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Copper-induced non-monotonic dose response in Caco-2 cells
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Abstract
Copper is an essential dietary micronutrient in humans for proper cell function; however, in excess, it is toxic. The human cell line
Caco-2 is popular as an in vitro model for intestinal absorption and toxicology. This study investigated the response of expo-
nentially growing Caco-2 cells to prolonged copper exposure (120 h). An unexpected non-monotonic dose-response profile was
observed in Caco-2 cells. Exposure to media supplemented with 3.125 μMCuSO4 resulted in decreased cell yield vs. untreated.
However, toxicity was progressively reduced from 90% at 3.125 μM to 60% at 25 μM. This effect was documented between 48
and 120 h continuous exposure (p < 0.05). This triphasic toxicity curve was observed to be specific to copper in Caco-2 cells, as
iron, manganese and zinc displayed monotonic dose-response profiles. Two inorganic copper forms, copper sulphate and copper
chloride, were shown to conserve the non-monotonic dose-response curve. The triphasic effect was shown to be specific to Caco-
2 cells. These results have implications for research investigating the effect of copper and other micronutrients using Caco-2 cells.
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Introduction

Copper is a redox-active transition metal required for survival
by all aerobic eukaryotic organisms, yet causes toxicity when
present in excess, due to catalytic Fenton and Haber–Weiss
reactions leading to hydroxyl radical formation (Kozlowski
et al. 2009; Linder 2012; Gaetke et al. 2014). Copper (Cu) is
involved in numerous biological processes including embryo-
genesis, heme synthesis, iron absorption and mitochondrial
respiration (Barceloux and Barceloux 1999), and is predomi-
nantly associated with proteins and the prosthetic groups of
enzymes. Shuttling of intracellular Cu is strictly controlled by
transporters and chaperone proteins (Nishito andKambe 2018).

The intestinal epithelial barrier consists of a complex mix
of cell types that work in tandem to regulate uptake for most
nutrients following digestion. The adenocarcinoma-derived
Caco-2 cell line exhibits similar characteristics to enterocytes
of intestinal epithelia when cultured as a monolayer or in co-
cultured differentiated systems (Hidalgo et al. 1989; Natoli
et al. 2011). While recent developments including gut-on-a-
chip (Kim et al. 2012), intestinal organoids (Spence et al.
2011) and ex vivo xenografts have shown potential, use of
Caco-2 cells in a differentiated form has represented the work-
horse of food and pharmaceutical industries to study toxicity,
permeability and uptake of nutrients, pharmaceuticals and xe-
nobiotics for over four decades (Fogh and Trempe 1975; Shah
et al. 2006; Shao et al. 2017).

Non-monotonic dose responses (NMDR) are dose/effect
phenomena which do not show linear or threshold dose-
response relationships and their discovery precedes the
1900s (Schulz 1888). NMDR curves introduce paradoxical
effects such as hormesis, an adaptive response in which stim-
ulation is observed during exposure to low concentration of a
stressor followed by a toxicity at higher ranges (Calabrese
et al. 2001). These responses have shaped our understanding
of pharmacology and toxicology to biological and environ-
mental systems and have implications for understanding phe-
notypic plasticity and predicting dose-response effects during
exposure to a wide variety of stressors (Michael Davis and
Svendsgaard 1990; Vandenberg et al. 2012; Calabrese
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2014). Exposure of a stressor which results in a NMDRprofile
has been attributed to multiple factors, such as receptor-
mediated interactions (Bartłomiejczyk et al. 2013) or via an
overlay of two opposing monotonic profiles (Conolly and
Lutz 2004; Calabrese 2013). Recently, fluctuating copper
levels in basal media were demonstrated to have a notable
influence on the expression of apoptosis- and autophagy-
related proteins in Caco-2 cells (Keenan et al. 2018). Indeed,
the expression or location of multiple transporters including
divalent metal transporter 1 (DMT1) and copper transporter 1
(CTR1) and sequestration proteins (ATP7A/ATP7B, metallo-
thionein) are also known to be modulated by Cu exposure
(Tennant et al. 2002; Gao et al. 2014).

Focusing over a wide range of concentrations, a triphasic
NMDR profile was observed in this study which has not been
previously reported. The effect was seen in two copper formu-
lations, was specific to Caco-2 and also appeared to be copper-
specific as Fe, Mn and Zn did not display NMDR profiles.

Results and Discussion

We identified a triphasic dose-response profile in proliferating
Caco-2 cells (ATCC® HTB37™) during copper exposure not
detected in other cell lines or micronutrients tested and not
previously explored in the literature to the best of our
knowledge.

In the course of this study, increasing Cu concentration to
proliferating Caco-2 cells was shown to generate a triphasic
non-monotonic dose response (NMDR) after 120 h (cultured
in basal mediumwith serum, together containing 0.3 μMCu).
The curve consisted of a linear dose response from 0 to
3.125 μM added CuSO4, followed by significantly reduced
toxicity between 6.25 and 25 μM Fig. 1A, resulting in two
points of inflexion within the range tested (1.56 to 100 μM).
Above the first point of inflexion at 3.125 μM (cell survival
was 12.33 ± 1.31%), progressively decreasing toxicity was
identified up to 25 μM; cell toxicity was significantly reduced
at 6.25 μM, 12.5 μM and 25 μM vs. 3.125 μM (p < 0.05). At
the second point of inflexion, increased dose-response toxicity
was generated with exposures above 25 μM CuSO4 Fig. 1A
up to 100 μM.

Caco-2 cell growth was measured every 24 h in Cu be-
tween 3.125 and 25 μM Fig. 1B. No change was observed
during temporal measurements of viable cell counts for cells
cultured in 3.125 μM supplemented CuSO4 over the time
course (coefficient of variation 10.9%); however, morpholog-
ical observations showed clonal growth andmuch cell death at
this concentration (not shown). Significant increases in
growth were present in the other Cu concentrations added
(p < 0.05). From 72 to 120 h exposure, 25 μM CuSO4 pre-
sented a significantly increased yield every 24 h vs. 3.125,
6.25 and 12.5 μM (p < 0.05).

NMDR profiles are commonly reported in endocrine dis-
ruption (Vandenberget al. 2012;Lagardeet al. 2015) anddur-
ing heavy metal exposure (Helmestam et al. 2010; Chaube
et al. 2010), but have not been reported previously for copper
exposure inCaco-2 cells.However, profiles including stimu-
latory hormesis have been identified during exposure to cad-
mium in Caco-2 cells and genistein-exposed Caco-2 BBE
(Chen andDonovan 2004;Mantha and Jumarie 2010).Metal
nanoparticles (Mn, Sb, Ti) displayed a hormetic effect on
Caco-2 cells whichwas attributed to the activation of growth
factorreceptorsindirectlybyROSformedduringlowconcen-
tration exposure (Titmaet al. 2016).

To investigate if the copper-induced triphasic toxicity curve
was specific to Caco-2, cells derived from breast (HCC1954,
BT-474), colon (HT29, HT29-MTX-E12, HCT116), intestine
(porcine IPEC-J2), liver (Hep-G2) and pancreas (Mia-PaCa,
BxPC3) were exposed to increasing CuSO4 Fig. 2. The toxic-
ity profiles obtained showed Caco-2 cells were considerably
more sensitive to copper exposure; IC50 value for Caco-2
cells was 1.3 μM added CuSO4 compared to lowest IC50 of
118.7 μM in HT29 cells.

With the exception of HT29 and BT-474 cells, the
other cell lines examined displayed monotonic dose-
response curves with IC50 values greater than 50 μM.
Low concentration CuSO4 exposure (3.125–6.25 μM) to
HT29 and BT-474 demonstrated a small but significant
stimulation in cell growth (15 and 10%, respectively,
p < 0.05). This slight hormetic response may indicate
that Cu concentration in the growth media was too
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Figure 1. (A) Caco-2 cells exposed to increasing CuSO4, cultured in 96-
well plates, assayed by acid phosphatase after 120 h continuous exposure.
(B) Time course of Caco-2 cells cultured in 6-well plates exposed to
CuSO4 at 0, 3.125, 6.25, 12.5 and 25 μM, assayed by daily viable cell
counts (VCC) (n = 5). Results are presented as relative to untreated con-
trol (n = 3). Asterisk indicates significant difference from all (p < 0.05).

222 O’DOHERTY ET AL.



low or may suggest indirect growth factor receptor ac-
tivation by ROS generation as described previously
(Bartłomiejczyk et al. 2013). From the panel examined,
this Cu-induced NMDR curve appeared specific to
Caco-2 cells.

Inorganic CuCl2 also demonstrated a triphasic Cu-
induced NMDR curve Fig. 3A, supporting the notion that
toxicity was due to the copper component and not the
chemical form of copper. Metal micronutrients other than
copper including iron, manganese and zinc are also
absorbed by intestinal epithelial cells and display inter-
actions that may affect uptake and homeostasis (Goddard
et al. 1997; Arredondo et al. 2006; Collins and Knutson
2010). Exposure of iron, manganese or zinc to Caco-2

cells did not cause a significant NMDR curve Fig. 3B
between 3.125 and 800 μM. Increasing exposures of
these micronutrients resulted in linear dose-response pro-
files after 120 h continuous exposure. Additionally, Cu
exposure was noticeably more toxic to the cells; IC50
values for Fe, Mn and Zn were greater than 50 μM
and reflects toxicity noted previously (Zödl et al. 2003;
He et al. 2008). In Caco-2 cells, the induction of a
triphasic toxicity curve appeared to be Cu-specific.

Conolly and Lutz 2004 established kinetic models
which covered multiple mechanisms for NMDR re-
sponses in biological systems. They outlined mechanisms
originating from fundamental biochemistry and others
postulated on biological processes. The models are based
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Figure 2. IPEC-J2, HT29, HT29-MTX-E12, HCT116, HepG2, MIA-PaCa 2, BxPC-3, BT-474 and HCC1954 cells exposed to increasing copper
sulphate, assayed by acid phosphatase after 120 h continuous exposure. Results are presented as relative to untreated control (n = 3).
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on (a) opposing regulatory effects by membrane receptor
subtypes, (b) modulation of gene expression by
homodimers but not mixed dimers in increasing xenobi-
otic concentration (c) DNA damage repair induced by
xenobiotic in a saturable manner and (d) concentration-
dependant DNA damage leading to two opposing mono-
tonic responses (cell cycle delay/cell cycle acceleration)
which generate NMDR curves when superimposed. The
recent publication by Keenan et al. identified that varia-
tion in levels of copper between different batches of me-
dia had a significant impact on autophagy and apoptosis-
related proteins. Without this knowledge, we would not
have been in a position to measure effects at such low
levels, as the discrepancy between batches was observed
at such a low level, thus prompting this investigation.

This study focussed on identifying a triphasic NMDR
profile induced by copper in Caco-2 cells, with demonstra-
tion of metal and cell-type specificity. The observed NMDR
profile demonstrates that lower concentrations of Cu result
in greater toxicity than higher concentrations and has im-
portant practical implications in the modelling of Cu re-
sponse with Caco-2 cells.

It is possible that this phenomenon represents a phys-
iological response of some intestinal cells in vivo to cop-
per deprivation, and that such cells Bdelay^ switching on
particular mechanisms such as Cu efflux or sequestration,
until copper levels in the cells reach a critical level in
order to replenish the bodies’ stores of copper. More
detailed studies will be required to determine the effect,
if any, played by protein/DNA repair mechanisms and

Cu-related oxidative stress-induced pathways in generat-
ing the Cu-specific NMDR profile.
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