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Abstract
The development of embryos requires interaction of many endogenous hormones. The aim of the study was to determine which
endogenous phytohormones are involved in the process of oat (Avena sativa L.) haploidization. Oat haploids were obtained by
wide crossing with Zea mays L. The hormonal profiles of the ovaries with (OE) and without developed embryo (OWE) were
compared. Phytohormone contents were measured by UHPLC coupled with mass spectrometer. The total content of indole-3-
acetic acid (IAA), trans-zeatin (tZ), and kinetin (KN) in OE was significantly higher than in OWE. 4-Chloroindole-3-acetic acid
was detected only in OWE. There were no differences between OE and OWE in the content of gibberellins (GA1, GA3, GA4,
GA6, GA7) and stress hormones (abscisic, salicylic, jasmonic acids). Content of endogenousKNwas highly negatively correlated
with the percentage of haploid embryos, germinated haploid embryos, haploid plants on MS (in vitro), haploid plants in soil (ex
vitro), and doubled haploid lines. The tZ content negatively correlated with the frequency of haploid embryo formation, germi-
nation, and haploid plants obtained in vitro, as opposed to GA1, which correlated positively. A positive correlation was found
between IAA and tZ in OE, whereas in OWE it was a negative correlation. The profiles of phytohormones in OE and OWEwere
determined; however, their mode of action needs to be clarified.
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Introduction

Oat (Avena sativa L.) is one of the most important cereals
cultivated by man (FAOSTAT 2017). It is used both in the
food industry and the animal nutrition, because it is appreci-
ated for its nutritional value. Progressive environmental
changes are forcing breeders to produce new, fertile, and re-
sistant cultivars. Modern plant breeding willingly uses dou-
bled haploids, because they allow to obtain complete homo-
zygosity after one generation and at the same time to shorten
the breeding program. Oat is a species recalcitrant to
haploidization; however, wide crossing allows to obtain

haploid plants. Although practical protocols for producing
oat doubled haploid have been described (Rines 2003; Sidhu
et al. 2006; Marcińska et al. 2013; Nowakowska et al. 2015),
very little is known about the molecular and hormonal mech-
anisms governing the process of haploidization. Hormonal
studies in haploid embryos that require sample destruction
have not been reported in literature yet due to the fact that
(1) the process of haploidization is still not very efficient,
laborious, and time-consuming; (2) extremely low embryo
weight hinders the sample preparation and analysis of the
biochemical composition; and (3) embryos have great value
in the breeding work.

To our knowledge, the endogenous hormonal profile of
haploid oat embryos obtained by wide crossing with maize
has not been established yet. A little more has been done in
plant growth regulators (PGRs) in relation to microspore em-
bryogenesis. Hormonal regulation of microspore embryogen-
esis was thoroughly reviewed by Żur et al. (2015a). However,
most of the information concerns the exogenous influence of
PGRs on this process. Few articles were devoted to endoge-
nous levels of phytohormones measured in the anthers of
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tobacco, maize, legume species, and triticale in order to assess
their influence on microspore embryogenesis effectiveness
(Dollmantel and Reinert 1980; Delalonde and Coumans
1998; Lulsdorf et al. 2012; Żur et al. 2015b). Only Hays et al.
(2001) compared phytohormones in zygotic embryos and
haploid embryos of Brassica napus obtained by microsporo-
genesis and demonstrated that gibberellins GA1, GA20,
abscisic acid (ABA), and indole-3-acetic acid (IAA) contents
(per embryo cultured) were lower in haploid embryos than in
zygotic ones at comparable stages of development.

Endogenous hormones in developing zygotic wheat ker-
nels were studied by Hess et al. (2002). High cytokinin
concentrations in ovules with a low level of auxin during
the initial embryogenesis phase are necessary for the prop-
er embryo development. Subsequently, the level of IAA
and ABA in the endosperm of wheat starts to increase
sharply during the rapid growth phase to reach the highest
point during the soft-dough phase. Cytokinin contents de-
crease in the endosperm, while in the embryo, they remain
at a high level during the rapid growth phase and then drop.
Similarly, the accumulation of cytokinins in caryopses in
the early period of seed filling (12 d after pollination) of
barley and maize was recorded (Powell et al. 2013; Rijavec
et al. 2011).

Investigating hormones involved in embryogenesis of hap-
loid embryos is very difficult; hence, our approach to study the
endogenous hormone balance was indirect. In this work, we
examined the hormonal profile of the ovaries, in which hap-
loid embryos developed (OE) as a result of wide crossing, and
compared it to the hormonal profile of the ovaries, in which
there were no existing embryos (OWE). The correlation be-
tween endogenous phytohormones and the efficiency of oat
doubled haploid production was also analyzed. On this basis,
we hypothesize if endogenous phytohormones are involved in
the process of haploidization regulation.

Materials and Methods

Efficiency of oat doubled haploid production Seeds of Avena
sativa L. were obtained from Strzelce Plant Breeding Ltd.
The following genotypes were used for wide crossing:
STH 4.4729, STH 4.8432, STH 4.8459, STH 4.8435,
STH 4.4742, STH 4.4586, STH 4.4606, and STH
4.4690. Maize (Zea mays L.) cultivar Waza was used as
a pollen donor. Oat and maize plants were grown in a
greenhouse under 16-h photoperiod and 21/17°C day/
night temperature. Natural light was supplemented with
sodium lamps on cloudy days, if necessary. Oat flowers
were emasculated and after 2 d pollinated with maize
pollen. Pollinated flowers were treated with one drop of
2,4-dichorophenoxyacet ic acid (2,4-D) solut ion
(50 mg dm−3) on the next day. The protocol of the wide

crossing method for the production of oat doubled hap-
loids (DH) has been previously described in details by
Skrzypek et al. (2016), Warchoł et al. (2016), and
Nowakowska et al. (2015). Enlarged oat ovaries were
collected 21 d after pollination with maize. They were
surface-sterilized in 70% ethanol (1 min), 2.5% calcium
hypochlorite (7 min) and washed four times with sterile
water. All ovaries were opened aseptically and haploid
embryos were isolated under the light microscope SE-
222 R (Eduko, Warsaw, Poland). The embryos were
placed in 6-mm Petri dishes with 190–2 medium
(Zhuang and Xu 1983) for germination and conversion
into haploid plants. Regenerants were passaged individu-
ally to Magenta vessels with MS medium (Murashige and
Skoog 1962). Then the plants were acclimated to the ex
vitro conditions. Doubling the number of chromosomes
was done using colchicine and the plant ploidy was
assessed by MACS Quant flow cytometer (Miltenyi
Biotec GmbH, Begisch Gladbach, Germany) as described
by Skrzypek et al. (2018).

The whole opened ovaries used for hormonal analysis were
divided into two groups: (1) ovaries, in which embryos devel-
oped (OE), and (2) ovaries, in which embryos did not develop
(OWE). Each group of ovaries from individual genotypes
were collected together. It means that hormonal analysis was
carried out for pooled samples that consisted of at least 13
ovaries collected from individual genotype. Data from each
genotype was counted as replicates and used to calculate
means and standard error (SE).

Extraction and targeted profiling of phytohormones
Lyophilised ovaries were pulverized in a mixing mill (MM
400, Retach, Kroll, Germany) and 25 mg of dried ovaries
was used for hormonal analyses. Extraction and quantification
of phytohormones were carried out according to Dziurka et al.
(2016). Samples spiked with stable isotope labeled internal
standards were extracted using the methanol/water/formic ac-
id mixture (MeOH/H2O/HCOOH, 15/4/1 v/v) (Dobrev and
Kaminek 2002). Extraction was repeated twice and combined
extracts were evaporated under nitrogen and re-suspended in
5% MeOH in 1 M HCOOH and purified on SPE cartridges
(BondElut Plexa PCX, 30 mg, 1 mm, Agilent, Santa Clara,
CA). The fraction containing abscisic acid (ABA), auxins,
gibberellins, jasmonic acid (JA), and salicylic acid (SA) was
combined with cytokinins and evaporated under N2,
reconstituted in 70 μl of acetonitrile (ACN), filtered
(0.22-μm nylon membrane), and used for ultra-high perfor-
mance liquid chromatography (UHPLC) analyses. The system
consisted of UHPLC (Agilent Infinity 1260, Agilent,
Woldbrom, Germany) and a triple quadruple mass spectrom-
eter (Agilent 6410, Agilent, Santa Clara, CA) with electro-
spray ionization (ESI). Separation was achieved on an
AscentisExpres RP-Amide analytical column (2.7 μm,
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2.1 mm× 75mm; Supelco, Belefonta, PA) at linear gradient of
water vs. ACN both with 0.01% HCOOH. The following
hormones were monitored: trans-zeatin (tZ) and cis-zeatin
(Z), [15N4]dihydrozeatin (DHZ-N15, used as internal standard
(ISTD)), kinetin (KN) and [15N4]kinetin (K-N15, ISTD), gib-
berellin A1 (GA1), gibberellic acid (GA3), [

2H2]gibberellic
acid (GA3-D2, ISTD), gibberellin A6 (GA6), [

2H5]indole-3-
acetic acid (IAA-D5, used as ISTD) and indole-3-acetic acid
(IAA), [2H4]salicylic acid (SA-D4, used as ISTD), salicylic
acid (SA), [2H6]cis,trans-abscisic acid (ABA-D6, ISTD),
cis,trans-abscisic acid (ABA) and indolebutyric acid (IBA),
jasmonic acid (JA), and gibberellin A4 (GA4). Multiple reac-
tions monitoring (MRM) transitions were used to identify and
quantify all compounds of interest (Supplementary Table 1).
Calibration was performed based on calibration curves of pure
standards, taking into account the recovery of stable isotope
labeled ISTDs. All standards were purchased fromOlChemim
(Olomouc, Czech Republic) at the highest available purity,
whereas all solvents were of HPLC grade and were purchased
from Sigma-Aldrich (Sigma-Aldrich, Darmstadt, Germany).

Statistical analysis Data were analyzed using the statistical
package STATISTICA 12 (Stat-Soft, Inco., Tulsa, OK). The
Student’s t test at p ≤ 0.05 and p ≤ 0.001 was used to determine
the significance of differences between phytohormone con-
tents in OE and OWE. Hormone contents measured in OE
of each genotype were correlated to their performances in
DH line generation and analyzed at 0.05 and 0.01 probability
level. Correlations between endogenous phytohormones in
OE and OWE were analyzed at 0.05 and 0.01 probability
levels.

Results

Efficiency of oat doubled haploid productionA total of 5794
flowers from 8 genotypes were emasculated (Table 1).
Three-hundred and forty-six haploid embryos occurred,
which corresponded to 5.7% efficiency counted per 100
florets. Nearly half of the obtained embryos germinated.
The germination rate of haploid embryos varied between
genotypes from 0.4% (STH 4.4729) to 5.7% (STH 4.4690)
and the mean value was 2.2%. One-hundred-nineteen
(1.8%) haploid plants developed in vitro. Of these, 43
(0.6%) survived acclimatization. As a result, 30 (0.4%)
plants were acquired after the colchicine treatment. The
individual steps of the haploidization process are shown
in Fig. 1.

Endogenous phytohormone contents in OE and OWE devel-
opment Three auxins: IAA, 4-Cl-IAA, and IBA, were mea-
sured in the ovaries (Fig. 2A and Supplementary Table 2).
About one and a half times more IAA content was noted in

OE compared to OWE. Chloroindole auxin, 4-Cl-IAA, was
detected in OWE, while it was not found in OE. Similar
amounts of IBA were present in both types of ovaries: OE
and OWE.

The analyses of Z, tZ, and KN were carried out in both
types of the ovaries, and the results are shown in Fig. 2B
and Supplementary Table 3. There were no differences be-
tween the Z content in both types of the ovaries. On the con-
trary, significantly higher tZ levels (47 pmol/g DW) were re-
corded in OE in comparison to OWE (29.4 pmol/g DW). We
also observed up to eightfold higher amounts of kinetin in OE
than in OWE. The following gibberellins were determined:
GA1 , GA3 , GA4 , GA6 , and GA7 (F ig . 2C and
Supplementary Table 4). In both types of the studied ovaries,
GA6 was present in the highest quantities than other gibberel-
lins. GA3 was the second gibberellin in terms of abundance in
the ovaries. It was accumulated in OE in about one and a half
times larger quantities compared to OWE. Gibberellins GA1,
GA4, and GA7 were found in small amounts and there were no
differences in their contents between OE and OWE.

Figure 2D and Supplementary Table 5 show the levels of
stress hormones, such as ABA, JA, and SA in both types of
the ovaries. There were no significant differences in each of
them between OE and OWE; however, higher amounts of
these hormones were detected in OE compared to OWE. All
stress hormones were present in very high quantities in com-
parison to other hormones monitored. The ABA content was
about 3000–4000 pmol/g DW, JA up to 8000 p/g DW, and SA
approximately 5000 pmol/g DW.

Correlation of endogenous phytohormone contents in oat
ovaries with efficiency of haploid production There was no
relationship between the auxin content in oat ovaries and the
haploid production efficiency (Table 2). In contrast, the pres-
ence of cytokinins: tZ and KN, in the ovaries was strongly
negatively correlated with the examined characteristics. The
tZ content correlated with the frequency of haploid embryo
formation, germination, and haploid plants obtained in vitro.
The lower kinetin content in oat ovaries increased the effi-
ciency of doubled haploid production at all assessed stages.
There were no correlations between the Z content and the
studied traits. There was a significant positive correlation be-
tween GA1 level in oat ovaries and the frequency of haploid
embryo formation, germination, and haploid plant develop-
ment in vitro. The remaining gibberellins did not show any
correlation with any of the examined traits describing the
efficiency of doubled haploid production. The level of SA
measured in the ovaries was positively correlated with the
efficiency of DH lines. No relationship was found between
ABA and JA, and parameters determining haploid production
efficiency.

The relationships between individual phytohormones pres-
ent in OE and OWE were also examined (Tables 3 and 4). The
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auxin IAA showed a strong negative correlation with tZ in
OWE (Table 4). While IAA positively correlated with GA6 in
OE (Table 3). Furthermore, positive correlations between IBA
and tZ and JAwere found in OE. The tZ content was related to
the KN content in both types of the ovaries. Some negative
correlations between cytokinins and gibberellins were noted.
tZ correlated negatively with GA3 in OWE and with GA1 in
OE. In addition, KN negatively correlated with GA7 in OWE.
An exceptionally strong negative correlation was observed be-
tween Z and JA in OE. Higher GA3 content was accompanied
by higher GA7 content in OWE. ABA, SA, and GA4 did not
show any correlation with any other phytohormones.

Discussion

Embryogenesis involves the interplay between endogenous
hormones such as auxins, cytokinins, gibberellins, and
abscisic acid. Knowing the hormonal profile during the hap-
loid embryo development will allow to modify the rescue
medium in order to increase the rate of their conversion into
plants. The conversion of oat haploid embryos is the most
critical stage in the production of oat DH (Lulsdorf et al.
2014; Noga et al. 2016; Warchoł et al. 2018).

Higher IAA content in OE than in OWE can suggest that
IAA is involved in the process of haploid embryo develop-
ment, which is in line with the knowledge about zygotic em-
bryogenesis (Bewley et al. 2013). Auxin balance plays an
important role in embryo apical-basal patterning (Hadfi et al.
1998; Friml 2003; Friml et al. 2003; Jenik and Barton 2005;
Su et al. 2011). Cheng et al. (2017), in turn, reported a higher
IAA content in developing hazelnut ovules compared to abor-
tive ones. According to Slater et al. (2013), auxin was the
dominant hormone present in developing zygotic seeds of
chickpea, lentil, field pea, and faba bean. IBA, which is con-
sidered an IAA precursor and/or a storage form (Simon and
Petrásek 2011), was found in trace amounts in both types of
the ovaries. The presence of 4-Cl-IAA in OWE in the current
study is surprising, because so far this auxin has not been
detected in oat. Possibly 4-Cl-IAA acts as a signaling factor
and might be involved in the process of senescence in oat
florets. The hormonal analyses were carried out 3 wk after
pollination; thus, it can be assumed that the ovaries, in which
embryos did not develop, were directed towards senescence.
This would be consistent with the Engvild’s hypothesis
(Engvild 1989), according to which 4-Cl-IAA could be a se-
nescence factor. The 4-Cl-IAA content is associated with low-
er IAA amounts in OWE (compared to OE), which may indi-
cate that it is a degradation product of IAA, as suggested by
Slater et al. (2013).

All cytokinins were present at the level of several dozen
pmol per g DW, which means that this group of hormones is
not as significant component of the ovaries as auxins.Ta
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Cytokinin accumulation in developing seeds is accompanied
by intense cellular divisions (Morris 1997). According to
Rijavec et al. (2011), unfertilized ovules did not accumulate
cytokinins in contrast to developing maize caryopses.
Similarly, Cheng et al. (2017) reported higher cytokinin con-
tent in developing ovules compared to abortive ones. The
higher tZ content in OE than in OWE can be explained by
cell divisions and differentiation of haploid embryo. However,
a negative correlation was found between endogenous cytoki-
nins (tZ and KN) in the ovaries and haploid embryo

formation, germination as well as haploid plant production,
which may indicate that the excess of cytokinins is also not
favorable for embryogenesis. Particularly noteworthy is the
accumulation of KN in OE. Kinetin has been regarded for
many years as a substance that does not naturally occur in
plants. It was until Barciszewski et al. (1996) identified KN
in dried coconut. Kinetin was also found in triticale anthers
and described that it acts as a DNA protective agent against
reactive oxygen species (Żur et al. 2014, 2015b). Considering
our results, it can be suggested that that accumulation of KN in

Figure 1. Oat ovaries and haploid
embryos obtained by wide
crossing with maize: (A) 21-old
ovary after pollination with
maize, (B) opened ovary with
haploid embryo (e), (C) non-
germinating haploid embryo, (D)
germinating haploid embryo, and
(E) germinated haploid embryo
with developed leaves (l) and root
(r).
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OE is associated with oxidative stress. Muller and Sheen
(2008) postulated the occurrence of a crosstalk between

auxins and cytokinins during early embryogenesis. Here, we
showed that the correlation between IAA and tZ is altered and

Figure 2. Phytohormone contents [pmol/g D.W.]: (A) auxins, (B)
cytokinins, (C) gibberellins, and (D) stress hormones (ABA, SA, JA) in
the ovaries in which haploid embryo developed (OE) and in the ovaries

without developed embryo (OWE). Bars represent means of 8 replicates
± SE. Stars indicate significant differences at p ≤ 0.05 (*) and p ≤ 0.001
(***).

Table 2. Correlation coefficients
between endogenous
phytohormone contents in OE
and the efficiency of oat doubled
haploid production using the wide
crossing method

Phytohormones Trait (per 100 emasculated florets)

Haploid
embryos

Germinated haploid
embryos

Haploid plants
on MS

Haploid plants
in soil

DH lines

IAA − 0.374 − 0.532 − 0.512 − 0.382 − 0.333
IBA − 0.358 − 0.337 − 0.325 − 0.289 − 0.127
Z − 0.267 − 0.347 − 0.341 − 0.210 − 0.277
tZ − 0.754* − 0.811* − 0.795* − 0.672 − 0.539
KN − 0.839** − 0.793* − 0.774* − 0.774* − 0.719*

ABA 0.501 0.464 0.471 0.554 0.666

SA 0.257 0.381 0.388 0.665 0.757*

JA 0.176 0.164 0.169 0.035 0.116

GA1 0.834* 0.825* 0.810* 0.529 0.387

GA3 0.356 0.335 0.310 0.095 0.002

GA4 − 0.005 0.052 0.080 − 0.063 − 0.098
GA6 − 0.220 − 0.331 − 0.326 − 0.236 − 0.206
GA7 − 0.113 − 0.180 − 0.155 − 0.321 − 0.427

Stars indicate significant correlations at p < 0.05 (*) and p < 0.01 (**)
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reversed in OE and OWE. Gibberellins, particularly GA3, is
commonly used in in vitro cultures to stimulate embryo ger-
mination (y Aké et al. 2007). We showed that the capacity of
haploid embryos to germinate was correlated with GA1 con-
tent in the ovaries. GA6 was present in OE and OWE in
amounts of approximately 5000 pmol/g DW. Endogenous
GA6 was detected in Lolium temulentum as a natural stimulus
of floral development (King et al. 2003). Cheng et al. (2017)
reported higher content of GA3 in developing hazelnut ovules
compared to aborted ones. The OE were characterized by
higher amounts of GA3 and GA7 gibberellins compared to
the OWE, although they did not differ statistically. It is highly
probable that gibberellins are involved in the development of
the haploid embryo, but the mode of their action needs to be

further investigated. GA1 and GA4 are considered as active
forms of gibberellins in seeds (Bewley et al. 2013).

It was shown that embryo abortion (Cheng et al. 2017) and
senescence (Khan et al. 2014) is strongly associated with the
production of large amounts of stress hormones: ABA, JA,
and SA. In our study no significant differences in stress hor-
mones between OE and OWEmay indicate that the process of
ovaries aging has not been started yet. On the other hand, the
accumulation of 4-Cl-IAA in OWE might be a senescence
signal, whereas the higher cytokinin content in OE than in
OWE can deny senescence. Taking the above into consider-
ation, differences in hormonal levels could be a consequence
of embryo development as well as senescence of ovaries. To
resolve this issue, further investigation is needed.

Table 4. Correlation coefficients between endogenous phytohormones in OWE

Trait IAA 4-Cl-
IAA

IBA Z tZ KN ABA SA JA GA1 GA3 GA4 GA6

4-Cl-IAA 0.105

IBA − 0.228 − 0.390

Z − 0.255 0.463 − 0.288

tZ − 0.723* − 0.206 0.256 0.297

KN − 0.668 − 0.577 0.187 − 0.183 0.732*

ABA 0.267 0.157 0.272 0.372 − 0.155 − 0.287
SA 0.349 0.007 0.458 − 0.268 − 0.237 − 0.065 0.692

JA − 0.367 0.350 0.381 0.596 0.238 − 0.095 0.470 0.288

GA1 0.372 − 0.066 0.505 − 0.323 − 0.617 − 0.503 0.501 0.495 0.052

GA3 0.378 0.420 − 0.362 0.254 − 0.739* − 0.570 0.447 0.304 0.289 0.356

GA4 − 0.025 0.051 0.429 − 0.366 0.269 0.197 0.200 0.430 − 0.177 0.222 − 0.493
GA6 − 0.208 0.622 − 0.508 0.025 − 0.021 0.019 − 0.218 − 0.158 − 0.208 − 0.233 0.090 0.329

GA7 0.320 0.379 0.189 0.363 − 0.535 − 0.716* 0.624 0.388 0.646 0.587 0.740* − 0.343 − 0.318

Stars indicate significant correlations at p < 0.05 (*)

Table 3. Correlation coefficients between endogenous phytohormones in OE

Trait IAA IBA Z tZ KN ABA SA JA GA1 GA3 GA4 GA6

IBA 0.184

Z 0.520 − 0.642
tZ 0.703 0.723* 0.045

KN 0.290 0.593 − 0.051 0.769*

ABA 0.184 0.142 − 0.227 − 0.117 − 0.464

SA − 0.338 − 0.127 − 0.011 − 0.329 − 0.355 0.362

JA − 0.015 0.774* − 0.845** 0.275 0.178 0.426 − 0.272
GA1 − 0.590 − 0.368 − 0.386 − 0.791* − 0.652 0.137 − 0.126 0.219

GA3 − 0.360 − 0.144 − 0.408 − 0.418 − 0.309 0.064 − 0.395 0.354 0.613

GA4 − 0.110 0.578 − 0.612 0.231 0.529 − 0.051 − 0.263 0.679 0.102 0.180

GA6 0.723* − 0.290 0.674 0.217 − 0.031 0.367 − 0.144 − 0.286 − 0.386 − 0.111 − 0.415
GA7 0.446 − 0.003 0.168 0.207 0.385 0.019 − 0.593 0.202 − 0.015 0.208 0.523 0.454

Stars indicate significance at p < 0.05 (*) and p < 0.01 (**). 4-Cl-IAAwas not detected in OE
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Conclusions

The hormonal profiles in oat ovaries as well as presence of 4-
Cl-IAAwere described for the first time. The higher concen-
tration of IAA, tZ, and KN in ovaries stimulate haploid em-
bryo development. 4-Cl-IAAwas detected only in ovaries, in
which embryos did not develop, what suggests its role as a
senescence factor.
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