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Abstract An efficient and simple procedure was systematical-
ly developed for inducing direct somatic embryogenesis and
plantlet regeneration from leaf sheath explants of Curcuma
amada Roxb. A two-step culture system was used to induce
somatic embryogenesis. The optimized procedure resulted in
direct somatic embryogenesis from 93.3% explants after 3-wk
culture. Leaf sheath explants were incubated for 2 wk on
medium containing 2.24 μM 2,4-dichlorophenoxyacetic acid
and 1.11 μM 6-benzyladenine to initiate direct somatic em-
bryogenesis. Thereafter, these explants were transferred to a
medium containing 9.10 μM thidiazuron and 1.33 μM α-
naphthaleneacetic acid. Elongated somatic embryos obtained
from these cultures germinated readily, and the optimal fre-
quency of plantlet development (86.7%) was achieved when
embryos were cultured in darkness on 1/2 strength Murashige
and Skoog medium containing 1.44 μM gibberellic acid. His-
tological and scanning electron microscopic studies showed
that the initial cell divisions that led to embryo formation
occurred in epidermal and subepidermal cells, followed by
the development of globular and elongated structures that
appeared to be somatic embryos. The presence of a clear
protoderm in the globular structures and procambial strands
in the elongated structures confirmed that these structures were
true somatic embryos. Plantlets derived from somatic embryos

were acclimatized successfully to ex vitro conditions at a sur-
vival rate of 87.43% and developed with normal phenotypes.
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Introduction

Curcuma amada Roxb. is an aromatic spice crop of the family
Zingiberaceae, a group of important tropical monocots which
includes turmeric, ginger, and cardamom. It is commonly
known as mango ginger and possesses a raw mango-like
flavor blended with that of ginger (Banerjee et al. 2012).
The aromatic smell raised from C. amada is mainly attributed
to presence of car-3-ene and cis-ocimene compounds (Gholap
and Bandyopadhyay 1984; Rao et al. 1989; Choudhury et al.
1996). Its rhizomes contain fibers, starch, and more than 68
volatile, aromatic essential oils which are used in food, bev-
erages, cosmetics, and medicines (Srivastava et al. 2001;
Mustafa et al. 2005; Policegoudra and Aradhya 2008).

C. amada possesses several medicinal properties, such as
stomachic, carminative, aphrodisiac, antipyretic, and laxative
properties, and is a potential source of compounds with
cholesterol-lowering activities (Kirtikar and Basu 1984;
Warrier et al. 1994; Srinivasan et al. 2008). The major bioac-
tive compounds of C. amada include curcuminoids,
curcumin, demethoxy curcumin, and bis-demethoxy
curcumin. These compounds have been used for their antiox-
idant, anti-inflammatory, antidepresent, and platelet-
aggregation inhibition activities (Policegoudra et al. 2011). It
also contain a labdane-type diterpenoid (labda-8(17), 12-
diene-15 and 16-dial), which exhibit activity against tubercu-
losis (Singh et al. 2010).
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C. amada is mainly propagated by division of rhizomes
which are slow to multiply. Genetic improvement by conven-
tional breeding is also difficult in C. amada because of a lack
of sexual reproduction (Balachandran et al. 1990; Prakash
et al. 2004). Furthermore, genetic engineering and molecular
studies of its resistance to rhizome rot (caused by Pythium sp.)
and bacterial wilt (caused by Ralstonia solanacearum) re-
quires a standardized, simple morphogenic protocol (Prasath
et al. 2011). Therefore, a reliable protocol for large scale
propagation of this rhizomatous spice is necessary. Somatic
embryogenesis represents a promising tool for mass propaga-
tion as well as for genetic transformation (Nhut et al. 2000;
Manrique-Trujillo et al. 2013). Somatic embryos are preferred
as a tissue for production of alginate-encapsulated synthetic
seeds (Ganapathi et al. 2001; Remakanthan et al. 2013).
Tissue culture studies in C. amada have shown only adventi-
tious plantlet formation from rhizome and leaf sheath explants
(Prakash et al. 2004; Das et al. 2010; Banerjee et al. 2012),
and indirect somatic embryogenesis via callus induction
(Soundar Raju et al. 2013). In this study, we report direct
somatic embryogenesis and plant regeneration fromC. amada
leaf sheath explants, and a method that can be used for large
scale production of elite C. amada in less time than with
previous procedures.

Material and Methods

Plant material, preparation of explants, and culture
condition C. amada plants, procured fromMalappuram, Ker-
ala, were established in vitro and used as a source of explants.
The culture procedures and media were similar to those de-
scribed by Soundar Raju et al. (2013). Leaf sheath explants
were obtained from 3-mo-old plants. The innermost, tender
leaf tips were avoided and only peripheral leaf sheath seg-
ments were considered. Leaf sheath segments (1.5 cm long)
were inoculated onmediumwith the abaxial surface facing the
medium.

The pH of media used for all experiments was adjusted to
5.7±0.1 and autoclaved at 121°C and 104 kPa for 15 min. All
experiments were performed with solid media gelled with
0.8% agar powder (Himedia®, Mumbai, India). Cultures were
maintained at 25±2°C, 16 h photoperiod (except as noted
below) under 40 μmol m−2 s−1 light intensity provided by
white fluorescent tubes and a relative humidity at 55–65%.

Induction of somatic embryogenesis All media used for so-
matic embryo induction included the Murashige and Skoog
(MS) (Murashige and Skoog 1962) mineral formulation sup-
plemented with B5 vitamins (Gamborg et al. 1968) and 3%
sucrose. Preliminary experiments to assess the potential of
somatic embryo induction form leaf sheath explants were
performed in somatic embryo induction medium 1 (SIM 1)

supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D;
2.24, 4.49μM) alone or with 1.11 μM6-benzyl adenine (BA).
Based on preliminary results obtained using SIM 1, the ex-
plants were transferred to somatic embryo induction media 2
(SIM 2) supplemented with BA (4.44, 8.88 μM), kinetin (Kn;
4.64, 9.29 μM), or thidiazuron (TDZ; 4.55, 9.10 μM) alone or
in combination with α-naphthalene acetic acid (NAA;
1.33 μM) for 3 wk to determine the optimal levels of growth
regulators for somatic embryogenesis.

Germination and hardening Somatic embryos cultured on
SIM 2 medium for 3 wk were individually transferred to
germination medium [1/2 strength MS medium supplemented
with gibberellic acid (GA3; 0.0, 0.72, 1.44, 2.16, 2.88 μM) and
2% sucrose] and cultured in either dark or light (16 h photope-
riod) to induce germination. After 3 wk, tiny plantlets were
transferred to growth medium, which consisted of 1/2 strength
MS basal medium supplementedwith 2% sucrose, and cultured
in light with a 16 h photoperiod. Plantlets with 3–4 leaves and
4–5 roots were transferred to plastic cups containing an
autoclaved mixture of sand, soil, and vermiculate (1:2:1). Cups
were covered with perforated polythene bags to maintain high
humidity. The bags were removed when the plants produced
new leaves. Some of these primary-hardened plants were se-
lected at random and were transferred to earthen pots contain-
ing sand, soil, and cattle manure (1:2:1) for secondary harden-
ing under shade house condition. The survival rate of plantlets
was calculated after 1 mo of primary hardening.

Histological and microscopic analysis Explants before and
after differentiation of somatic embryos were selected for
histological studies. The explants were fixed in formalin-
acetic acid (FAA-95% ethanol; 2:1:17, v/v/v) for 24 h,
dehydrated using serial grades of ethanol, and embedded in
paraffin wax using the methods of Dam et al. (2010). Thin
sections (∼10 μm) were cut using a rotary microtome,
mounted on glass slides, and allowed to dry for at least
10 min before staining. Finally, sections were stained with
0.025% toluidine blue O or safranin O and mounted in Di-n-
butyl phthalate in xylene (DPX); BDH®,Mumbai, India). The
prepared slides were examined through a light microscope
(Leica®, Switzerland) and photographed. For scanning elec-
tron micrography, samples were frozen in liquid nitrogen and
scanned in a low vacuum liquid scanning electron microscope
(SEM;Hitachi® S 3400, Tokyo, Japan) with chamber pressure
of 30 Pa and an accelerated voltage of 15 kV.

Statistical analysis All experiments were carried out three
times, each time with at least 15 explants. All data were
subjected to one-way ANOVA. Data are presented as mean,
or mean±standard error (SE). Mean separations were deter-
mined by Duncan’s multiple rage test at a significance level of
P<0.05 (IBM® SPSS statistics 19).
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Results

Development of somatic embryos After 2 wk of culture on
SIM 1 containing 2.24 μM 2,4-D and 1.11 μM BA, the leaf
sheath explants became swollen and soft (Fig. 1A). The ex-
plants eventually became crimped, and white clusters of small
translucent spherical structures were formed on SIM 2 medi-
um containing cytokinin (BA, Kn, TDZ) alone or in combi-
nation with NAA (Fig. 1B). Later, these structures differenti-
ated into globular and elongated stages (Fig. 1C, D). In
contrast, culture of leaf sheath explants on SIM 1 containing
4.49 μM 2,4-D and 1.11 μM BA for more than 3 wk led to a
reduction in the percentage of explants forming somatic em-
bryos and an increase in callus formation.

The one-way ANOVA revealed that the SIM 2 media had
significant effects on the percentage of explants with somat-
ic embryo induction (P<0.05). Somatic embryo induction
was observed after 3 wk of culture. In general, Kn was least
effective for direct somatic embryogenesis. The best re-
sponses occurred using SIM 2 media supplemented with
TDZ, with up to 73.3% of explants showing induction of
somatic embryos (Table 1). Higher concentrations of BA or
TDZ (8.88; 9.10 μM) reduced the induction of somatic
embryos (Table 1). Further experimentation confirmed this,

and showed also that BA or TDZ more effectively induced
somatic embryos when used in combination with NAA
(Table 2). The highest percentage (93.3% of explants
responding) of somatic embryo induction was obtained on
medium supplemented with 9.10 μM TDZ in combination
with 1.33 μM NAA.

Somatic embryos did not germinate on the embryo induc-
tion medium. After transfer to 1/2 strength MS medium con-
taining GA3, somatic embryos germinated within 10 d
(Fig. 1E). GA3 concentration had a significant effect on so-
matic embryo germination (Fig. 1F, G). Germination was
significantly better from embryos cultured in the dark
(Fig. 2). The highest rate of germination (86.7%) was obtained
from somatic embryos cultured in the dark on medium con-
taining 1.44 μM GA3 (Fig. 2).

The small plantlets obtained on the germination medium
were further transferred to culture bottle containing 1/2
strength MS basal medium under light (Fig. 1H). After
3 wk, the plantlets had formed a vigorous root system and
3–4 leaves. Plantlets were than transplanted to plastic cups
containing the potting mixture (Fig. 1I, J) and, after 1 mo of
primary hardening, 87.43% of plants survived. Randomly
selected primary-hardened plants were transferred for second-
ary hardening (Fig. 1K).

Figure 1. Morphological stages of direct somatic embryogenesis: (A)
General view of leaf sheath explant after 2 wk of culture on SIM 1
medium containing 2.24 μM 2,4-D in combination with 1.11 μM BA;
(B) Development of translucent spheres (arrow) on SIM 2 medium
containing 9.10 μM TDZ in combination with 1.33 μMNAA; (C) Early
stages of globular embryo development (arrows); (D) Elongated stages of
somatic embryos (arrows); (E) Germination of somatic embryos on 1/2

strength MS medium containing 1.44 μMGA3 under dark condition; (F,
G) Germinated somatic embryo; (H) Plantlets regenerated on 1/2 strength
MS basal medium under light condition; (I) Plantlets showing shoot and
roots just before transfer to mixture of sand, soil, and vermiculite (1:2:1);
(J, K) Plantlets during secondary hardening to mixture of sand, soil, and
cattle manure. Bars: (A) 100 μm; (B, C) 500 μm; (D) 700 μm; (E)
1.0 mm; (F, G) 1.5 mm; (H, I) 1.0 cm; (J) 1.2 cm.
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Histological and microscopic analysis Histological and mi-
croscopic analyses gave insight into the cellular origin of
somatic embryos and morphological changes that occurred
during the induction of somatic embryogenesis. Somatic

embryos seemed to form from either a single cell or small
group of cells in the leaf sheath explant (Fig. 3A). Cells in both
epidermal and subepidermal regions of the explant that appeared
competent for embryogenesis contained dense cytoplasm with

Table 2 Effects of cytokinins in combination with NAA on direct somatic embryogenesis of C. amada

Plant growth regulators (μM) Explants responding with
embryo induction (%)a

Number of somatic embryos
per explant (mean±SE)b

SIM 1 SIM 2

2,4-D BA BA Kn TDZ NAA

2.24 1.11 4.44 1.33 73.3bc 17.31±1.59cd

8.88 1.33 86.6a 28.31±1.85b

4.49 1.11 4.44 1.33 37.7gh 10.13±1.96ef

8.88 1.33 55.5def 16.77±2.26cde

2.24 1.11 4.64 1.33 48.8efg 13.08±2.02cdef

9.29 1.33 59.9de 19.55±2.41c

4.49 1.11 4.64 1.33 31.1h 8.35±1.87f

9.29 1.33 39.9gh 11.82±2.18def

2.24 1.11 4.55 1.33 82.2ab 32.48±2.28b

9.10 1.33 93.3a 49.42±2.01a

4.49 1.11 4.55 1.33 46.6fg 17.48±2.28cd

9.10 1.33 64.4cd 30.64±3.43b

Mean within a column followed by same letter are not significantly different according to Duncan’s multiple range test (DMRT) (P<0.05)
a Data represented as mean
bData represented as mean±SE

Table 1 Effects of plant growth regulators on the induction of direct somatic embryogenesis from leaf sheath explants of C. amada

Plant growth regulators (μM) Explants responding with
embryo induction (%)a

Number of somatic embryos
per explant (mean±SE)b

SIM 1 SIM2

2,4-D BA BA Kn TDZ

2.24 1.11 0.0i 0.0f

4.49 1.11 0.0i 0.0f

2.24 1.11 4.44 48.8c 7.04±1.10d

8.88 64.4ab 12.28±1.39bc

4.49 1.11 4.44 24.4gh 2.46±0.66e

8.88 37.7def 5.06±1.00de

2.24 1.11 4.64 28.8fgh 4.71±1.12de

9.29 39.9cde 9.02±1.75cd

4.49 1.11 4.64 19.9h 2.22±0.73e

9.29 33.3efg 4.73±1.02de

2.24 1.11 4.55 59.9b 16.06±1.99b

9.10 73.3a 20.22±1.95a

4.49 1.11 4.55 35.5ef 8.08±1.65cd

9.10 46.6cd 12.42±2.09bc

Mean within a column followed by same letter are not significantly different according to Duncan’s multiple range test (DMRT) (P<0.05)
a Data represented as mean
bData represented as mean±SE
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small vacuoles and evident nucleus (Fig. 3B), andwere obtained
within 14 d of culture on SIM 1. These embryogenic cells
divided rapidly, and the embryos ultimately protruded from the
surface of the explant after 7 d of culture on SIM 2 (Fig. 3C,D).
Further differentiation of these embryos resulted in the forma-
tion of globular and elongated embryos after 15–21 d of culture
(Fig. 3E–G). The clear presence of the protoderm (the outer
most layer of a developing embryo) seen in the globular-
stage embryos and the procambial strand was seen in the
elongated-stage embryo confirms these to be somatic em-
bryos directly formed from leaf sheath explants (Fig. 3H, I).
The SEM analysis further confirmed the direct origin of the
embryo from the leaf sheath explant (Fig. 4A, B) and
development of globular embryos with no callus intermedi-
ate (Fig. 4C, D).

0

20

40

60

80

100

120

0 0.72 1.44 2.16 2.88

So
m

at
ic

 e
m

br
yo

 g
er

m
in

at
io

n 
 (

%
) 

GA3 concentration (µM) 

16 hr light

Dark

Figure 2. Effects of GA3 and light condition on C. amada somatic
embryo germination. Data are shown as mean±SE.

Figure 3. Histological evidence
of direct somatic embryogenesis
from leaf sheath explant of
C. amada: (A) Transverse section
of 3-mo-old in vitro-grown leaf
sheath explant; (B) Embryogenic
cells with prominent nucleus,
small vacuole, and dense
cytoplasm on 14 d of SIM 1
culture (arrows); (C) Active cell
division and formation of embryo
observed after 7 d of SIM 2
culture (arrows); (D) Histology of
explant showing direct
appearance of embryos (arrow);
(E, F) Direct appearance of
globular somatic embryos
(arrows) from epidermal and
subepidermal regions on 15 d of
culture; (G, H) Globular-shaped
somatic embryos with protoderm
(arrow); (I) Elongated stage
somatic embryo with procambial
strand observed after 21 d of
culture (arrow). Bars: (A, B)
100 μm; (C, D) 300 μm, (E–H)
500 μm, (I) 700 μm.
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Discussion

We previously reported indirect regeneration system of somat-
ic embryogenesis from callus-derived cell suspension cultures
of C. amada (Soundar Raju et al. 2013). However, direct
somatic embryogenesis is a more desirable approach to obtain
regenerated plants, similar to the parent plants, since callus
formation may cause somaclonal variation (Mizukami et al.
2008). Direct embryogenesis has been also reported to be
useful for the regeneration of transgenic plants (Manoharan
et al. 1998; Tokuji and Fukuda 1999). In this study, a high
percentage of somatic embryo induction directly from leaf
sheath explants was observed, without formation of an inter-
mediate callus. In addition, this method is easier and requires
less time than the previously described method of indirect
regeneration. Therefore, direct somatic embryogenesis from
leaf sheath explants could prove to be another effective regen-
eration system for more rapid propagation of mango ginger.

2,4-D is highly effective for initiation of somatic embryos
in many plant species (Ammirato 1983; Fitch and Manshardt
1990; Haider et al. 1993; Anandan et al. 2012). Prolonged
culture in high concentration of 2,4-D lead to rapid cell
division, which can subsequently result in genetic variation
among the in vitro propagated plants (Venkov et al. 2000).
Our results showed that the primary treatment in SIM 1
containing a low concentration of 2,4-D and BA for 2 wk is
enough to trigger direct somatic embryogenesis. Nhut et al.
(2000) reported successful direct somatic embryogenesis in
rice using explants pretreated with a low concentration of 2,4-
D and BA, as their combination seemed to trigger the mor-
phogenetic competency of the explant, leading to the

reception of the signals for embryo development in several
species (Franklin et al. 2006; Dam et al. 2010).

Among the three cytokinins, TDZ was better at inducing
somatic embryos in SIM 2 than was BA and Kn. TDZ has
been used for regeneration studies in many monocots, includ-
ing banana (Srangsam and Kanchanapoom 2003), bamboo
(Lin et al. 2004), and Dendrobium orchid (Chung et al.
2005). TDZ stimulated the conversion of cytokinin nucleotide
to more biologically active nucleotides (Laloue and Pethe
1982) and to purine cytokinins. It also promoted the conver-
sion of adenine to adenosine (Capelle et al. 1983).

In this study, the combination of 9.10 μM TDZ and
1.33 μM NAA was the most effective at inducing direct
somatic embryogenesis than was TDZ alone. This result is
consistent with other reports where TDZ in combination with
auxins such as 2,4-D and indole-3-acetic acid produced sig-
nificantly more somatic embryogenesis in plants like orchid
sp. Phalaenopsis (Kuo et al. 2005) and Digitalis trojana
(Verma et al. 2012).

In somatic embryos of some species, particularly of plants
that undergo dormancy in natural seeds, the germination and
growth of embryos into plants can be stimulated by the
application of GA3 in the culture medium (Gaj 2004;
Manrique-Trujillo et al. 2013). The germination of somatic
embryo of some monocots was enhanced by dark conditions
(Nhut et al. 2000). In the present study, somatic embryos
cultured on 1/2 strength MS medium containing GA3 under
dark condition showed enhanced germination. Similar results
on stimulatory effects of GA3 were reported for Sesamum
indicum (Xu et al. 1997), Eleutherococcus senticosus (Choi
et al. 1999), and Panax notoginseng (You et al. 2012).

Figure 4. SEM showing direct
somatic embryogenesis from leaf
sheath explant ofC. amada. (A, B)
SEM images showing cell
clusters on the surface of the
explant observed after 7 d of SIM
2 culture (arrows), (C) Surface of
the explant with globular somatic
embryos during 15 d of culture
(arrows), (D) Enlarged view of
globular somatic embryo (arrow).
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The histological study showed that epidermal and subepi-
dermal cells were the source of somatic embryos inC. amada.
The initial cell divisions occurred in the epidermal and sub-
epidermal cells of the explant. This regeneration pathway is
common in several monocots including river lily (Slabbert
et al. 1995) and açaí palm (Scherwinski-Pereira et al. 2012).
Further, the formation of embryogenic cells with prominent
nuclei, small vacuoles, and dense cytoplasm was common for
several plant species (Paul et al. 2011). Globular and elongat-
ed embryo stages were regarded as key stages in the identifi-
cation of somatic embryos (Godbole et al. 2002). The pres-
ence of protoderm and procambial strands in the developing
embryos are the additional key features, which could be used
as indicators for somatic embryo formation (Quiroz-Figueroa
et al. 2002; Sharma and Millam 2004; Jalil et al. 2008).
Histological study of globular and elongated structure in the
present study showed clear evidence of protoderm and pro-
cambial strands in the developing somatic embryos of
C. amada.

Conclusion

This is the first report of direct somatic embryogenesis from
leaf sheath explants in mango ginger. This protocol can be
used for the multiplication of valuable germplasm on a large
scale at a much faster rate, and is easier, compared to the
previous method of indirect somatic embryogenesis. Further-
more, these tissues should also be useful for the introduction
of genes conferring resistance to pathogens using genetic
engineering. Although mango ginger somatic embryo-
derived plantlets could be acclimatized and grown under ex
vitro condition, the degree to which they display a normal
appearance and genetic fidelity needs to be confirmed.
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