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Abstract
This study aimed at investigating the expression of osteoblast and chondrocyte-related genes in mesenchymal stem cells (MSCs),
derived from rabbit adipose tissue, under mechanical vibration. The cells were placed securely on a vibrator’s platform and subjected
to 300 Hz of sinusoidal vibration, with a maximum amplitude of 10 μm, for 45 min per day, and for 14 consequent days, in the
absence of biochemical reagents. The negative control group was placed in the conventional culture medium with no mechanical
loading. The expression of osteoblast and chondrocyte-related genes was investigated using real-time polymerase chain reaction
(real-time PCR). In addition, F-actin fiber structure and alignment with the help of actin filament fluorescence staining were
evaluated, and the level of metabolic activity of MSCs was determined by the methyl thiazolyl tetrazolium assay. The real-time
PCR study showed a significant increase of bone gene expression in differentiated cells, compared with MSCs (P < 0.05). On the
other hand, the level of chondrocyte gene expression was not remarkable. Applying mechanical vibration enhanced F-actin fiber
structure andmade them aligned in a specific direction. It was also found that during the differentiation process, themetabolic activity
of the cells increased (P < 0.05). The results of this work are in agreement with the well-accepted fact that theMSCs, in the absence of
growth factors, are sensitive to low-amplitude, high-frequency vibration. Outcomes of this work can be applied in cell therapy and
tissue engineering, when regulation of stem cells is required.
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Introduction

The advantage of MSCs, i.e., their multipotency, low immu-
nogenicity, ease of isolation—especially for adipose derived
MSCs—and expansion, made them a promising source for
cell-based therapy and tissue engineering (Barry and
Murphy 2004; Orbay et al. 2012; Tan et al. 2013). The regu-
lation of stem cell differentiation is one of the challenges in

tissue engineering. Although various studies have been done
on the effect of chemical stimuli onMSCs, recent studies have
emphasized on the inevitable role of mechanical signals on
stem cell behavior (Eslaminejad and Taghiyar 2007; Litwack
2011; Macqueen et al. 2013; Oconor et al. 2013). The induc-
tion of mechanical differentiation in MSCs at the molecular
level requires a specific process with strong programming.
Various environmental conditions have been introduced as
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key features responsible for MSC differentiation (Steward and
Kelly 2015). It has been confirmed that cells and tissues are
exposed to various types of mechanical loads, such as com-
pressive, tensile, and shear forces in their innate environment,
which affect their development and natural functions (Atala
et al. 2010; Litwack 2011). Currently, mechanical loads are
used as an efficient tool in tissue engineering for the formation
of cartilage (Safshekan et al. 2014), ligament (Altman et al.
2002), muscle (Ghazanfari et al. 2009; Haghighipour et al.
2012; Amin et al. 2014), and bone (Ozcivic et al. 2010).

Among different loading types affecting stem cells, mechan-
ical vibration is a non-invasive and biophysical stimulus.
Moreover, the anabolic effects of mechanical vibration on tissue
and cellular levels have been validated by experimental evidence
(Rubin et al. 2001; Hooshiar et al. 2008; Lau et al. 2011;
Edwards and Reilly 2015) and were compared with other med-
ical interventions, such as the laser therapy, to evaluate the ana-
bolic effectiveness (Jafarabadi et al. 2016). According to some
studies performed on the effects of mechanical vibration on
MSCs, it can be concluded that MSCs are mechanosensitive to
mechanical vibration, which results in an increase in the bone
gene expression besides being responsive to micro-vibration at
gene and protein level (Judex et al. 2005; Zhou et al. 2011; Kim
et al. 2012). Prè et al. have fabricated a device that provides
mechanical vibration signal for the pools of cells, and the en-
hancement of osteogenesis gene expressions by the mechanical
vibration was reported in their studies (Pre et al. 2008; Pre et al.
2011; Pre et al. 2013). In addition, some researchers have report-
ed that mechanical vibrations are responsible for the inhibition of
osteoclast formation and adipogenesis suppression (Dumas et al.
2010; Lau et al. 2010; Sen et al. 2011; Kulkarni et al. 2013). It
was reported that the mechanical vibration can not only enhance
bone formation but also stimulate the synthesis of chondrocyte
matrix proteins, such as chondroitin, collagen type II, and pro-
teoglycan (Liu et al. 2001; Takeuchi et al. 2006).

Reviewing the trends of recent articles on MSCs, few studies
reported the evaluation of the mechanical vibration’s effect on
chondrocyte- related gene. For instance, Cashion et al. suggested
that low-frequency vibration (1 Hz) would result in cartilage phe-
notype (Cashionetal. 2014).Maryczyetal.developedaprototype
device that induces low-magnitude (0.3g), low-frequency (25,35,
and45Hz)vibrationsandshowedthat signalwith the frequencyof
35Hz leads to stable cartilaginous tissue(Marycz et al. 2016).

The present study aimed at evaluating changes in the ex-
pression of osteoblast- and chondrocyte-related genes follow-
ing the application of low-amplitude, high-frequencymechan-
ical vibrations (LAHF), i.e., frequency of 300 Hz and 10 μm
displacement, in the absence of chemical cues under in vitro
conditions. The transformation mechanism of a stimulus from
mechanical signals to biological signal is not fully known yet,
so in this work, in order to address the question of whether or
not the F-actin fibers are changing during stem cell differen-
tiation, cytoskeleton alteration was also investigated.

Materials and Methods

Cell culture and preparation Rabbit adipose derived mesen-
chymal stem cells were obtained from the National Cell Bank
of Iran, Tehran and were then cultured in a free of growth
factor medium, Dulbecco’s Modified Eagle Media-high glu-
cose (DMEM-hg) (Gibco, Grand Island, NY) containing
Penicillin-Streptomycin (Gibco) antibiotics and supplemented
with 10% fetal bovine serum. After reaching sub-confluent
state, stem cells at passage 3 were cultured at a density of
3 × 104 cells/well and incubated at 37°C for 24 h.

Mechanical vibrator to oscillate the cultured cells A mechan-
ical vibration device was designed and fabricated in this study
(Fig. 1) in order to evaluate the effects of mechanical vibration
on MSC response (Safavi et al. 2013). The device designed
for this project has two main Bmechanical^ and Belectrical^
units, which can produce vertical mechanical vibration and
generate harmonic sine waves of a given frequency and am-
plitude. The mechanical part mainly made up of a vibrator
panel that has the ability to move up and down vertically.
The electrical unit contains an electric motor that rotates with
the angular velocity of up to 20,000 rpm to create rotational
forces for mechanical shaking of the multiwall plate and trans-
ferring the mechanical vibrations through the PMMA (poly
methyl methacrylate) platform to the cells.

In this vibrator, the vibration frequency is tunable from 50
to 350 Hz with vertical movement, and the vibrator can be
housed inside a CO2 incubator, at the temperature of 37°C.
The information of the mechanical vibration, registered accel-
eration with a sample rate of 800 per second, is recordable
through using a MATLAB (R2013a) program.

Experimental protocol MSCs, passage 3, were cultured at a
density of 3 × 104 cells/well. Vibration loading was started
24 h after plating the cells. The plates were placed securely
on the vibrator’s platform and subjected to 300 Hz of sinusoi-
dal vibrations, and amaximum amplitude of 10μm for 45min
per d, for 14 consequent d (Tirkkonen et al. 2011). The control
cells in the no-vibration group were placed on the same, but on
a stationary plate. Three biological replicates were performed
for each experiment during osteogenic, and chondrogenic
differentiation.

MTT assay for metabolic activity In order to study the meta-
bolic activity changes in response to LAHF mechanical vibra-
tion, the methyl thiazolyl tetrazolium (MTT) assay was uti-
lized (Wang et al. 2010). The cells were seeded in 24-well
plates at a density of 2 × 103 cells/well. To determine the met-
abolic activity of the MSCs, at the end of the loading period,
14th day of the test, two groups of mechanical vibration, i.e.,
300 Hz and 10 μm displacement, and control groups were
used. For MTT, the medium was replaced with a 5:1 ratio of
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medium and MTT solution (5 mg/ml in phosphate buffer sa-
line PBS). Then, the cells were incubated for 4 h in an incu-
bator at 37°C in an atmosphere containing 5% CO2 to allow
for optimum formazan production. In the next step, MTT so-
lution (Sigma, St. Louis, MO) was removed, the cells were
lysed, and the formazan crystals were dissolved by adding
isopropanol (Sigma). The optical density of the solubilized
formazan in each well was then quantified. The absorbance
of the colored solution was determined at a wavelength of
545 nm, using an ELISA reader.

Alizarin red staining The differentiation of MSCs into bone
phenotype can be observed by the formation of the calcium
nodes. Calcium nodes were confirmed by alizarin red staining
on day 14. Cells were washed twice with PBS, fixed with a
4% paraformaldehyde for 20 min, rinsed with 9%NACL, and
stained by alizarin red solution for 30 min at 37°C. After
washing four times with PBS, the stained cells were
photographed.

Alician blue staining The cartilaginous structure of the mes-
enchymal stem cells was verified by alician blue staining of
proteoglycans on day 14. Cells were washed twice with PBS,
fixed with 3% glutaraldehyde (Sigma) for 2 h, rinsed three
times with PBS, and stained by the alician blue (Sigma) solu-
tion for 3 h. After washing with a 3% acetic acid, the stained
cells were photographed.

Actin filament staining The cytoskeleton provides an impor-
tant structural framework for cell shape. The cytoskeleton is
made up of three kinds of protein filaments such as actin
filament, intermediate filament, and microtubules. Actin fila-
ment has the main role in cell structure and functions (Fletcher
and Mullins 2010). Actin stains and probes are used in

determining the structure and function of the cytoskeleton in
living and fixed cells. Phalloidin is a highly selective bicyclic
peptide that is used for staining actin filaments (also known as
F-actin). In order to stain actin filaments, cells were washed
twice with a 10% PBS, and then fixed with 3.7% formalde-
hyde diluted in PBS for the fixation. After 5 min, the cells
were washed with PBS again and permeabilized with a 1%
Triton X-100 (Merck, Darmstadt, Germany). The perme-
abilized cell samples in both control and test groups were
incubated with phalloidin (Sigma) for 45 min in the dark
room. The stained F-actin filaments were visible in green
(513 nm wavelength) after exposure to UV (495 nm).

Gene expression analysis Immediately after 14 d, the total
RNA was prepared using the TRIzol reagent (Invitrogen,
Carlsbad, CA) in conjunction with the manufacturer’s
single-step chloroform extraction protocol. cDNAwas gener-
ated by reverse transcription of 1 μg total RNA using random
hexamer primers (100 μM) and RevertAid™ M-MuLV
Reverse Transcriptase (Fermentas Opelstrasse, Germany) at
25°C for 5 min and at 42°C for 1 h in a total reaction volume
of 20 μl. A total of 25 ng cDNAwas amplified using specific
primers and Power SYBR® Green PCR Master Mix in ABI
(Applied Biosystems, Warington, United Kingdom). Reaction
parameters were 95°C for 10 min, followed by 95°C for 10 s
and 60°C for 1 min for 30 cycles. Finally, to confirm PCR
specificity, the PCR products were subjected to a melting
curve analysis. The relative gene expression levels were esti-
mated with the 2−ΔΔCT method (Livak and Schmittgen 2001).

The sequences of the primers and probes were de-
signed by the Beacon Designer (BD, Palo Alto, CA) soft-
ware and checked by primer express gene runner software
in this study (Table 1). The glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) marker was used as the

a b

Figure 1. (a) The mechanical vibrator (device) to oscillate the cultured cells, designed and fabricated in this study (Safavi et al. 2013). (b) Schematic
representation of vertical mechanical vibration.
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housekeeping gene. The PCR tests were carried out in
triplicate in two groups of negative control and mechani-
cally stimulated.

Statistical analysis The data collected in this study were pre-
sented as mean ± SD from independent experiments per-
formed in triplicate. The results were then compared with
those of control group, with the mean values with the t test,
and the significance was set at (P < 0.05).

Results

The bioreactor developed for these experiments success-
fully generated the desired waveform parameters. The
cells were cultured in a basal medium and were then sub-
jected to vertical mechanical vibration at the frequency of
300 Hz and maximum amplitude of 10 μm displacement,
for 45 min per day for 14 d.

Cell metabolic activity assay The metabolic activity of the
cells was analyzed on day 14 of mechanical vibration, as
well as for the non-vibrational control conditions. MTT as-
say on day 14 of the loading duration indicated that the
absorption rate has been increased indicating that the
growth of the cells’ metabolic activity. The obtained data
showed that cell metabolic activity on day 14 increased by
1.49-fold, compared with non-vibrational control group
(Fig. 2), (P < 0.05). The results of this study showed that
during the loading period, the metabolic activity of the dif-
ferentiated cells increases. This increment can be attributed
to the metabolic activity of the cells protein synthesis in the
differentiation process (Zhang et al. 2007).

Alizarin red and alician blue staining The red parts in Fig. 3b
shows calcified matrix in the MSCs under mechanical vibra-
tion. The cartilaginous structure of theMSCs was not detected
by alician blue staining (Fig. 3d).

Actin filament staining Whereas F-actin fibers in control
groups were thinner and distracted randomly in different di-
rections (Fig. 4a), mechanical vibration not only increases
actin fiber thickness but also aligns them in a specific
direction.

Gene expression analysis The results of this work showed that
the groups treated with a high-frequency mechanical vibra-
tion, f = 300 Hz, amplitude = 10 μm, caused a significant in-
crease in osteogenic markers at day 14 (Fig. 5a). The mRNA

Table 1. Sequences of qPCR primers which can be used for the amplification of rabbit mRNA to chondrogenic and osteogenic genes

Target gene Primer sequence Accession number Annealing temperature

CoL1 Forward 5′GGTGCTGCTGGTAAAGAAGG3′
Reverse 5′GTCTACCCAAAGCACCAG3′

NM_001195668.1 59°C

Osteocalcin Forward 5′CTCAGCCTTCGTGTCCAA3′
Reverse 5′CTCGCACACCTCCCTCTTG3′

XM_002715383.2 59°C

Alp Forward 5′ACTTTGTCTGGAACCGCACT3′
Reverse 5′GTGGTCAATCCTGCCTCCT3′

XM_008265733.1 59°C

Runx2 Forward GGACTGTGGTTACTGTCATGG
Reverse GTGAAACTCTTGCCTCGTCC

XM_008262992.2 59°C

GAPDH Forward 5′CACCCACTCCTCTACCTTCG3′
Reverse 5′GGTCTGGGATGGAAACTGTG3′

NM_001082253.1 59°C

Aggrecan Forward GGAGGTCGTGGTGAAAGGTG
Reverse CTCACCCTCCATCTCCTCTG

XM_008251722.2 60°C

Coll2 Forward 5′GTGGAAGAGCGGTGACTAC3′
Reverse 5′TAGGTGATGTTCTGGGAGC3′

NM_001195671.1 60°C

Sox9 Forward AAGATGACCGACGAGCAG
Reverse GGCTTGTTCTTGCTGGAG

XM_008271763.2 60°C

Figure 2. Quantification of metabolic activity after mechanical vibration
using MTT assay on 14th day of mechanical vibration (f = 300 Hz,
amplitude = 10 μm, 45 min/d). Metabolic activity in the vibrated group
was significantly greater than that of non-vibrational group (P < 0.05).
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level of RUNX2, COLI, and ALP in the test group showed a
significant increase after 14 d of mechanical vibration, f =
300 Hz, amplitude = 10 μm, 45 min/d, compared with the
control group (Fig. 5a) (P < 0.05). mRNA level of osteocalcin
as a latest osteogenic marker did not show any significant
increase on day 14 in the vibration group compared with the

control group (Fig. 5a) (P < 0.05). Moreover, there was no
significant change in the expression of chondrogenic markers’
elements in the vibration group compared with the control
group. mRNA level of COLII in the vibration group showed
a 1.77-fold increase, compared with the control group (Fig.
5b).

a b

dc

Figure 3. Alizarin red and alician blue staining. (a) The control group. (b)
Alizarin red staining shows a significant increase in mineralization after
mechanical vibration (f = 300 Hz, amplitude = 10 μm, 45 min/d, for 14

consecutive days). (c) The control group. (d) Alician blue staining has no
presentation of proteoglycans due to mechanical vibration (inverted
microscope, ×400).

a b

Figure 4. Stained actin filament.
(a) Control group (without
mechanical vibration). (b)
Mechanical vibration group (f =
300 Hz, amplitude = 10 μm,
45 min/d, for 14 consecutive
days) (the arrow shows the
direction of actin filaments).
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Discussion

Mechanical regulation of mesenchymal stem cell’s fate is
starting to gain interest with the early results indicating that
mechanical cues can influence the differentiation process and
are capable of upregulating key differentiation markers
(Butler et al. 2000; Guilak et al. 2001; Zhang et al. 2012;
Meier and Lam 2016). Nonetheless, a few studies investigated
the effects of high-frequency mechanical vibration on
chondrocyte-related genes. In this research, stem cells isolated
from rabbit fat tissues were exposed to mechanical vibration,
i.e., 300 Hz and 10 μm, for 45 min per day for 14 d, to see if
LAHF vibrations in the absence of growth factors can notice-
ably alter bone and cartilage gene expression.

The results of this study showed that during the mechan-
ical induction, the metabolic activity of differentiated cells
has a considerable increase (Fig. 2). This increment can be
due to the metabolic activity of the cell protein synthesis,
which is involved in the process of differentiation
(Mohajeri et al. 2010). The results of alizarin red staining
showed that there is a formation of calcium nodule in cell
matrix (Fig. 3b), which can be deemed as an advanced
osteogenic differentiation (Zhang et al. 2012). The positive
result of alizarin red staining indicates that there is an in-
crease in bone gene expression in vibration group, com-
pared with the control group, which is in agreement with
the previous published study (Zamini et al. 2008). On the
other hand, alician blue staining has no sign of the presence
of proteoglycans caused by the LAHF mechanical vibra-
tion (Fig. 3d). The alterations of the cytoskeleton compo-
nents during the period of differentiation were confirmed
in various previous studies (Steward and Kelly 2015). The
most important structural components of MSC which re-
sponds to the mechanical forces are their actin fibers. The
results of this study showed that MSCs respond to

mechanical vibration by aligning their F-actin fibers in a
specific direction (Fig. 4b).

In this study, RUNX, ALP, and COLI for the osteoblast-
related gene (Wang et al. 2015), and SOX9, COL2, and
aggrecan for the chondrocyte-related gene were selected
(Estes et al. 2010). The stem cell differentiation is a controlled
process that involves several factors and messengers. In this
work, with the removal of media differentiation, only the ef-
fect of mechanical loading on gene expression was evaluated.
RUNX2 and ALP were commonly regarded as early markers
of osteogenic differentiation. According to the real-time PCR
results, expression levels ofRUNX2, ALP, andCOLI showed a
strong increase in vibration group compared with the control
group (Fig. 5a), and ALPwas the first gene that was expressed
and possessed the highest level according to (Fig. 5a). The
osteocalcin gene expression is a time-dependent phenomenon,
which is disclosed in the final phase of induction which indi-
cates lack of gene expression on the 14th day of mechanical
vibration (Fig. 5a), in agreement with the finding of Wang
et al. (2015),who reported that exposure to osteogenic differ-
entiation medium less than 21 d could not significantly induce
osteocalcin expression. Moreover, the mRNA level of carti-
lage markers, such as Collagen type II, SOX9, and aggrecan,
was determined to investigate the cartilage differentiation pro-
cess, due to mechanical vibration, as well as in control group.
SOX9 is an important transcription factor during chondrogen-
esis and cartilage formation, which plays major roles in the
expression of chondrogenic genes, such as COLLII and
aggrecan (Wescoe et al. 2008). The results of this work also
showed that the mRNA expression level was zero for SOX9
and aggrecan, and 1.77-fold for collagen type II (Fig. 5b) in
comparison with the negative control group. This study con-
firmed that the expression of chondrogenic markers due to the
application of high-frequency, low-amplitude mechanical vi-
bration, in the absence of chondroinductive growth factor, was

Figure 5. The expression level of mRNA in vibration and control groups.
(a) RUNX, COLI, ALP, and OCN genes on day 14 of mechanical
vibration (f = 300 Hz, amplitude = 10 μm, 45 min/d). (b) SOX9, COLII,

and ACAN genes on day 14 of mechanical vibration (f = 300 Hz,
amplitude = 10 μm, 45 min/d). *P < 0.05, ** P < 0.01, and ***
P < 0.001.
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not remarkable (see Fig. 5b), which may suggest that LAHF
mechanical vibration is only capable of triggering osteogenic
differentiation, in agreement with the results of a recent work
by Marycz et al. (Cashion et al. 2014; Marycz et al. 2016)

It is well known that mechanical stimulation can increase
cells differentiation (Delaine-Smith and Reilly 2012; Meier
and Lam 2016), but the main reasons and mechanisms are
not yet entirely clear. Presumably, the influence of mechanical
forces might be transduced via cell binding sites, leading to
enhanced rates or extent of differentiation (Li et al. 2011). It is
also reasonable to speculate that mechanical signals may trig-
ger cell-surface stretch receptors and adhesion sites, resulting
in a cascade of events that involve activation of genes re-
sponse for the synthesis and secretion of key molecular com-
ponents of the matrix (Steward and Kelly 2015).

Even though, the mechanical vibrator, which was designed
and fabricated in this study, could successfully generate con-
trolled vibration and stimulatedMSCs in the absence of chem-
ical reagents. Similar with other scientific works, there were
several limitations in this study. First, the use of only one
frequency, one specific direction of vibration, and single am-
plitude, which are not what MSCs experience in in vivo con-
dition, can be seen as some limitations of this work. Secondly,
cells were grown on a single layer, which is not compatible
with the bone and cartilage tissues’ 3D structure. Further in-
vestigation, compared with this work, is needed to shed more
light on the effects of mechanical vibration on MSCs differ-
entiation, in the absence of growth factor.

Conclusion

In conclusion, findings of this work suggest that LAHF vibra-
tion acts differently on chondrogenic and osteogenic differen-
tiation of MSCs (see Fig. 5a, b). Another key finding of this
study was that mechanical vibration can be employed as a
proper method to accelerate development of bone engineered
tissues with functional cells.
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