA pre-treatment prevents premature germination 
of somatic embryos and decreases the production of 
secondary embryos. ABA helps the plants by protecting 
cells from desiccation during water limitation by regulating 
different genes and stomatal regulation and provides 
drought tolerance (Wasilewska et al. 2008). The role of 
ABA in promoting regeneration frequency in sesame has 
been reported by different researchers. In sesame, a brief 
pre-treatment of different durations with ABA increased 
the development of adventitious shoots (Seo et al. 2007; 
Chowdhury et al. 2014; Pusadkar et al. 2016; Debnath 
et al. 2018; Rajput et al. 2022; Table 4). The addition of 
ABA further to AgNO3-supplemented medium showed 
enhanced regeneration efficiency in some reports (Debnath 
et al. 2018; Rajput et al. 2022). In most of the cases, the 
ABA pre-treatment for 1 wk promoted the regeneration 
efficiency (Table 4). The presence of ABA attributed to high 
sucrose uptake in explants and increased cellular sucrose 
content (Debnath et al. 2018). This is in agreement to the 
report of Seo et al. (2007) where the initial incubation of 
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cultures for 2 wk at high sucrose concentration increased 
adventitious shoot formation in sesame. The presence of 
ABA synchronizing the sucrose uptake is also reported in 
strawberry (Archbold 1988), pea (Estruch et al. 1989), and 
tobacco and beet (Saftner and Wyse 1984). It is well known 
that ABA promotes the uptake of sucrose by Beta vulgaris in 
root tissue (Saftner and Wyse 1984).

Root induction

The in vitro raised adventitious shoots of different cultivars 
of sesame that were transferred on a rooting medium sup-
plemented with different auxins, like IBA, IAA, and NAA, 
at different concentrations formed roots (Table 5). Differ-
ent cultivars showed different root frequency; in some, the 

rooting percentage was < 50% whereas in other cultivars, 
like Dasak, Uma, JK-1, TMV3, GT-3, and GT-4, the root 
frequency was > 50%. In cultivar Dasak, high-frequency root 
formation (98%) was observed on MS media supplemented 
with 2.69 µM NAA (Seo et al. 2007), but the highest num-
ber of roots per explant (13.81) was obtained by Saravanan 
and Nadarajan (2005). Gayatri and Basu (2020) observed 
that the addition of NAA or IAA to basal medium did not 
help in root formation, but it did support callus formation, 
which affected shoot growth negatively followed by shoot 
fatality. Similarly, in the present study, no root formation 
was observed in transgenic plants of cultivars GT3 and 
GT4, and the basal end of the plants turned brown leading 
to plant death during subsequent culturing. Gayatri and Basu 
(2020) explained that half concentration of MS macronutri-
ents in combination with SH (Schenk and Hildebrandt 1972) 

Table 5.   Root induction response on different PGRs of Sesamum indicum L

* Denotes number of roots per explant. The reports wherein the data of rooting frequency is not given are marked with -

S. No Cultivars Basal media Plant growth regulators Root frequency/
No. of roots

References

1 CO 1 MS IBA (1.0 g L−1) + IAA (1.25 mg L−1) -/13.81* Saravanan and Nadarajan 2005
2 Mtwara-2 N6 BAP (20.0 µM) + NAA (1. µM) 36.7%/12.8* Were et al. 2006
3 - MS NAA (8.0 µM) - Baskaran and Jayabalan 2006
4 Dasak MS NAA (2.7 µM) 98% Seo et al. 2007
5 HT-1 MS IBA (2.0 µM) 41.6% Yadav et al. 2010
6 Sohag-1 MS + B5 vit IAA (1.0 mg L−1) - Al-Shafeay et al. 2011
7 SVPR-1 MS + B5 vit NAA (1.5 mg L−1) + BAP (0.03 mg L−1) 68.1%/4.8* Raja and Jayabalan 2011
8 - MS NAA (2.7 µM) - Lokesha et al. 2012
9 E-8 ½ MS ½ MS medium 40–50% Honnale and Rao 2013
10 VRI-1 MS IAA (4.57 µM) - Chowdhury et al. 2014
11 HT-1 MS IBA (2.0 µM) 40% Kapoor et al. 2015
12 DS-1 ½ MS NAA (2.7 µM) 27.8% Malaghan 2016
13 DSS-9 24%
14 KNL 33.3%
15 RT-273 53.3%
16 TNL 27.5%
17 W II 32%
18 Darab1 MS NAA (1.5 mg L−1) + BAP (0.03 mg L−1) - Chamandoosti 2016
19 DS-1 MS NAA (2.7 µM) 40%/1* Savitha et al. 2016
20 DSS-9 33.3%
21 KNL 12.5%
22 RT-273 50%/1*
23 TNL 14.3%
24 W II 28.6%
25 Uma MS IBA (1.0 mg L−1) 76.3%/7* Zimik and Arumugam 2017
26 JK-1 MS NAA (2.69 µM) 66.7%/5.9 Debnath et al. 2018
27 TMV3 MS IBA (0.5 mg L−1) 70%/4.2* Anandan et al. 2018
28 Rama MS + SH ½ MS macro + SH (micro and vit.) 97.3%/6.2* Gayatri and Basu 2020
29 GT-3 MS MS + NAA (2.0 µM) 70%/5.4* Rajput et al. 2022
30 GT-4 66.7%/5.2*
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micronutrient and vitamins supported better root frequency 
compared to full-strength MS major. This suggests that 
reduced salt concentration is necessary for high frequency 
of root formation in the cultivar Rama.

Agrobacterium‑mediated transformation 
in sesame

As mentioned above, sesame is a highly important oil seed 
crop, and it faces a major problem of abiotic and biotic 
stresses. Therefore, a need for genetic improvement lies in 
this crop towards the development of disease-resistant and 
nutritionally enriched varieties. The sexual incompatibil-
ity between the cultivated and wild species in sesame crop 
limits its improvement via conventional breeding method 
(Tiwari et al. 2011; Kulkarni et al. 2017). Genetic engineer-
ing of crops via overexpression, CRISPR-Cas9, and RNAi, 
has emerged as a potential tool for targeted changes for crops 
improvement.

The limited success of regeneration was discussed in the 
previous section. Because of unavailability of suitable and 
reproducible regeneration and transformation protocols, 
the success of genetic engineering in this crop remains a 
bottleneck (Zimik and Arumugam 2017). Until now, only 
a few research publications have reported on the genetic 
transformation of the sesame crop using Agrobacterium-
mediated transformation (Table 6). Taskin et al. (1999) 
attempted the first Agrobacterium-mediated transformation 
in cultivar Ozberk using pBI121 vector; however, no 
success was achieved. Later, Yadav et al. (2010) succeeded 
in achieving the fertile transgenic plants (1.01%) using 
pCAMBIA2301 in cultivar HT-1 through the use of 
cotyledon explants. Yadav et al. (2010) observed that a total 
of 60% of the explants showed GUS activity; furthermore, 
by the addition of thiol compounds, like L-Cystine and 
dithiothreitol, the higher number of explants showed an 
increase in GUS activity. The thiol compounds are known 
to act as an inhibitor of antioxidants and have a wounding 
effect in plants (Svabova and Griga 2008). Al-Shafeay et al. 
(2011) achieved fertile transgenic plants via Agrobacterium-
mediated transformation using pBI121 vector in cultivar 
Sohag1 with 1.67% frequency. Out of the various parameters 
tested (bacterial concentration, co-cultivation time, and 
explants), the co-cultivation for 1 or 2d was found better 
compared to longer incubation. Thereafter, Chowdhury et 
al. (2014) reported transformation efficiency of 42.66% in 
sesame cultivar VRI 1 using de-embryonated cotyledon 
explants. Chowdhury et al. (2014) also observed that 
co-cultivation of explants with Agrobacterium for 1 d 
has higher transformation efficiency compared to longer 
incubation with bacterial density of 1.6 OD600 as reported 
earlier by Al-Shafeay et al. (2011).

Along with this high concentration of BAP (30.0 µM), 
sucrose (9.0%) and acetosyringone helped in higher 
frequency of transformation in this cultivar. Gayatri and 
Basu (2020) reported an improved transformation protocol 
using Agrobacterium harboring pCAMBIA vector in cultivar 
Rama. Southern analysis revealed 1.33% transformation 
efficiency with low bacterial concentration (OD600 < 0.6) and 
for a 72-hr co-cultivation duration. The low Agrobacterium 
culture density and extended co-cultivation duration were 
more effective for transformation in Rama as well as other 
sesame cultivars (Yadav et al. 2010; Al-Shafeay et al. 2011). 
Overall, the transformation efficiency using A. tumefaciencs-
mediated transformation is highly dependent on different 
cultivars. Therefore, as minor variations in protocols lead 
to variation in transformation efficiency, therefore, high 
scientific precision and careful handling should be followed 
to get the success in other sesame varieties. Chowdhury et 
al. (2017) for the first time developed the sesame transgenic 
lines using osmotin-like proteins and achieved both abiotic 
stress-tolerant and biotic stress-tolerant transgenic plants. 
The transgenic plants showed regulation of different 
biochemical parameters responsible for the regulation of 
combined stress (Chowdhury et al. 2017).

In sesame, hairy root transformation was also attempted, 
and some success was made by Agrobacterium rhizogenes-
mediated system using CRISPR/Cas9. Two sesame 
cytochrome P450 genes responsible for sesamin and sesamolin 
were targeted using A. rhizogenes-mediated transformation, 
showing the feasibility of CRISPR-based genome editing in 
sesame (You et al. 2022). The particle bombardment in cultivar 
Rama, the genetic transformation used in apical meristematic 
tissue, showed approximately 16% transformation efficiency 
(Bhattacharyya et al. 2015), which is almost double the 
Agrobacterium-mediated transformation efficiency in the same 
cultivar (Gayatri and Basu 2020). The enhanced transformation 
efficiency could be due to the reduced toxicity or browning 
of the tissue caused by Agrobacterium; however, the particle 
bombardment method needs to be evaluated for successful 
transformation on other sesame varieties.

Future prospects and conclusions

In the last few decades, many efforts have been made in the 
area of tissue culture of the oil seed crop, sesame. The major 
challenges of the cultivation are yield loss due to biotic and 
abiotic stresses. Therefore, new research approaches are 
required for genetic and nutritional improvement of oil quality 
as well as higher yield in sesame. Although numerous regen-
eration protocols are reported by various researchers using dif-
ferent parameters and factors, but still the challenge remains 
because of recalcitrant nature of sesame for regeneration. It 
has been demonstrated that regeneration is highly genotype 
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dependent. The regeneration protocols have been reported 
both directly and through the callus phase. It has been 
observed that a low salt concentration in the basal medium 
and a high concentration of BAP favor regeneration in this 
plant. The addition of AgNO3 improved the regeneration fre-
quency in some cultivars. Furthermore, it has been observed 
that the addition of ABA to AgNO3-supplemented medium 
enhanced the regeneration. High sucrose pre-treatment and 
then sub-culturing to medium containing 3% sucrose were 
also found to be beneficial for shoot production. Sesame 
exhibits significant challenges on genetic transformation, as 
following co-cultivation with Agrobacterium, sesame often 
experiences a prevalent occurrence of browning and necrosis, 
further emphasizing its highly recalcitrant nature. The “altru-
istic transformation” approach was successfully used in pro-
moting genetic transformation efficiency in different mono-
cots and dicots using the Wus2 and Bbm transcription factor 
in maize and sorghum (Hoerster et al. 2020; Nelson-Vasilchik 
et al. 2022), and AtGRF5 and its orthologs in soybean and 
sunflower (Kong et al. 2020) can be applied for the future suc-
cess of sesame transformation. Different methods, like particle 
gun or electroporation, should be also attempted at large in the 
future for the genetic transformation in this crop.
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