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Abstract
Decellularized tissues are an attractive scaffolds for 3D tissue engineering. Decellularized animal tissues have certain limi-
tations such as the availability of tissue, high costs and ethical concerns related to the use of animal sources. Plant-based 
tissue decellularized scaffolds could be a better option to overcome the problem. The leaves of different plants offer a unique 
opportunity for the development of tissue-specific scaffolds, depending on the reticulate or parallel veination. Herein, we 
decellularized spinach leaves and employed these for the propagation and osteogenic differentiation of dental pulp stem cells 
(DPSCs). DPSCs were characterized by using mesenchymal stem cell surface markers CD90, CD105 and CD73 and CD34, 
CD45 and HLA-DR using flow cytometry. Spinach leaves were decellularized using ethanol, NaOH and HCL. Cytotoxicity 
of spinach leaf scaffolds were analysed by MTT assay. Decellularized spinach leaves supported dental pulp stem cell adhe-
sion, proliferation and osteogenic differentiation. Our data demonstrate that the decellularized spinach cellulose scaffolds 
can stimulate the growth, proliferation and osteogenic differentiation of DPSCs. In this study, we showed the versatile nature 
of decellularized plant leaves as a biological scaffold and their potential for bone regeneration in vitro.
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Introduction

Tissue engineering has become a part and parcel of bio-
medical research. In tissue engineering, biomaterials need 
to be bio-compatible to support regeneration of tissues. Vari-
ous biomaterials (natural and synthetic) have been proposed 
and are still under investigation to achieve the appropriate 
morphological, physical, mechanical and biological proper-
ties suitable for the regeneration of targeted tissues (Prete 
et al. 2023).

Stem cell–based tissue engineering begins from cells to 
the injured tissue or blood vessel. In regenerative medicine, 
translational research, such as tissue engineering and molec-
ular biology, is concerned with the process of replacing, or 

repairing cells, tissues or organs in order to resume organ 
function. However, it is hard to track the transmitted cells 
and keep them in a specific location. Scaffolds are the cen-
tral components that are used to carry the cells, drugs and 
genes into the body. Various types of scaffolds are prepared 
as typical 3D porous matrix, nanofibrous matrices or porous 
microspheres, which provide suitable substrates for cell 
attachment, cell proliferation, differentiated function and cell 
migration (Eltom et al. 2019). Scaffold matrices have a spe-
cific advantage in regenerative medicine. Nature-developed 
plant-based scaffolds are a new technology of applied sci-
ence for stem cell transplantation (Bružauskaitė et al. 2016). 
The varieties of natural polysaccharides and protein have 
been explored for bone regeneration (Ardeshirylajimi and 
Hosseinkhani 2013).

Scaffold designing that allows for the structural and func-
tional repair of the bone remains a major task. Our aim is 
to develop decellularized plant-based scaffolds to support 
bone regeneration. Bone is made up of a hard and dense 
type of connective tissue with excellent mechanical proper-
ties (Weatherholt et al. 2013). It supports the human body, 
and stores and releases minerals. It contains osteoblasts, 
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osteoclasts, osteocytes and bone lining cells embedded in 
the extracellular matrix (ECM). Osteoblasts produced min-
eralize for new bone matrix, and repair and regeneration of 
bone. Dental pulp stem cell is an ideal candidate for bone 
regeneration. Dental pulp stem cells (DPSCs) are possible 
to isolate from the extracted human permanent third molar 
pulp. These cells have characteristics as MSCs and fibro-
blast-like morphology. DPSCs have high proliferation rates, 
are clonogenic and possess all properties of stem cells (Patil 
et al. 2018a). DPSCs are multipotent and can differentiate 
into neural, adipocyte, odontoblast, etc. (Nuti et al. 2016). 
Dental pulp stem cells have the potential to differentiate in 
functional osteocyte. DPSCs secrete growth factor (Shek-
atkar et al. 2022), cytokinin (Bari et al. 2019) and scaffold 
which serves as a temporary platform that provides struc-
tural support, facilitates bone repair and guides bone growth 
in bone defects.

Plant leaves are structures developed by nature, which 
can be applied to tissue engineering. Spinach leaves have 
been the ideal example of plant-borne scaffolds. Various 
techniques for the development of plant-based scaffolds, 
like apple-derived cellulose scaffolds, spinach, bamboo 
sparges, carrot, celery, cucumber, potato, asparagus, green 
onions, leek and broccoli, have been employed by research-
ers (Bilirgen et al. 2021). Scaffolds are prepared to influ-
ence the physical, chemical and biological environments 
of a cell population (Howard et al. 2008). The requirement 
for unique scaffold structure and reproducible manufacture 
of these approaches results in improved scaffolds that are 
employed for cell development.

In tissue regeneration, a scaffold should be mechanically 
stable as well as biodegradable. Its size should be appropri-
ate and it should have a rough surface and porosity which 
is required for providing a suitable microenvironment for 
sufficient cell–cell interaction, cell migration, proliferation 
and differentiation. Pore size plays a major role in cell adhe-
sion, cell-to-cell interaction and other transmigration across 
the membrane based on the purpose of tissue regeneration 
(Bružauskaitė et al. 2016; Lee et al. 2022). The scaffold bio-
materials should be non-toxic to humans, resistant to quick 
degradation and with the corresponding pore size or porosity 
(Krishani et al. 2023). A lot of properties that are needed 
for biomaterial design are expressed in the structure as well 
as the function of plants (Fontana 2019). It is also shown 
that decellularized plant tissue can be used as an adaptable 
scaffold for culturing human cells by simple bio-function-
alization technique; it is possible to qualify the adhesion of 
human cells on various sets of plant tissue (Fontana 2019).

The hydrophilicity and prime water transfer qualities of 
plant tissue allow cell expansion. The microstructure of the 
plant frameworks, cell alignment and shape registration are 
unique physical characteristics, and the ability to manufac-
ture biomaterials with a range of attainable physical and 

biological properties is left as a challenge and is an active 
area of decellularization (Fontana 2019).

Decellularized animal tissue such as human amniotic 
membrane has been used for a long time (Abazari et al. 
2020; Lakkireddy et al. 2022). Plant tissue decellularized 
scaffold may reduce availableness problems, elevated costs 
and ethical concerns associated with animal sources. Tissue 
engineering needs a precise design of engineered biomate-
rial which is able to assist in the regeneration of misplaced 
or lost tissues. Fabricated as well as naturally derived bioma-
terials have been suggested and are still under inspection to 
accomplish the correct or appropriate mechanical as well as 
morphological, physical and biological properties to fulfill 
particular demands for the regeneration of target human tis-
sues (Contessi Negrini et al. 2020).

The generation of vegetal scaffolds by dissociation of 
plant-based biomaterials has seen an increase in recent 
years. They are cost-effective and sustainable since the veg-
etal tissues are obtained from plant leaves, stems, fruits and 
vegetables. Previous studies have shown that decellularized 
spinach leaves scaffold are vascularized, which supports 
mammalian cells (Fontana 2019). Spinach leaves are cost-
effective and free from animal-derived components. Most of 
the biomaterial scaffolds used in tissue engineering are of 
animal origin such as chitosan and collagen. The leaf surface 
is covered with a cuticle layer which makes a surface smooth 
known as the epicuticular wax. Most of the literature sug-
gests use of acids (HCL and nitric acid) to remove the leaf 
epicuticular wax (Holloway and Baker 1968). This study 
evaluated viability and differentiation potential of DPSCs. 
Based on the evidence provided by the European Parlia-
ment’s joint motion for innovation to minimize and eliminate 
animal use and promote plant-based material, a majority 
of studies focus on utilizing plant tissues to generate scaf-
folds for tissue engineering (Harris et al. 2021). Our aim to 
investigate the spinach leaf scaffold supports the osteogenic 
differentiation; it can be used in regenerative medicine for 
bone regeneration and repair.

Materials and methods

Selection of leaf samples  Spinach leaves were selected for 
the study. Fresh spinach leaves were collected from a local 
supermarket washed with PBS and stored at 4℃ for a maxi-
mum of 2 days before use.

Decellularization of the leaf  The leaves were cut longitudi-
nally or transversely into 1–2-mm-thick slices. The leaves 
were boiled and then the leaf samples were treated with 
three chemicals, i.e. ethanol, sodium hydroxide and hydro-
chloric acid. Scaffold A was treated with ethanol, sodium 
hydroxide and 5% hydrochloric acid. Scaffold B was treated 
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with ethanol, sodium hydroxide and 1% hydrochloric acid 
and kept under UV light sterilization for 30 min (Dai et al. 
2016). Cell adherence on surface is observed by using a 
phase contrast microscope. For further confirmation, cells 
were stained with fluorescent antibodies and confirmed by 
confocal microscopy.

Cell isolation from dental pulp tissue  Stem cell isolation 
method was studied which was approved by an Institutional 
Stem Cell Committee for stem cell research. Mesenchymal 
stem cells were isolated from dental pulp which are also 
known as dental pulp mesenchymal stem cells. Tissue was 
obtained from Dr. D.Y. Patil Dental College and Hospi-
tal Pune. Tooth were extracted with prior consent from a 
healthy donor during dental procedure. The extracted tooth 
was cut vertically to remove the pulp by using air rotor. Den-
tal pulp was cut into 1–2 mm size placed in culture dish in 
the presence of fetal bovine serum (FBS) and incubated for 
24 h in CO2 incubator. After 24 h, the completed media 
were added in culture dish for cell outgrowth. Cells were 
cultured by explant culture method (Patil et al. 2018b). 
DPSCs were characterized by using stem cell surface mark-
ers CD90, CD105, CD73 CD34, CD45 and HLA-DR using 
flow cytometry.

Cell seeding on plant‑based leaf scaffold  To maintain pH, 
leaf scaffold was washed with media and PBS. After main-
taining pH, DPSCs (1 × 105 cells/well) were seeded on the 
leaf scaffold for attachment and bone regeneration in 24-well 
plates. Then the cells were incubated in 5% CO2 incubator 
at 37℃ and we let the cells proliferate on the leaf scaffold.

Confocal microscopy and scanning electron microscopy to 
confirm cell growth  Verification of cell growth on the scaf-
fold was done by using antibody-specific staining DAPI and 
CD90PE for stem cells and the cells were visualized under 
confocal microscopy, and further cell growth confirmation 
was done by scanning electron microscopy (SEM).

Differentiation  The DPSCs were cultured (1 × 106 cell/well) 
on the spinach leaf scaffold. These were subjected to osteo-
genic differentiation by inducing the DPSCs with osteogenic 
induction media containing 1 mM dexamethasone, 1 mM 
ascorbic acid and 0.1 mM β-glycerolphosphate use as posi-
tive control. Cells were cultured on plant-based scaffold and 
induction was done using osteogenic induction media. Cells 
were incubated for 18 to 21 d, and induction media were 
replaced twice a wk. Differentiated cell mineralization was 
stained using alizarin red. Cell mineralization was dissolved 
in 0.1% acetic acid for quantitative analysis and measure was 
taken at 450 nm on Elisa reader.

All experiments were performed in triplicate.

Gene expression  Total RNA was isolated using an RNA 
isolation kit according to the manufacturer’s protocol. The 
RNA level and quality were checked using the Qubit Nan-
odrop technology (Thermofisher, Waltham, MA). A total of 
500 ng of RNA was used for reverse transcription using the 
Superscript III reverse transcription kit (TAKARA Kusatsu, 
Japan). The quantitative PCR analysis was performed using 
a QuantStudio 5 real-time PCR system (Thermo Fisher 
Scientific) and TaqMan gene expression qPCR Master Mix 
(Thermo Fisher Scientific) following the manufacturers’ 
instructions. The primer sequences used were osteonectin. 
GAPDH were used as housekeeping gene (Table 1).

Result

Isolation of dental pulp stem cells  Mesenchymal stem cells 
were successfully isolated by using the explant culture 
method. The outgrowth of cells were observed after 1 week 
of explant culture (Fig. 1A, B). MSCs show fibroblastic 
structure (Fig. 1C).

DPSCs show mesenchymal stem cell properties. DPSCs 
were positive for CD90, CD105 and CD73 and negative for 
CD34, CD45 and HLA-DR surface marker (Fig. 2). DPSCs 
also show trilineage differentiation properties such as osteo-
genic, chondrogenic and adipogenic differentiation. In osteo-
genic differentiation (calcium deposition), stain by alizarin 
red, chondrogenic differentiation (glycosaminoglycan) stain 
by alcian blue and adipogenic differentiation (lipid droplet) 
stain by oil red O stain were used (Fig. 3).

Cell attachment on plant‑based scaffold  Selection of leaf 
was done and spinach leaf was selected due to its structure. 
As spinach leaves have a hierarchical structure with veins 
interspersed with pores, their structure provides a scaffold 
that stimulates cell growth and organization. The scaffolds 
were chlorophyll free by using 99% of ethanol and NaOH 
(Fig. 4B, C). This chlorophyll-free plant-based scaffold is 
decellularized by using sodium hydroxide to make it trans-
parent. The cuticle of the leaf was removed by using HCl 
and they appear completely white. Porous leaf scaffold was 

Table 1.   Primer sequence

Gene Sequence Length

GAPDH Forward primer-TTT​TGC​GTC​
GCC​AGCC​

Reverse primer-ATG​GAA​TTT​
GCC​ATG​GGT​GGA​

261

Osteonectin Forward primer-TCG​GCA​TCA​
AGC​AGA​GTG​AG

Reverse primer- CGA​TAT​CCT​
CTG​CAA​AGC​AAGA​

143
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obtained from the previous treatment. Scaffold which was 
treated with 10% HCl was fragile (Fig. 4D). Scaffold treated 
with 1% HCL showed good physiological properties com-
pared with 5% and 10% HCL (Figs. 4 and 5).

Cells were attached on the leaf surface and penetrated 
the leaf structure, mimicking their natural function. Cell 
growth was observed on the surface of the scaffold. DPSC 
cell growth was confirmed using confocal microscopy and 

scanning electron microscopy. The MSC cell colonies were 
observed on the scaffold (Figs. 6 and 7).

Osteogenic differentiation  In scaffold A, calcium deposi-
tion is in higher number than that in scaffold B and positive 
control. The differentiated cells were stained by alizarin red 
dye to confirm calcium deposition. Calcium deposition was 
observed under a phase contrast microscope on a scaffold 

Figure 1.   Isolation of DPSCs 
by using explant culture 
method.

Figure 2.   Representative FACS 
analyses show that DPSCs were 
positive for surface marker char-
acterization of MSCs (CD105, 
CD73, CD90) and were nega-
tive for specific hematopoietic 
markers (CD45 and CD34).

Figure 3.   Trilineage differentia-
tion of dental pulp stem cells. 
(A) Osteogenic, (B) chondro-
genic, (C) adipogenic differen-
tiation.
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Figure 4.   Preparation of scaf-
fold by using serial chemical 
treatments.

Figure 5.   Structure of scaffold 
after treatment with ethanol, 
NaOH and HCL.
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(Fig. 8A). Further confirmation was done by measuring opti-
cal density at 450 nm by using 0.1% acetic acid (Fig. 8B).

Gene expression  Osteogenic gene expression was examined. 
Osteonectin (OSN) gene expression was shown in both con-
trol and plant-based base scaffold. At day 14, plant scaffold 
had significantly higher OSN than the control. In plant-based 
scaffold, osteonectin expressions increased by 2.5-fold com-
pared with the control group, which is a statistically signifi-
cant result (Fig. 9).

Discussion

Nowadays, availability of tissue donors and problems faced 
with tissue transplantation have become a necessity to grow 
cells with scaffolds, either natural or synthetic (Sharma et 
al. 2019). Scaffold is one of the most important three pillars 
of tissue engineering, inclusive of cell and growth factors 
which enable to form 3D structures (Hollister 2006).

Biological scaffolds are a valid alternative to traditional 
therapies and may improve outcomes or offer solution which 
may not be possible with synthetic scaffolds. Advanced 
research for different indications using various scaffolds has 
led to a thorough understanding of the mechanisms involved Figure 6.   Confocal microscopy image of (A) scaffold A, (B) scaffold 

B and (C) cell proliferation by MTT assay; the data shown are the 
mean ± S.D., n = 3 vs. control: 1% HCL scaffold: 5% HCL scaffold.

Figure 7.   Scanning electron 
microscopy image of scaffold A 
and scaffold B.
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in in vivo remodeling (Howard et al. 2008; Bružauskaitė et 
al. 2016; Lacombe et al. 2020).

Recently, plant-derived decellularized scaffolds are of a 
huge interest replacing animal sources for tissue regenera-
tion (Harris et al. 2021). There is a built-in architecture in 
the plant leaves in the form of venation. These naturally 
designed decellularized scaffolds mimic the extracellular 
matrix of mammalian tissues due to suitable cytocompat-
ibility (Contessi Negrini et al. 2020). Plant-derived scaf-
folds have been used for neural differentiation in regenera-
tive medicine (Couvrette et al. 2023). Decellularized spinach 
leaf scaffold could be more successful in differentiating stem 
cell into the bone formation or bone repair. They allow the 
exchange of nutrition and oxygen and vascular ingrowth 
through the scaffold. It is providing a three-dimensional 
substrate by feeding and delivering oxygen to the cells. Stem 
cells can be guided to arrange in a specific direction depend-
ing upon the structure of the plant material used.

Plant-based scaffolds have a lot of practical ben-
efits such as easy availability, mass production, 

Figure 8.   (A) Osteogenic differentiation stain by alizarin stain to confirmed calcium deposition. (B) Quantitative analysis: scaffold A showed 
significantly increased osteogenic differentiation as compared to scaffold B and positive control.

Figure 9.   Osteogenic gene expressions measured by RT‐qPCR. The 
mRNA levels of osteonectin (OSN) were measured from total RNA 
extracted from the control and plant-based scaffold after osteogenic 
induction. Data are expressed as mean ± SD; n = 3. GAPDH gene was 
used as a reference. The relative expression (fold increases) in plant 
scaffold compared to control.
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cost-effectiveness and ready to use for tissue engineering 
application. Plant leaves are made up of cellulose fiber—a 
non-toxic (Ilangovan et al. 2020). Large groups of cellu-
lose molecules come together to form microfibrils. These 
properties make them suitable candidates for scaffolds in 
tissue engineering (Hickey et al. 2018). They compensate 
traditional scaffolds by providing a larger surface area, 
vascular networks, water transfer and retention properties. 
Our decellularized spinach leaf scaffolds were found to be 
non-toxic and enhance the DPSC proliferation (Fig. 6C). 
Earlier studies have demonstrated that plant-based scaf-
fold of Ficus religiosa leaf skeleton architecture exhibited 
biocompatibility in mammalian cell adhesion, proliferation 
and functionality (Periasamy et al. 2020; Lacombe et al. 
2020).

We used a sequential chemical treatment which is a gold 
standard approach for decellularizing plant tissue. Aqueous 
detergent (e.g. sodium dodecyl sulphate (SDS)) is tradition-
ally followed by a surfactant-bleach solution (Adamski et al. 
2018). In this study, we used sequential chemical treatment 
with NaOH, HCL and ethanol for the decellularization of 
spinach leaves. NaOH destructs the cell wall and removes 
chlorophyll while retaining the tissue structure. HCL helps 
in the removal of the cuticle (wax layer) and ethanol enables 
the sterilization of the leaf (Howell et al. 2022). In regenera-
tive therapy, pore size is very crucial for a better growth of 
cells. Cells respond strongly to mechanical rigidity and flex-
ibility, and 3D nano topology, as well as extracellular stimuli 
(Calin and Paun 2022). Our data shows that 5% HCL–treated 
spinach leaf scaffolds support attachment and proliferation 
DPSCs compared with 1% HCL. Further, spinach leaf scaf-
folds must be sterilized before introduction to cell culture 
environments. Plant-based scaffold does not show toxicity in 
DPSCs. UV radiation and ethanol methods have been previ-
ously employed (Dai et al. 2016). We used spinach leaf scaf-
fold for assessment of the osteogenic differentiation potential 
of human DPSCs. These decellularized scaffolds enhanced 
the osteogenic differentiation in terms of calcium deposition 
and bone-related gene expression such as osteonectin (OSN) 
(Dhandayuthapani et al. 2011).

In the bone, osteonectin (OSN) is a glycoprotein secreted 
by osteoblasts that binds to calcium while the bone is being 
formed. This initiates the mineralization process and encour-
ages the production of mineral crystals. OSN is a noncol-
lagenous extracellular matrix protein and has been suggested 
to bind selectively to both hydroxyapatite and collagen, and 
to link the bone mineral and collagen phases, which is likely 
to lead to active mineralization in normal bone tissue.

The results of the scanning electron microscopy analy-
sis showed that the spinach scaffold in NaOH with 5% HCl 
provides ideal surface for trapping cells. The decellularized 
spinach leaf scaffold exhibits better cell attachment, growth, 
proliferation and differentiation. The plant scaffold could 

thus be considered an alternative for synthetic scaffolds in 
tissue engineering (Fontana 2019).

In this investigation, we proposed unconventional alterna-
tive tissue engineering plant-based scaffolds for bone regen-
eration. The spinach leaf scaffolds are promising alterna-
tive biomaterials for bone tissue engineering and improving 
their regenerative abilities for repairing damaged bone. The 
unique features of the plant scaffolds can offer inner vas-
culature, optimal fluid transport, etc. to make it an alterna-
tive natural model. However, they have few limitations such 
as high hydrophobicity, absorption of small hydrophobic 
molecules and non-biodegradability. This finding provides 
the potential of decellularized leaf scaffold and DPSCs as a 
therapeutic regenerative medicine for treating bone defect, 
which could be of great academic and clinical significance. 
More research needs to be carried out to explore this field 
as an ideal source for tissue engineering.

Statistical analysis  The ANOVA test was followed by Schef-
fe’s multiple comparison test to compare in vitro analysis. 
All results are presented as mean ± SEM or mean ± SD. The 
mean difference is significant at the 0.05 level.

Conclusion

Our data demonstrate that the decellularized spinach cellu-
lose scaffolds stimulate the growth, proliferation and osteo-
blastic differentiation of DPSCs in addition to providing 
a 3D culture environment. Our study represents a case of 
symbiotic relationship between plant cellulose scaffold and 
human stem cells.
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