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Abstract
In vitro propagation of Nyactanthes arbor-tristis L. was achieved by culturing N-phenyl-N′-benzothiazol-6-yl-urea (PBU)-
pretreated nodal explants in Murashige and Skoog (MS) medium without any phytohormones. Pretreatment of nodal explants
in liquid MS medium with 100 μM N-phenyl-N′-benzothiazol-6-yl-urea for 4 d showed the highest shoot proliferation by
producing maximum number of shoots (17.40 ± 1.02) per explant, with average shoot length of 5.96 ± 0.08 cm at the end of
8 wk. Effective rooting was accomplished by preincubating the cut-end of shoots with half-strength MS medium containing
6 μM indole-3-butyric acid for 1 wk, followed by implantation into half-strength MS medium; an average of 6.20 ± 0.049 roots
per shoot were produced. Seventy-eight percent of the plantlets regenerated in vitro were successfully acclimatized and trans-
ferred to soil. These plantlets appeared to be morphologically similar to the donor plants. The genetic fidelity of these in vitro-
regenerated plantlets was confirmed by start codon targeted polymorphism (SCoT) marker analysis, followed by comparative
evaluations of the bioactive metabolites (ursolic acid, rengyolone, arbortristoside-A, and nyctanthoside), antioxidant-rich phy-
tochemicals, and radical scavenging activities. This optimized in vitro propagation protocol should be an aid for the conservation
of N. arbor-tristis germplasm, as well as cater to the needs of herbal industries for the production of therapeutic molecules.
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Introduction

Nyctanthes arbor-tristis L. (family Oleaceae), commonly
known as “night flowering jasmine,” is an important medici-
nal species. Although this plant is native to the Indian subcon-
tinent, where it is distributed in the wild in sub-Himalayan
regions, night flowering jasmine is also grown as an ornamen-
tal in subtropical gardens to cater to ritual and esthetic needs.

This plant is a promising source of many therapeutic biomol-
ecules, such as the iridoid glycosides arbortristosides,
nyctanthoside, polyphenols, flavonoids, β-sitosterol,
astragalin, nyctanthic acid, rengyolone, α-crocetin, and
ursolic acid, among others (Tuntiwachwuttikul et al. 2003;
Agrawal and Pal 2013; Khanapur et al. 2014; Saini et al.
2014). Plant-based extracts, derived either from leaves,
flowers, seeds, roots, or bark of N. arbor-tristis, have been
used in conventional medicine for the treatment of asthma,
diuresis, cancer, rheumatism, sciatica, gout, malaria, filaria,
liver dysfunction, skin diseases, and worm infection of intes-
tine, because of their well-documented anti-arthritic, anti-ma-
larial, anti-filarial, hepato-protective, anti-inflammatory,
immuno-modulatory, anti-leishmanial, and antioxidant prop-
erties (Tuntiwachwuttikul et al. 2003; Rathee et al. 2007; Rani
et al. 2012; Agarwal et al. 2013; Agrawal and Pal 2013; Saini
et al. 2014; Mishra et al. 2016). Furthermore, some notable
herbal preparations using plant parts of N. arbor-tristis are
being sold today.
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To date, the demand for N. arbor-tristis plant parts for
pharmaceutical, esthetic, and ritual activities is met by the
natural plant population, but such unrestricted utilization of
the species has resulted in the unchecked exploitation of a
vulnerable resource and threatens to bring this species in the
near future to the brink of extinction in its native habitat. This
situation is further aggravated because seed-based propaga-
tion of night flowering jasmine is constrained by low seed
viability, poor seed germinating ability, and delayed root sys-
tem growth at the sapling stage (Rout et al. 2008; Jahan et al.
2011). Thus, there is a growing need to optimize in vitro prop-
agation protocols for rapid multiplication and conservation of
this multipotent medicinal plant (Phillips 2004).

During the last couple of decades, several attempts to opti-
mize the few existing protocols for in vitro organogenesis of
N. arbor-tristis have been made (Rout et al. 2008; Jahan et al.
2011; Sahu et al. 2012). Additionally, several non-purine phe-
nyl urea derivatives with cytokinin activity, such as
thidiazuron (TDZ), N-phenyl-N′-benzothiazol-6-yl-urea
(PBU), and N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU),
have been used to promote either adventitious organogenesis
or somatic embryogenesis in different species (Ricci and
Bertoletti 2008; Rolli et al. 2011; Li et al. 2015). Jahan et al.
(2011) reported that preconditioning axillary buds of
N. arbor-tristiswith TDZ for 8 d and subsequent implantation
in Murashige and Skoog (MS) medium (Murashige and
Skoog 1962) enhanced the rate of shoot multiplication in vitro,
and similar reports have also been made for several related
species. Alternatively, synthetic derivatives, such as PBU,
have been tested in many species for in vitro propagation
either via organogenesis or somatic embryogenesis (Torelli
et al. 2006; Huang et al. 2010; Rolli et al. 2011; Carra et al.
2012; Li et al. 2015).

Considering the reported responses of plant cultures to
PBU during organogenesis and somatic embryogenesis, in
the present study, its application in the tissue culture of night
flowering jasmine was investigated for an alternative propa-
gation method, with the eventual goals of conservation of
native N. arbor-tristis populations, while permitting produc-
tion of bioactivemetabolites on a commercial scale from prop-
agated plants.

Furthermore, because genetic variation can arise during
in vitro multiplication via organogenesis, whether as an ex-
pression of epigenetic imprints or due to the modifications in
the genetic makeup induced by culture environments (Larkin
and Scowcroft 1981), the genetic homogeneity of any
resulting plantlets needed to be evaluated. The clonal fidelity
of regenerated plantlets of N. arbor-tristis has not been
assessed in any of the earlier studies, neither at the genetic
level, nor in terms of the plant’s bioactive, therapeutic mole-
cules and phytochemical content.

In other plant species, various DNA markers have been
used, either individually or in conjunction with profiling of

bioactive molecules, for the assessment of genetic homogene-
ity in plantlets regenerated in vitro (Ghaderi and Jafari 2014;
Adeniran et al. 2018). Among these, start codon targeted poly-
morphism (SCoT; Collard and Mackill 2009) markers have
been used successfully in recent days for the evaluation of
genetic homogeneity of in vitro-derived plantlets in
Dendrobium nobile Lindl. (Bhattacharyya et al. 2014),
Alhagi maurorum Medik. (Agarwal et al. 2015), Helicteres
isora L. (Muthukumar et al. 2016), and Abutilon indicum
(L.) Sweet (Seth et al. 2017). These SCoT markers are pre-
ferred, because the primers are designed for short conserved
regions around the ATG start codon and its targeting se-
quences, and are therefore most likely part of a gene
(Collard and Mackill 2009; Bhattacharyya et al. 2014).
Obviously, from a pharmacological viewpoint, consistency
in terms of quality and content of bioactive metabolites of
in vitro-regenerated medicinal plants is crucial (Dörnenburg
and Knorr 1995).

The present report describes an alternative protocol for
the in vitro propagation N. arbor-tristis from pretreated
nodal explants and provides an assessment of the genetic
fidelity of the in vitro-regenerated plantlets using SCoT
marker profiling, along with a comparative evaluation of
their bioactive molecules, antioxidants, and radical scavenging
activities.

Materials and Methods

Explant preparation, media, chemicals, and culture condi-
tions Young and fresh apical stems of approximately1.5 cm
length were obtained from 12-mo-old N. arbor-tristis
(accession NAET-08) and were washed with water for 5 to
10 min, followed by 1% (v/v) Extran liquid detergent and 1%
Bavistin® fungicide for 10 min each. Subsequently, truncated
nodal explants were surface sterilized with 0.01% (w/v) HgCl2
for 3 to 4 min, followed by three rinses with sterile double-
distilled water under a laminar flow hood. Basal MS
(Murashige and Skoog 1962) medium, containing various
combinations of 0.0, 2.5, 5.0, 7.5, 10.0, or 15.0 μM α-
naphthaleneacetic acid (NAA), 6-benzyladenine (BA), or ki-
netin (KIN), and growth additives (0, 7.5, 15.0, 22.5, or
30.0 μM glutamine, 0.0, 5.0, 10.0, 15.0, or 20.0 μM proline,
and 0.0, 15.0, 30.0, 45.0, or 60.0 μMadenine sulfate), or 25.0,
50.0, 75.0, 100.0, or 125.0 μMPBUwere further supplement-
ed with 3% (w/v) sucrose; the pH was adjusted to 5.8 ± 0.1
using 1 NHCl before 0.8% (w/v) agar-agar was added, and the
medium was autoclaved at 1.06 kg cm−2 for 15 to 30 min. All
the cultures were maintained in culture room at 25 ± 2°C, 60–
70% relative humidity and a 16-h photoperiod, under approx-
imate photosynthetic photon flux of 40 μmol m−2 s−1 using
fluorescent tubes (Crompton Greaves, Mumbai, India).
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Shoot bud induction and proliferation of shoots in vitro The
sterilized nodal explants were incubated on MS medium con-
taining various combinations of 2.5, 5.0, 7.5, 10.0, or 15.0μM
BA, 2.5, 5.0, 7.5, 10.0, or 15.0 μM KIN, and 2.5, 5.0, 7.5, or
10.0 μM NAA, and the best responding plant growth regula-
tor (PGR) combination, in terms of number of shoots per node
vis-à-vis shoot length, was identified. This best combination
of PGRs was further enriched with different concentrations
and combinations of 15.0, 30.0, 45.0, or 60.0 μM adenine
sulfate, 5.0, 10.0, 15.0, or 20.0 μM proline, and 7.5, 15.0,
22.5, or 30.0 μM glutamine, and their influence on shoot
numbers per nodal explant was assessed.

In another set of experiments the nodal explants were
pretreated with liquid MS medium containing either opti-
mized concentrations of BA, KIN, NAA, and growth addi-
tives, or 25, 50, 75, 100, or 125 μM PBU for 2, 4, 6, and
8 d on a rotary shaker (Rivotek-50082001, Riviera Glass
Private Limited, Mumbai, India) at 75 rpm, before being em-
bedded in PGR-free solidified MS medium. The effects of
different combinations of PGRs, growth additives, and pre-
treatments on regeneration response, number of shoots, and
length of shoots after 8 wk of culture were recorded.

Rooting in vitro and acclimatization In vitro-derived shoots of
about 4 to 5 cm in length were excised from the clumps of
shoots, pretreated on half-strength MS medium supplemented
with 2.0, 4.0, 6.0, 8.0, or 10.0 μM NAA or indole-3-butyric
acid (IBA), individually, for 1 wk, before transfer to PGR-free
half-strength MS medium. Data on rooting response, number
of roots, and average root length were recorded after 3 wk.
Well-rooted plantlets were washed with sterile double-
distilled water and transferred to plastic pots (3 in. diameter,
350ml total volume; OEMLtd., Bhubaneswar, India) contain-
ing 1:1:1 (v/v/v) garden soil, soil-rite mix (Keltech Energies
Ltd., Bengaluru, India), and vermi-compost. These potted
plantlets were retained in the culture room at 25 ± 2°C for
1 wk and successively transferred to a net house and the ex-
perimental field, following the routine protocol of acclimati-
zation (Sahu et al. 2012). All the plant growth regulators,
growth additives and chemicals used for themedia preparation
were obtained from Himedia Laboratories Pvt. Ltd., Mumbai,
India.

Genetic fidelity analysis using SCoT markers Along with their
ex vitro donor plant, 39 in vitro-regenerated plantlets were
randomly selected from the best-responding culture combina-
tions for the assessment of genetic uniformity. Fresh and
young leaves (approximately 1.5 g) were ground in liquid
nitrogen and genomic DNAwas extracted using the modified
cetyl trimethyl ammonium bromide (CTAB) method de-
scribed by Mishra et al. (2013). The crude DNAwas purified
using RNAse and proteinase K (B. Genei, Bangalore, India)
treatment, followed by successive washes of 25:24:1 (v/v/v)

phenol:chloroform:isoamyl alcohol (Himedia Laboratories
Pvt. Ltd., Mumbai, India), and 24:1 (v/v) chloroform:isoamyl
alcohol (Himedia Laboratories Pvt. Ltd., Mumbai, India), as
described previously by Seth et al. (2017). The thus purified
DNAwas precipitated by addition of chilled ethanol, pelleted,
and dried under vacuum. Subsequently, the DNA sample of
each plant was dissolved in 10 mM tris (hydroxymethyl)
aminomethane (Tris): 1 mM ethylene-diamine tetraacetic acid
(EDTA) buffer and equilibrated to a concentration of
20 ng μL−1.

The polymerase chain reaction (PCR) mix of 25 μL total
volume and containing 40 ng DNA, 2 mM MgCl2, 10 mM
dNTP mix, 2.5 μL of 10× assay buffer (100 mM Tris-Cl,
pH 8.3; 0.5 M KCl; 0.1% (w/v) gelatin), 1 U Taq DNA poly-
merase (B. Genei, Bangalore, India), and 20 ng of SCoT
primer(s) was amplified in a MyCycler thermal cycler
(BioRad, Hercules, CA) programmed for 35 cycles, as de-
scribed in Seth et al. (2017). The amplified products were
electrophoretically separated on 1.4% (w/v) agarose gel using
TAE (40 mM Tris acetate; 2 mM EDTA) buffer at a constant
50 V, visualized with 0.5 μg mL−1 ethidium bromide staining,
and recorded using the FireReader (UVITEC, Cambridge,
UK) gel documentation system. The size of each amplified
fragment was estimated by loading 250 bp step-up DNA lad-
der (B. Genei, Bangalore, India) as standard. To test the repro-
ducibility, the amplifications and electrophoresis were repeat-
ed twice.

Preparation of extracts and determination of antioxidant and
free radical scavenging activities Leaves and flowers were
obtained from the ex vitro- and in vitro-derivedN. arbor-tristis
NAET-08 plants, air dried under shade, then crushed to gran-
ular particles using grinder (K-10, Bajaj Electrical Ltd.,
Mumbai, India) and kept in an air-tight plastic jar at 25°C.
To obtain aqueous extracts, 10 g of dried powder of each plant
part were soaked in 1000 mL of double-distilled (dd) H2O at
60°C for 36 h, under agitation in a water bath. These decoc-
tions were centrifuged at 12000 x g for 15 min, and the super-
natants were collected in amber bottles and dried at 45°C,
using a rotary vacuum evaporator (RV-10; IKA® WERKE
GmbH & Co. KG, Staufen, Germany). To obtain methanolic
and ethyl acetate extracts, each crushed sample (20 g) was
extracted with 2000 mL of methanol or ethyl acetate, respec-
tively, using a Soxhlet extractor. The extracts were dried as
explained above and kept in amber bottles at 4°C. The yield
percentage (w/w) was calculated following Mishra et al.
(2016). From each of these dried extract preparations,
25 mg mL−1 stock solutions were prepared and used for the
determination of polyphenol and flavonoid content, total an-
tioxidant activity (TAA) and ferric ion reducing antioxidant
power (FRAP), following protocols of Gul et al. (2011). The
total polyphenols and flavonoids were expressed as gallic acid
equivalents (μg GAE mg−1 dry weight) and quercetin
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equivalents (μg QE mg−1 dry weight) per mg dry weight,
respectively. Similarly, TAA and FRAP were expressed as
ascorbic acid equivalents (μg AAE mg−1 dry weight) per mg
dry weight.

The free radical scavenging activities of the extracts were
also assessed for 1,1-diphenyl-2-picrylhydrazyl (DPPH), hy-
drogen peroxide (H2O2), and superoxide radicals (Kakkar
et al. 1984; Braca et al. 2002; Gul et al. 2011) and the radical
scavenging activity of each extract was measured as inhibition
percentage, by using the formula:

Radical scavenging activity (%) = [(A0 − Ae)/A0] × 100,
where A0 and Ae were absorbance measured at 517 nm
(A517) of the control and extract(s), respectively.

Estimation of bioactive metabolites Ursolic acid. The dried
methanolic extract (10 g) was suspended in Milli-Q water and
partitioned successively with ethyl acetate, n-butanol, and wa-
ter (aqueous extract). The ethyl acetate fraction (2.3 g) was
chromatographed over silica gel using a step gradient of pe-
troleum ether (1000 ml; fraction-I), petroleum ether:
Chloroform 1:1 (v/v; 2000 ml fraction-II), Chloroform
(2000 ml; fraction-III), chloroform: methanol 9:1 (v/v;
2000 ml; fraction-IV) as described by Saini et al. (2014),
and four different fractions were eluted. Fraction-IV was sep-
arated through 1515 Isocratic high-performance liquid chro-
matography (HPLC) (Waters Corporation, Milford, MA),
using Whatman® 0.45 μm membrane (Merck KGaA,
Darmstadt, Germany) and 20 μL of injected volume was an-
alyzed using a C-18, 4.6 × 2 0 mm, 5 μm particle size
XTerra™ RP column (Waters Corporation, Milford, MA).
The entire HPLC analysis was carried out at 25 ± 2°C, the
eluate was observed at 210 nm, and ursolic acid content
(w/w) was estimated by standard curve method.

Rengyolone and nyctanthoside. The dried methanolic ex-
tracts (9.2 g) were chromatographed on a (70 to 230 mesh)
silica gel column and fractionated successively as described
by Tuntiwachwuttikul et al. (2003), and fraction I (198 to
224 mg) was purified over silica gel by step gradient elution,
which gave rise to the expected colorless oil (453 to 512 mg)
identified as rengyolone. Fractions II and III were also puri-
fied, eluted, and chromatographed as described previously by
Tuntiwachwuttikul et al. (2003), and 92 to 108 mg of a resin-
like substance was obtained, which was identified as
nyctanthoside. The content of rengyolone and nyctanthoside
(w/w) was measured for each sample.

Arbortristoside-A. The dried methanolic extract (~ 10 g) of
each sample was dissolved in ddH2O and fractionated with
diethyl ether, ethyl acetate, and n-butanol. The n-butanol frac-
tion [yield: 45.42 to 48.75% (w/w)] of each sample was dried,
ground with acetone, washed with 2 N HCl, and subsequently
with hot ddH2O at 60°C. Finally, the fraction crystallized
using a solvent system of 1:1 chloroform:methanol, and a light
yellow-colored crystalline powder (308 to 344 mg) was

obtained, and validated as arbortristoside-A using spectral
analysis (Mendham et al. 2003), and its solubility in dimethyl
sulfoxide (DMSO).

Statistical analysis Visual observations were taken with re-
spect to the effects of plant growth regulators, as well as pre-
treatment conditions, on the frequency of regeneration, num-
ber of shoots per explants, shoot length, percentage of rooting,
and root length. All the experiments were repeated twice, with
five replicas per experiment, in randomized methods, and the
data were represented as mean ± standard error (SE). The data
were subjected to one-way analysis of variance (ANOVA) and
the arithmetic means were compared (P = 0.05) using
Duncan’s multiple range test (Harter 1960) and the statistical
software package SPSS® version 20.0 (IBM, Armonk, NY).
The data on bioactive metabolite content, antioxidant activity,
and radical scavenging activities were also statistically ana-
lyzed in the same way, also using SPPS® version 20.0 (IBM,
Armonk, NY). The half concentration of inhibition (IC50)
values were calculated from linear regression analysis using
EXCEL add-in program ED50 plus version 1.0 (http://www.
softlookup.com/display.asp? id=2972; Vargas 2000).

Results and Discussion

Effects of PGRs and growth additives on in vitro induction
and multiplication of shoots In the present study, the nodal
explants of N. arbor-tristis cultured on MS medium fortified
with different combinations of BA, KIN, and NAA exhibited
morphogenic responses after 2 to 4 wk of culture. The nodal
explants embedded in MS medium supplemented with
10.0 μM BA and 2.5 μMNAA responded well, as evidenced
by the emergence of multiple shoot buds around the
preexisting lateral meristem of the explants by the end of the
second week (Fig. 1a), followed by the proliferation of mul-
tiple apical shoots after 4 wk of culture (Fig. 1b). These shoot
buds proliferated to give rise 6 to 8 shoots (average of 6.60 ±
0.75; Table 1) per explant at the end of the eighth week, and
the average shoot length for the PGR combination of 10.0 μM
BA and 2.5 μM NAA was 3.04 ± 0.10 cm (Table 1). This
response might be due to the coupled effects of low concen-
tration of auxin along with high concentration of cytokinin on
in vitro shoot multiplication, as reported in Rhinacanthus
nasutus (L.) Kurz (Cheruvathur et al. 2012), Sida cordifolia
L. (Sivanesan and Jeong 2007), and Trichodesma indicum (L.)
Lehm. (Mahesh and Jeyachandran 2013). This exogenous ap-
plication of auxin in low concentration might be involved in
the asymmetric distribution of auxins necessary for the ac-
quirement of organogenic competence, subsequent entry of
active meristems and its adjoining cells into the cell cycle,
canalized cell division, and de novo initiation of shoot buds
under culture conditions, which then differentiate into
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multiple shoots later on (Sugiyama 1999; Phillips 2004; Zhao
et al. 2008). In an attempt to improve the multiplication rate,
as well as shoot elongation, MSmedium with optimized com-
bination of PGRs was further enriched with 45 μM adenine
sulfate, 15 μM glutamine, and 10 μM proline, which in-
creased the number of shoots per explant (Fig. 1c) to 8.60 ±

0.63 (Table 2), but no significant effect on shoot elongation
(Fig. 1d) was observed. The additive effects of adenine sul-
fate, glutamine, and proline on shoot multiplication have pre-
viously been reported in Oryza sativa and Picrorhiza
scrophularriflora (Bantawa et al. 2009; Shahsavari 2011;
Pawar et al. 2015). The addition of adenine sulfate might be

Figure 1. In vitro propagation in
Nyctanthes arbor-tristis. (a)
Emergence of shoot buds from
the nodal explant on MS
(Murashige and Skoog 1962)
medium fortified with 10.0 μM6-
benzyladenine (BA) and 2.5 μM
1-naphthaleneacetic acid (NAA)
at the end of 2 wk. (b)
Proliferation of shoot buds show-
ing multiple apical shoots at the
end of 4 wk. (c) Proliferation of
multiple shoots from the explant
on MS medium fortified with
10.0 μM BA, 2.5 μM NAA,
45 μM adenine sulfate, 15 μM
glutamine, and 10 μM proline at
the end of 8 wk. (d) Elongation of
shoots on the same medium after
8 wk. (e) Proliferation of multiple
shoots from nodes pretreated with
100 μM N-phenyl-N′-
benzothiazol-6-yl-urea (PBU) for
4 d and moved to on plant growth
regulator (PGR) free MS medium
at the end of 8 wk. ( f ) Emergence
of roots from pretreated shoots on
half strength MS medium without
any PGR. (g) Acclimatization of
shoots on plastic pots containing
soil mix. (h) Genetic fidelity
analysis of plantlets regenerated
from PBU pretreated nodal ex-
plants using SCoT marker profil-
ing (SCoT-1 and ScoT-2; Lane-
M: 250 bp step-up ladder, MP-
Donor plant; C1-C8: in vitro
raised plantlets).
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impeding the degradation of cytokinins, either by feed-back
inhibition or by competing with the metabolites involved in
cytokinin anabolism (Van Staden et al. 2008), whereas the
addition of glutamine and proline to the medium might have
provided alternative nitrogen sources for maintaining a high
shoot bud induction rate (Shahsavari 2011; Pawar et al. 2015).

To improve the efficiency of shoot multiplication, precon-
ditioning of explants with non-purine phenyl urea derivatives
with cytokinin activity, such as TDZ, CPPU, and PBU, have
been utilized in many species. Pretreatment of axillary buds of
N. arbor-tristis with 75 μM TDZ for 8 d and subsequent
implantation in MS medium showed a twofold increase in
the rate of shoot multiplication (Jahan et al. 2011).
Considering the structural similarity of PBU with TDZ, in
the present study the nodal explants were pretreated for 2 to
8 d either with liquid MS medium containing either 25 to
125 μM PBU, or with the previously optimized combination
of PGRs and growth additives, 10.0 μM BA + 2.5 μM
NAA+ 45 μM adenine sulfate + 15 μM glutamine + 10 μM
proline, serving as the control before implantation in PGR-free
MS medium (Fig. 2). Pretreatment of nodal explants in liquid
MSmediumwith PBU had a significant effect onmorphogen-
ic differentiation and shoot bud induction, which culminated
in increased number of shoots per explant (Table 3; Fig. 2).
Specifically, pretreatment of nodal explants in liquid MS me-
dium with 100 μM PBU for 4 d elevated the shoot

proliferation rate by producing the highest number shoots
per explant (17.40 ± 1.02) with an average shoot length of
5.96 ± 0.08 cm (Table 3; Fig. 1e) which was an average incre-
ment of 7 additional shoots per explant as compared to the
control (Fig. 2). This increased rate of shoot proliferation
might be attributed to PBU-mediated altered cytokinin metab-
olism by inhibiting the activity of cytokinin oxidase, and ac-
cumulation of adenine cytokinins in the explant, as has been
observed with TDZ (Jahan et al. 2011; Kumari et al. 2018).
Similar effects of PBU were also reported in Eucalyptus
urophylla S. T. Blake (Huang et al. 2010; Li et al. 2015),
Hyssopus officinalis L. (Rolli et al. 2011), and Capparis
spinosa L. (Carra et al. 2012). On comparison between the
effect of preconditioning with 100μmPBU for 4 d and 75μM
TDZ for 8 d (Jahan et al. 2011), the effect of TDZ on the rate
of shoot proliferation was slightly superior in term of the
number of shoots per explant by producing an average of
20.0 ± 1.15 shoots per explant. This difference might be attrib-
uted to either the differential response of different explants or
different genotypes or different non-purine phenyl urea com-
pound with cytokinin activity used in both the studies.
Although these non-purine phenyl urea derivatives have been
reported to have a positive effect on shoot proliferation (Malik
et al. 2010; Rolli et al. 2011), in many instances of deleterious
effects on shoot elongation, fasciation of shoots, and poor
rooting have also been noticed (Huetteman and Preece 1993;

Table 1. Effects of 6-
benzyladenine (BA), kinetin
(KIN), and 1-naphthaleneacetic
acid (NAA) on the shoot multipli-
cation of Nyctanthes arbor-tristis
L. cultured on MS (Murashige
and Skoog 1962) medium for
8 wk

Plant growth regulators (μM) Regeneration frequency
(mean ± SE)*

Average number of
shoots (mean ± SE)*

Shoot length (cm)
(mean ± SE)*

BA KIN NAA

0 0 0 0.0 0.0 0.0

2.5 – – 55.40 ± 2.67 e 4.80 ± 0.37 bcd 0.78 ± 0.04 ab

5.0 – – 61.60 ± 1.03 f 5.20 ± 0.37 bcde 1.54 ± 0.28 cdef

7.5 – – 70.00 ± 0.71 g 5.60 ± 0.51 cde 1.38 ± 0.22 bcde

10.0 – – 77.80 ± 1.20 h 6.20 ± 0.58 de 3.36 ± 0.26 h

15.0 – – 70.40 ± 0.75 g 5.60 ± 0.40 cde 2.18 ± 0.12 f

– 2.5 – 24.40 ± 1.17 a 2.80 ± 0.37 a 2.06 ± 0.21 ef

– 5.0 – 35.60 ± 1.17 b 3.80 ± 0.37 ab 1.14 ± 0.23 abcd

– 7.5 – 41.00 ± 1.10 c 4.20 ± 0.37 abc 1.96 ± 0.13 ef

– 10.0 – 40.40 ± 0.51 c 4.40 ± 0.51 bc 0.80 ± 0.09 ab

– 15.0 46.40 ± 1.17 d 4.80 ± 0.37 bcd 2.00 ± 0.06 abcd

10.0 – 2.5 88.00 ± 1.10 i 6.60 ± 0.75 e 3.04 ± 0.10 efg

10.0 – 5.0 85.40 ± 0.75 i 6.20 ± 0.80 de 2.28 ± 0.26 f

10.0 – 7.5 78.80 ± 1.02 h 6.20 ± 0.37 de 2.14 ± 0.60 f

10.0 – 10.0 72.00 ± 1.41 g 5.80 ± 0.37 cde 0.62 ± 0.02 a

– 15.0 2.5 54.00 ± 0.89 e 5.20 ± 0.37 bcde 1.64 ± 0.32 def

– 15.0 5.0 71.00 ± 1.00 g 5.40 ± 0.51 cde 0.60 ± 0.05 a

– 15.0 7.5 60.80 ± 1.02 f 5.60 ± 0.51 cde 0.88 ± 0.06 abc

– 15.0 10.0 52.60 ± 0.87 e 5.00 ± 0.45 bcde 0.72 ± 0.05 ab

*The means within a column followed by the same letter are not significantly different at P = 0.05, as per the
Duncan’s multiple range test analysis
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Guo et al. 2011). In turn, these negative effects might be due to
PBU-accumulation in the plant tissues, because of its inefficient
degradation by cytokinin oxidase (Zatloukal et al. 2008;
Podwyszyńska et al. 2014). However, in the present study, no
such adverse effects of PBU pretreatment had been noticed
among the in vitro-regenerated N. arbor-tristis plantlets.

In vitro-rooting and acclimatization Well-elongated shoots,
about 4 to 5 cm long, were separated from the originating
clump and implanted in rooting medium containing half-
strength MS salts fortified with either IBA or NAA
(Table 4). No root induction was observed from the shoots
implanted in the rooting medium, even after 2 wk of incuba-
tion. Thus, these preincubated shoots were transferred to half-
strength MS medium without extraneous auxin, where after 3

to 4 d roots were induced from the cut ends, and in some cases
from 1 cm above the cut end (Fig. 1f). The duration for com-
plete root development was almost 3 to 4 wk. Preincubation of
shoots with rooting medium containing 6 μM IBA for 1 wk,
followed by implantation on auxin-free half-strength MS me-
dium, showed the best response (93.00 ± 0.89%) for rooting,
with an average development of 6.20 ± 0.49 roots per shoot,
and an average root length of 1.62 ± 0.05 cm (Table 4).

Between the two auxins tested, preincubation with IBA
showed its superiority in terms of root induction and root
growth, compared to that of NAA (Table 4), and this might
be due to IBA’s presence in conjugated form, its stability,
consistent weak auxin activity, and to IBA’s insensitivity to
auxin-degrading enzymes, as reported in studies with
Arabidopsis thaliana and Abutilon indicum (Ludwig-Müller
et al. 2005; Seth and Panigrahi 2018). However, the average
root length varied from 0.66 to 1.62 cm, depending upon the
type and concentration of auxins added to the medium. This
might be due in part to the effect of IBA on the development of
the root system by regulating primary root elongation and
lateral root formation (Marquez et al. 2016). In the present
study, almost 78% of in vitro regenerated plants had survived
at the end of acclimatization (Fig. 1g), and this plant-to-soil
establishment process took almost 4 wk. These in vitro-regen-
erated plantlets were morphologically similar to their respec-
tive ex vitro-grown donor plant, and produced flowers after
8 mo of plant establishment in soil.

Genetic fidelity of in vitro-regenerated plantlets Genetic var-
iability is often observed during in vitro-propagation of many
plant species and is attributed to organogenic induction driven
by PGRs, culture environment, and epigenetic influences
resulting in gene and ploidy mutations (Larkin and Scowcroft
1981; Kaeppler et al. 2000; Ramirez-Mosqueda and Iglesia-
Andreau 2015). Use of PBU has been shown to induce 3.7%
somaclonal variation during in vitro-propagation of Citrus
madurensis Lour. via somatic embryogenesis (Siragusa et al.
2007). In light of these facts, genetic stability of in vitro-regen-
erated plantlets of N. arbor-tristis needed to be assessed, using
DNA markers. Among different DNA markers, the SCoT
marker analysis is quite simple and cost-effective, similar to
random DNA markers; however, SCoT marker analysis ex-
hibits increased stability and reliability due to the use of longer
primers designed around the initiating codon (Collard and
Mackill 2009; Agarwal et al. 2015). Moreover, these SCoT
markers target the sequence flanking the start codon (Collard
and Mackill 2009), which can provide further correlation with
functional genes. In the present study, SCoT marker analysis
using 10 primers produced consistently 33 amplified fragments
(320 to 2405 bp; Table 5) among 39 regenerated plantlets and
their donor plant (Fig. 1h; Table 5). This monomorphic banding
pattern (Fig. 1h) demonstrated the lack of genetic variation
among these in vitro-regenerated plantlets and their donor plant

Table 2. Effect of adenine sulfate, glutamine, and proline on multiple
shoot bud regeneration from nodal explants ofNyctanthes arbor-tristis L.
cultured on optimized MS (Murashige and Skoog 1962) medium con-
taining 10.0 μM 6-benzyladenine and 2.5 μM 1-naphthaleneacetic acid
after 8 wk

Additive concentration (μM) No. of shoot buds per
explants (mean ± SE)*

Adenine sulfate Glutamine Proline

Control 6.20 ± 0.37 abcde

15.0 – – 5.60 ± 0.40 ab

30.0 – – 5.60 ± 0.40 ab

45.0 – – 5.80 ± 0.37 abc

60.0 – – 6.80 ± 0.20 bcdef

– 7.5 – 6.40 ± 0.40 abcde

– 15.0 – 6.40 ± 0.40 abcde

– 22.5 – 6.80 ± 0.20 bcdef

– 30.0 – 7.00 ± 0.32 cdef

– – 5.0 5.40 ± 0.25 a

– – 10.0 5.60 ± 0.40 ab

– – 15.0 5.60 ± 0.40 ab

– – 20.0 6.00 ± 0.45 abcd

30.0 15.0 – 7.40 ± 0.25 ef

45.0 15.0 – 7.80 ± 0.37 f

60.0 15.0 – 7.20 ± 0.37 def

30.0 15.0 10.0 6.80 ± 0.37 bcdef

30.0 15.0 15.0 6.80 ± 0.37 bcdef

30.0 15.0 20.0 7.80 ± 0.37 f

45.0 15.0 10.0 8.60 ± 0.63 g

45.0 15.0 15.0 7.20 ± 0.37 def

45.0 15.0 20.0 6.80 ± 0.49 bcdef

60.0 15.0 10.0 6.20 ± 0.37 abcde

60.0 15.0 15.0 5.60 ± 0.25 ab

60.0 15.0 20.0 5.60 ± 0.45 abcd

*The means within a column followed by the same letter are not signif-
icantly different at P = 0.05, as per the Duncan’s multiple range test
analysis
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Table 3. Effect of preconditioningNyctanthes arbor-tristis L. node explants with different durations and concentrations of PBU and optimized growth
regulator combination on multiple shoot bud regeneration after 8 wk culture

Preconditioning treatment of node explants Treatment
duration in d

% Regeneration#

(mean ± SE)
No. of shoots per explants#

(mean ± SE)
Shoot length in cm#

(mean ± SE)

BA (10.0 μM) +NAA (2.5 μM)
+AdS (45 μM) + glutamine
(15 M) + proline (10 μM)

2 65.60 ± 0.51 ghi 10.60 ± 0.60 klm 5.68 ± 0.09 jkl

4 73.40 ± 0.75 mno 10.40 ± 0.80 klm 5.80 ± 0.13 kl

6 80.40 ± 0.68 pq 11.20 ± 1.12 lm 5.72 ± 0.1 kl

8 68.00 ± 0.71 ij 10.20 ± 0.51 jklm 4.28 ± 0.23 fg

25 μM PBU 2 56.40 ± 0.51 bc 2.80 ± 0.37 a 2.34 ± 0.09 a

4 60.40 ± 0.68 de 3.80 ± 0.66 abc 2.88 ± 0.12 b

6 64.80 ± 1.39 gh 4.60 ± 0.51 abcd 4.48 ± 0.18 gh

8 58.40 ± 0.51 cd 4.80 ± 0.37 abcde 3.08 ± 0.16 bc

50 μM PBU 2 72.40 ± 0.75 lmn 3.60 ± 0.25 ab 4.56 ± 0.05 gh

4 76.40 ± 0.68 p 8.20 ± 1.02 ghijk 3.82 ± 0.09 de

6 73.60 ± 1.03 mno 8.80 ± 1.02 hijk 2.46 ± 0.20 a

8 68.60 ± 1.08 jk 6.40 ± 1.17 defgh 4.44 ± 0.23 g

75 μM PBU 2 71.80 ± 0.66 lm 7.20 ± 0.80 efghi 5.26 ± 0.10 ij

4 74.60 ± 0.75 nop 11.40 ± 0.40 lm 3.46 ± 0.11 cd

6 66.60 ± 0.40 hij 7.80 ± 0.80 fghij 5.62 ± 0.22 jkl

8 58.20 ± 0.66 cd 5.40 ± 0.60 bcdef 3.92 ± 0.11 ef

100 μM PBU 2 70.60 ± 1.08 kl 11.80 ± 1.02 mn 5.54 ± 0.09 jkl

4 82.20 ± 0.80 q 17.20 ± 1.20 p 5.96 ± 0.08 l

6 76.20 ± 0.66 p 13.80 ± 1.28 no 5.86 ± 0.07 l

8 63.80 ± 0.66 fg 7.60 ± 0.75 fghi 4.88 ± 0.12 hi

125 μM PBU 2 62.20 ± 0.66 ef 10.20 ± 0.80 jklm 4.52 ± 0.10 gh

4 75.40 ± 1.40 op 8.40 ± 0.68 ghijk 5.78 ± 0.11 kl

6 54.20 ± 0.66 b 8.20 ± 0.66 ghijk 5.38 ± 0.09 jk

8 32.80 ± 1.02 a 6.40 ± 0.25 defgh 4.38 ± 0.07 g

#The means within a column followed by the same letter are not significantly different at P = 0.05, as per the Duncan’s multiple range test analysis

BA 6-benzyladenine, NAA 1-naphthaleneacetic acid, AdS adenine sulfate, PBU N-phenyl-N′-benzothiazol-6-yl-urea
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of N. arbor-tristis, in consonance with their morphology, and
offered additional authentication supporting the stability of this
in vitro propagation protocol. Furthermore, SCoT marker anal-
ysis has been effectively used for the genetic homogeneity as-
sessment of in vitro-regenerated plantlets in H. isora,
A.indicum, and A. maurorum (Agarwal et al. 2015;
Muthukumar et al. 2016; Seth et al. 2017).

Comparative evaluation of bioactive phytochemicals and an-
tioxidant activity among leaf and flower extracts of ex vitro-
and in vitro-grown plantletsN. arbor-tristis plant parts are the
source of many important bioactive metabolites and have a
wide range of biological and pharmacological activities (Rani
et al. 2012; Agrawal and Pal 2013). The homogeneity and
consistency of bioactive metabolite composition and

accumulation in the target tissues of in vitro-raised plantlets
should be similar to their ex vitro-grown donor plants as these
plantlets will be the source of raw material for the isolation
several therapeutic compounds. In view of these facts, the
in vitro-regenerated plantlets and their plant parts produced
in the current study were assessed for content of four impor-
tant bioactive metabolites (ursolic acid, rengyolone,
arbortristoside-A, and nyctanthoside), mostly used for the
treatment of filaria and malaria (Tuntiwachwuttikul et al.
2003; Agarwal et al. 2013; Saini et al. 2014). The dried ex-
tracts under different solvents were assessed for yield percent-
age (w/w), which was 32.58% for methanolic, 20.36% for
ethyl acetate, and 36.48% for aqueous extract, respectively.
Ursolic acid was obtained only from leaf tissues of both the
ex vitro- and in vitro-derived samples (Fig. 3a), whereas the

Table 5. Genetic fidelity assessment of Nyctanthes arbor-tristis L. in vitro-raised plantlets grown from 75 μM N-phenyl-N′-benzothiazol-6-yl-urea-
pretreated nodal explants and their donor plant, using start codon targeted (SCoT) markers

Primer code Primer sequence (5′–3′) GC (%) Number of fragments
amplified

Range (bp) Nature

SCoT-01 CAACAATGGCTACCACCA 50.00 6 485–1780 Monomorphic

SCoT-02 CAACAATGGCTACCACCC 55.56 4 430–1300 Monomorphic

SCoT-03 CAACAATGGCTACCACCG 55.56 2 650–965 Monomorphic

SCoT-04 CAACAATGGCTACCACCT 50.00 1 1025 Monomorphic

SCoT-05 CAACAATGGCTACCACGA 50.00 1 1200 Monomorphic

SCoT-06 CAACAATGGCTACCACGC 55.56 5 605–2405 Monomorphic

SCoT-07 CAACAATGGCTACCACGG 55.56 6 545–2030 Monomorphic

SCoT-08 CAACAATGGCTACCACGT 50.00 1 1555 Monomorphic

SCoT-09 CAACAATGGCTACCAGC 50.00 5 320–1590 Monomorphic

SCoT-10 CAACAATGGCTACCAGCC 55.56 2 1050–1590 Monomorphic

Total 33 320–2405 Monomorphic

Table 4. Effect of auxin type and
concentration on rooting
percentage, root number, and root
length of Nyctanthes arbor-tristis
L. cultured on half-strength MS
(Murashige and Skoog 1962)
medium for 3 wk

Growth regulators concentration (μM) % Rooting
(mean ± SE)*

Number of roots
(mean ± SE)*

Root length in cm
(mean ± SE)*

IBA NAA

2.0 – 41.00 ± 1.41 b 2.80 ± 0.37 ab 0.74 ± 0.12 ab

4.0 – 66.20 ± 1.74 e 3.80 ± 0.37 bcd 0.94 ± 0.12 abc

6.0 – 93.00 ± 0.89 h 6.20 ± 0.49 e 1.62 ± 0.05 e

8.0 – 85.40 ± 0.87 g 4.20 ± 0.37 cd 1.10 ± 0.08 cd

10.0 79.60 ± 1.12 f 3.40 ± 0.24 ab 1.02 ± 0.18 bc

– 2.0 35.80 ± 0.66 a 2.60 ± 0.24 a 0.66 ± 0.07 a

– 4.0 41.60 ± 1.36 b 3.80 ± 0.37 bcd 0.98 ± 0.07 bc

– 6.0 50.20 ± 0.86 d 4.80 ± 0.37 d 1.36 ± 0.07 de

– 8.0 45.80 ± 1.02 c 3.8 ± 0.37 bcd 1.02 ± 0.07 bc

10.0 46.20 ± 1.2 c 3.8 ± 0.24 bcd 1.10 ± 0.05 cd

*The means within a column followed by the same letter are not significantly different at P = 0.05 as per the
Duncan’s multiple range test analysis

IBA indole-3-butyric acid, NAA 1-naphthaleneacetic acid
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remaining three phytochemicals were isolated and quantified
from both leaves and flowers (Fig. 3b). Leaves obtained from
in vitro-propagated plantlets contained 0.79 ± 0.03 μg mg−1

ursolic acid, 1.95 ± 0.05 μg mg−1 rengyolone, 1.69 ±
0.03 μg mg−1 arbortristoside-A, and 1.08 ± 0.02 μg mg−1

nyctanthoside, whereas leaves of ex vitro-grown donor plants
contained 0.78 ± 0.02 μg mg−1 ursolic acid, 1.84 ±
0.05 μg mg−1 rengyolone, 1 .68 ± 0.04 μg mg−1

arbortristoside-A, and 1.13 ± 0.06 μg mg−1 nyctanthoside
(Fig. 3a). Akin to leaf tissues, the flowers of in vitro-derived
plantlets contained 2.63 ± 0.12 μg mg−1 rengyolone, 1.90 ±
0.01 μg mg−1 arbortristoside-A, and 1.43 ± 0.03 μg mg−1

nyctanthoside, whereas flowers of ex vitro-grown plants
contained 2.51 ± 0.07 μg mg−1 rengyolone, 1.87 ±
0.05 μg mg−1 arbortristoside-A, and 1.41 ± 0.02 μg mg−1

nyctanthoside (Fig. 3b). By comparison, the respective bioac-
tive metabolites accumulated in leaves and flowers of in vitro-
regenerated plantlets were nearly equal to those of the ex vitro-
grown donor plants for ursolic acid, arbortristoside-A, and
nyctanthoside content (Fig. 3a, b). However, the rengyolone
content in the leaves and flowers of in vitro-regenerated

plantlets was noticeably higher, compared to donor plants
(Fig. 3a). This variation might be attributed to the influences
of the PGRs used, tissue composition of explants, and culture
environment, which probably necessitated the production and
accumulation of more rengyolone, as has been reported for
different bioactive metabolites in several medicinal species
including Hypericum hirsutum L, H. maculatum Crantz.,
Agastache rugosa O. Kuntze, Musa accuminata L., and
Aloe arborescens L. (Coste et al. 2011; Zielinska et al.
2011; Adeyemi et al. 2012; Amoo and Van Staden 2013).

Antioxidant activity The harmful effects of free radicals and
reactive oxygen species can be alleviated by antioxidant
substances, preferably from natural sources, to prevent
toxicity (Li et al. 2014). Polyphenols and flavonoids have
been reported to be associated with such antioxidant ac-
tivities (Gul et al. 2011; Riaz et al. 2014). A wide array of
phytochemicals with proven antioxidant activities
(Dasgupta and De 2007; Rathee et al. 2007; Khanapur
et al. 2014; Mishra et al. 2016) has been identified in
N. arbor-tristis plant parts. Thus, in the present study,
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three different extracts of leaves and flowers from ex vitro-
and in vitro-grown plants were compared for total polyphe-
nols and flavonoids content, as well as TAA, FRAP,
and radical scavenging activities. As reported previously,
both flower and leaf extracts of N. arbor-tristis show quite
promising amounts of natural bioactive metabolites con-
tributing to antioxidant and radical scavenging activities
(Dasgupta and De 2007; Rathee et al. 2007; Mishra
et al. 2016). Results obtained in the present study showed
that total antioxidant activity of leaf extracts was higher
than those of corresponding flower extracts (Fig. 4c), and
a similar trend was noticed for polyphenols content
(Fig. 4a), flavonoids content (Fig. 4b), and ferric ion re-
ducing antioxidant power (Fig. 4d) among the extracts
(Table 6). Similar canonical relationships between total
polyphenol content and TAA have been established in a
number of other medicinal plants including Abelmoschus
moschatus Medik. L. and Fraxinus rhynchophylla Hance
(Li et al. 2008; Gul et al. 2011). The antioxidant activity
of different plant-based extracts is usually correlated di-
rectly to its reducing capacity, and the FRAP assays
(Fig. 4d) conducted here substantiated prominent

antioxidant activity (Fig. 4c) of leaf and flower extracts
of N. arbor-tristis during this study (Table 6). Similar
FRAP assays have been performed to evaluate antioxidant
activity of flavonoid-rich tissue extracts in different species
(Luximon-Ramma et al. 2002; Gul et al. 2011). In the
present study, the leaf extracts showed positive correlation
between flavonoids content (Fig. 4b) and ferric ion reduc-
ing power (Fig. 4d); when compared to the flower extracts,
the leaf extracts showed higher flavonoids content,
as well as elevated ferric ion reducing ability (Table 6;
Fig. 4b, d). In the comparisons between in vitro- and ex
vitro-raised plant parts shown in Table 6, the methanolic
and ethyl acetate leaf extracts of in vitro-regenerated
plants showed higher flavonoid content (149.00 ±
2.31 QE μg mg−1; Fig. 4b) and higher TAA (35.33 ±
0.88 AAE μg mg−1; Fig. 4c), respectively. Similarly,
methanolic flower extracts of in vitro-raised plants also
showed little higher content of polyphenols (156.33 ±
4 . 3 3 G A E μ g m g − 1 ) a n d TA A ( 2 5 . 0 ±
1.16 AAE μg mg−1), when compared to their ex vitro-
raised counterpart (Table 6; Fig. 4). The superiority of
the oxidative potential of methanolic and ethyl acetate
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extract of leave and flower, of in vitro-regenerated plant
tissues might be due to the influence of PBU on the endog-
enous PGRs, as well as induced expression of genes in-
volved in the biosynthesis of antioxidant-rich secondary
metabolites and phytochemicals (Amoo and Van Staden
2013; Amoo et al. 2013). On the other hand, aqueous leaf
and flower extracts of ex vitro-grown donor plant showed
marginally higher, if statistically similar, FRAP and TAA
activity (Table 6; Fig. 4c, d). This observed variation in
total antioxidant activities among different extracts might
also be attributed to solvents influencing either tissue-

specific solubility of phytomolecules or environmental
stresses encountered during ex vitro-growth (Masondo
et al. 2015).

Radical scavenging activity The leaf and flower extracts of
N. arbor-tristis were evaluated for their ability to scavenge
DPPH, H2O2, and superoxide radicals in a concentration-
dependent manner (Table 7; Fig. 5) in the current study, rec-
ognizing that observed variation depends upon the type of
tissues and solvents, as reported earlier (Dasgupta and De
2007; Rathee et al. 2007; Mishra et al. 2016). Similar to
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Figure 5. Comparative
evaluation of free radicals [(a)
1,1-diphenyl-2-picrylhydrazyl
(DPPH), (b) hydrogen peroxide
(H2O2), (c) superoxide] scaveng-
ing ability (in term of IC50 value)
of leaf and flower extracts
obtained from Nyctanthes arbor-
tristis plants raised in vitro as well
as ex vitro.
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content of bioactive metabolites and antioxidant potential,
radical scavenging activity of the extracts obtained from
in vitro-regenerated plants were on a par with their re-
spective counterpart from the donor plant, barring a few
exceptions (Table 7; Fig. 5): the DPPH radical scavenging
activity of analogous extracts of ex vitro- and in vitro-
grown leaves and flowers were almost identical in terms
of IC50 value, barring ethyl acetate and methanolic leaf
extract (Fig. 5a). Ethyl acetate flower extracts showed
superior DPPH radical quenching activity (as evidenced
by lower IC50 values) in comparison to that of leaf ex-
tracts, regardless of plant origin (Fig. 5a), whereas aque-
ous leaf extracts revealed better DPPH scavenging activity
than flower extracts (Fig. 5a). Contrasting to this, leaf
extracts showed better H2O2 (Fig. 5b) and superoxide
radical scavenging (Fig. 5c) activity than flower extracts
(Table 7), for all categories, except for H2O2-scavanging
activity of ethyl acetate-extracted leaves. In most cases
both the in vitro and ex vitro leaf extracts showed equiv-
alent radical scavenging activities in terms of their IC50

values, while in vitro flower extracts showed superiority
over ex vitro flower extracts (Fig. 5). However, these var-
iations might also have resulted due to either varying dis-
tribution of active components in different tissues, age of
in vitro-regenerated plantlets grown in an ex vitro-envi-
ronment, and fractionation during extraction, or even
stresses levied during their growth, of the plants grown
either in vitro or ex vitro (Malik et al. 2010; Riaz et al.
2014; Masondo et al. 2015).

Conclusion The present study established an effective and al-
ternative protocol for the micropropagation of N. arbor-tristis
plants from PBU-treated nodal explants via organogenesis,
where genetic stability of regenerated plantlets was affirmed
by SCoT marker profiling, and by homogenous content of
four sampled therapeutical metabolites, antioxidant potential,
and equivalent radical scavenging activities. The presented
propagation procedure should be of immense use for large-
scale, clonal multiplication of N. arbor-tristis in vitro to meet
the raw material demands of both the herbal industries and for
esthetic purposes, as well as for the ex-situ conservation of
N. arbor-tristis genotypes.
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