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BACKGROUND: Predicting death in a cohort of clinically
diverse, multicondition hospitalized patients is difficult.
Prognostic models that use electronic medical record
(EMR) data to determine 1-year death risk can improve
end-of-life planning and risk adjustment for research.
OBJECTIVE: Determine if the final set of demographic,
vital sign, and laboratory data from a hospitalization can
be used to accurately quantify 1-year mortality risk.
DESIGN: A retrospective study using electronic medical
record data linked with the state death registry.
PARTICIPANTS: A total of 59,848 hospitalized patients
within a six-hospital network over a 4-year period.
MAIN MEASURES: The last set of vital signs, complete
blood count, basic and complete metabolic panel, demo-
graphic information, and ICD codes. The outcome of in-
terest was death within 1 year.
KEYRESULTS:Model performancewasmeasured on the
validation data set. Random forests (RF) outperformed
logisitic regression (LR) models in discriminative ability.
AnRFmodel that used the final set of demographic, vitals,
and laboratory data from the final 48 h of hospitalization
had an AUC of 0.86 (0.85–0.87) for predicting death with-
in a year. Age, blood urea nitrogen, platelet count, hemo-
globin, and creatinine were the most important variables
in the RF model. Models that used comorbidity variables
alone had the lowest AUC. In groups of patients with a
high probability of death, RF models underestimated the
probability by less than 10%.
CONCLUSION: The last set of EMR data from a hospital-
ization can be used to accurately estimate the risk of 1-
year mortality within a cohort of multicondition hospital-
ized patients.
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data mining.

Abbreviations
AST Aspartate amino transferase
ALT Alanine amino transferase
AHRQ Agency for Health Care Research and Quality

EOL End of life
EOLp End of life planning
EMR Electronic medical record
MCV Mean corpuscular volume
WBC White blood cell count
CMP Complete metabolic panel
CBC Complete blood count
BMP Basic metabolic panel
RF Random forest
LR Likelihood ratio
LR Logistic regression
SD Standard deviation
AUC Area under the curve
ROC Receiver-operator curve
OOB Out of bag
ICD9-CM International Classification of Diseases

9-Clinical Modification
ICD10 International Classification of Diseases 10
MD-Gini Mean decrease in Gini Index
ML Machine learning
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INTRODUCTION

During hospitalizations, seriously ill patients are frequently
exposed to unwanted interventions.1 Surveys of seriously ill
hospitalized patients have found that communication about
end-of-life planning (EOLp) is an area of potential improve-
ment for hospitals.2 An informed EOLp discussion is based on
an accurate estimation of a patient’s likelihood of death. Esti-
mates of the probability of patient survival are also needed to
adjust for the risk of death as a confounder. This is useful in
comparing outcomes between hospitals.3 Some commonly
used prognostic models are applicable to specific diseases
and subpopulations (e.g., the MELD-Na score in end-stage
liver disease). Some studies have used Electronic Health Re-
cord (EHR) data to estimate inpatient mortality risk.4,5 How-
ever, there is a lack of prognostic models in diverse, multi-
condition, hospitalized patients for estimating longer term
outcomes, such as mortality at 1 year.6
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Estimating the risk of 1-year mortality in a clinically
heterogeneous cohort of hospitalized patients is difficult.3

Existing prognostic models in this area frequently rely on
variables that may not be available to clinicians.6,7 Some
examples of such variables are comorbidity scores based
on billing data, Activities of Daily Living assessments, and
the number of hospitalizations prior to the index hospital-
ization.6 As an example, the widely used Charlson score
relies on billing data and has been shown to have poor
reproducibility.6 It is frequently not available for weeks
after the hospitalization ends and needs manual abstraction
by chart review. Reliance on such variables has limited the
broad automation, utilization, and deployment of prognos-
tic models at the bedside. Ideally, a prognostic model
would rely solely on clinical EMR data. Clinical EMR data
(i.e., vitals signs, common laboratory values, clinical and
demographic information) are ubiquitously available at
point of care and amenable to automated abstraction. Such
an approach will facilitate the deployment of automated,
EHR-interfaced models for decision support.8

During an emergent hospitalization, patients are typically
admitted with an acute alteration in physiology.9,10 It is rea-
sonable to expect that patients, who have significant abnor-
malities in vital signs and biochemistry at discharge will have
worse outcomes. Instability in vital signs at discharge is asso-
ciated with a higher 30-day readmission rate.11,12 Nguyen
et al. found that models utilizing granular EHR data from a
hospitalization exhibited modest performance in predicting
readmission.11 Their study did not model 1-year mortality. A
predictive model that uses commonly available EHR data to
accurately prognosticate 1-year mortality in diverse, multi-
condition, hospitalized patients remains elusive.3,6 In this
study, we aim to develop models that estimate the 1-year
mortality risk based on EHR data available at the end of a
hospitalization.
Machine learning (ML) is a field of computer science that

develops techniques to learn and extract knowledge from data.
ML algorithms can deal with complex multivariate data and
model non-linear relationships and are able to handle missing
or noisy data.13 ML is very promising from the standpoint of
handling EHR data, which is frequently Bdirty.^14 Our proof-
of-concept study aims to construct models that utilize EHR
data to prognosticate 1-year mortality in a large, diverse cohort
of multicondition hospitalizations. Our study also answers the
following questions: (1) Do ML approaches outperform
regression-based models? (2) Which variables are most im-
portant for prognostication?

METHODS

Inclusion Criterion

After obtaining institutional review board approval, we used
our institution’s clinical data warehouse to create an EMR-
derived data set of 98,643 emergent hospital admissions for

59,848 patients within a six-hospital network in the Twin
Cities area, Minnesota. The encounters spanned a 4-year pe-
riod ranging from 2012 to 2016. The hospital system consists
of one 450-bed university tertiary care center and 5 commu-
nity hospitals ranging from 100 to 450 beds in capacity.
Patients were excluded if they were non-emergent admissions,
less than 18 years of age, did not consent to their medical
record being used for research purposes, or had less than a year
of follow-up mortality data. We included hospitalizations to all
units and services as long as they met the above criterion. Vital
status and death dates were obtained from the state death
registry. Our database had the complete death record issued
from 2011 onwards for deceased individuals who were born in
Minnesota, had died in Minnesota, or have ever had a perma-
nent address in the state.

Model Variables

Our data set included four broad classes of variables (features)
that were very commonly available in the EMR from most
hospitalizations and were clinically relevant. (1)Demographic
variables: age, length of stay, sex. (2) Physiologic variables:
systolic blood pressure, diastolic blood pressure, pulse, respi-
ratory rate, temperature, pulse-oximetry, and body mass index.
(3) Biochemical variables: Serum sodium, potassium, chlo-
ride, bicarbonate, creatinine, urea nitrogen, ALT, AST, total
bilirubin, albumin, white blood cell count, hematocrit, hemo-
globin, platelet count, and mean corpuscular volume. (4)
Clinical comorbidity variables: We created a comorbidity
profile for each patient across the 30 classes of diseases in
the AHRQ comorbidity category index from ICD codes billed
during an encounter.15

All laboratory and physiologic data were time-stamped and
obtained within 48 h of the end of the hospitalization. For each
data element, the last available measurement during an en-
counter was used in the model. The primary outcome of
interest was predicting whether death occurred within a year
of the end of the hospitalization.

Missing Data

We tested two imputation strategies to deal with missing data.
The first was the k-nearest neighbor approach, which replaced
missing data in an encounter with the values of its nearest
neighbor based on a distance measure.13 The second was the
median imputation approach where missing values for a var-
iable were replaced with median values for the variable.13,16

The two approaches did not change model performance sig-
nificantly. 16 Due to its simplicity and fast computation time,
the median imputation was used.

Data Set Partitioning

The data set was partitioned into a derivation and a valida-
tion data set with encounters selected randomly at a ratio of
0.80/0.20.
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Modeling

We compared the performance of logistic regression (LR)
to a class of ML models known as random forest models
(RF).13,17 A more detailed explanation of RFs can be
obtained by referring to existing reviews on this method-
ology.18 RFs are known for their superior Bout of box^
performance, are able to handle non-linear data, and are
less prone to over-fitting. 13,19 RFs are based on decision
trees. Decision tree algorithms formulate decision rules to
fit the underlying data. However, decision trees are fre-
quently Bunstable^ and are sensitive to minor alterations
in the data. RFs aggregate the results of many different
decision trees to eliminate this instability. 13,19,20 RFs
utilize two basic strategies to achieve this objective. (1)
The algorithm utilizes a random subset of the training data
to build each new tree in the ensemble. (2) A random
subset of features is utilized for constructing each decision
rule in a tree. This approach avoids introducing an inor-
dinate degree of bias in the classification, stemming from
a few influential observations.13,19 Variable importance is

interpreted in RFs by using an importance measure known
as the ‘mean decrease in the Gini Index’ (MDGini).
MDGini measures a variable’s performance by randomly
permuting it and measuring the resultant change in classi-
fication error.13,21 For each RF classifier, 501 trees were
used in the ensemble in our analysis. The mtry parameter,
which is the number of variables randomly sampled as
candidates at each split, was sqrt(p) where p is number of
variables in the model. We used the RF implementation
from the ‘randomForest’ package in R for our analysis.

Statistical Tests

For non-normal variables, median values with interquar-
tile range (IQR) were reported. Mean with standard devi-
ation (SD) was reported for normal variables. The signif-
icance of comparisons between two non-normal continu-
ous variables was tested using the Wilcoxon test. For
comparisons between two categorical variables the Fisher
Test was used. The Hosmer-Lemeshow test was used to
assess the goodness of fit.

Table 1 Demographic, Laboratory, and Physiologic Characteristics of the Cohort

Stratified by death within 1 year False True p Value

Number of hospitalizations 83,652 14,991
Age (years, median [IQR]) 59.85 [43.56, 75.07] 73.32 [60.49, 84.63] < 0.001
BMI (kg/m2, median [IQR]) 27.19 [23.24, 32.31] 25.51 [22.02, 30.05] < 0.001
Sex =male (number, %) 39,610 (47.4) 7474 (49.9) < 0.001
Race = white (number, %) 69,924 (83.6) 13,165 (87.8) 0.028
AST (U/l, median [IQR]) 28.00 [22.00, 47.00] 37.00 [23.00, 74.00] < 0.001
ALT (U/l, median [IQR]) 31.00 [20.00, 44.00] 33.00 [22.00, 56.00] < 0.001
Bilirubin.total (mg/dl, median [IQR]) 0.60 [0.40, 0.90] 0.70 [0.40, 1.60] < 0.001
Albumin (g/dl, median [IQR]) 3.50 [3.00, 4.00] 2.80 [2.30, 3.20] < 0.001
Carbon dioxide (mEq/l, median [IQR]) 26.00 [24.00, 28.00] 26.00 [23.00, 29.00] 0.519
Chloride (mEq/l, median [IQR]) 105.00 [102.00, 108.00] 104.00 [100.00, 108.00] < 0.001
Creatinine (mg/dl, median [IQR]) 0.82 [0.67, 1.05] 1.00 [0.71, 1.56] < 0.001
Glucose (mg/dl, median [IQR]) 101.00 [90.00, 122.00] 107.00 [91.00, 135.00] < 0.001
Potassium (3.5–5.1 mEq/l, median [IQR]) 4.00 [3.70, 4.20] 4.00 [3.70, 4.40] < 0.001
Sodium (mEq/l, median [IQR]) 139.00 [137.00, 141.00] 138.00 [135.00, 141.00] < 0.001
Urea nitrogen (mg/dl,median [IQR]) 14.00 [10.00, 20.00] 22.00 [14.00, 36.00] < 0.001
Hemoglobin (mmol/l, median [IQR]) 11.80 [10.10, 13.40] 9.90 [8.70, 11.40] < 0.001
MCV (femtoliters/cell, median [IQR]) 90.00 [87.00, 94.00] 92.00 [88.00, 97.00] < 0.001
Platelet count (× 109/l, median [IQR]) 209.00 [162.00, 265.00] 177.00 [114.00, 249.00] < 0.001
WBC (× 109 per liter (l), median [IQR]) 7.50 [5.70, 9.70] 8.20 [5.80, 11.80] < 0.001
Length of stay (days, median [IQR]) 3.00 [2.00, 4.00] 4.00 [2.00, 7.00] < 0.001
Discharge disposition (%) < 0.001
Acute rehab facility 1132 (1.4) 160 (1.1)
Expired in the hospital 26 (0.0) 2713 (18.1)
Home IV drug therapy 857 (1.0) 158 (1.1)
Home or self care 54,623 (65.3) 3877 (25.9)
Home-health care svc 8674 (10.4) 2369 (15.8)
Hospice/home 356 (0.4) 852 (5.7)
Left against medical advice 922 (1.1) 48 (0.3)
Psychiatric hospital 1054 (1.3) 23 (0.2)
Short-term hospital 1878 (2.2) 363 (2.4)
Skilled nursing facility 11,964 (14.3) 3693 (24.6)
Other 2166 (2.6) 735 (4.9)
Systolic blood pressure, mmHg (median [IQR]) 126.00 [114.00, 140.00] 122.00 [107.00, 138.00] < 0.001
Diastolic blood pressure, mmHg (median [IQR]) 72.00 [63.00, 81.00] 67.00 [57.00, 77.00] < 0.001
Temperature (Fahrenheit, median [IQR]) 98.00 [97.50, 98.40] 97.90 [97.40, 98.40] 0.007
Pulse (beats per minute, median [IQR]) 78.00 [68.00, 89.00] 83.00 [71.00, 96.00] < 0.001
Pulse oxymetry (%, mean [SD]) 96.14 (2.87) 93.51 (10.44) < 0.001
Respiratory rate (breaths per minute, median [IQR]) 16.00 [16.00, 18.00] 18.00 [16.00, 20.00] < 0.001

Cohort characteristics. The table is stratified by whether death occurred within a year of the end of the hospitalization. Interquartile ranges are listed in
the parentheses. Median values are reported for non-normal variables. The Wilcox test is used for comparisons between the non-normal continuous
variables, and the Fisher test is used for comparisons between categorical variables. IQR: Interquartile range. SD: Standard deviation
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Model Validation and Testing

The discriminative performance of the models was measured
by constructing receiver-operator curves (ROC) and calculat-
ing the area under the curve (AUC) on the validation data
set.13 In clinical studies, the AUC gives the probability that a
randomly selected patient who experienced an event (e.g., a
disease or condition) had a higher risk score than a patient who
had not experienced the event. It is equal to the area under the
receiver-operating characteristic (ROC) curve and ranges from
0.5 to 1.13 The 95% confidence intervals around the AUC
estimates were estimated using the DeLong method, which is
implemented in the pROC package in R.22 To evaluate wheth-
er the predicted probability of 1-year mortality from the ran-
dom forest model reflected the observed probabilities, we
constructed model calibration plots using the PresenceAb-
sence package in R. In a perfectly calibrated model, all the
points would fall along the diagonal straight line.

RESULTS

Characteristics of the Cohort

The demographic, physiologic, and laboratory character-
istics of the encounters are shown in Table 1. In 15.1%
percent of the hospitalizations, death occurred within a
year of the last day of hospitalization (Table 1). The
median age, body mass index (BMI), length of stay, cre-
atinine, blood urea nitrogen (BUN), mean corpuscular
volume (MCV), white blood count (WBC), respiratory
rate, and pulse were significantly higher in hospitaliza-
tions that were followed by death within a year (Table 1).
The albumin, hemoglobin, and pulse-oximetry readings
were significantly lower at the end of the hospitalizations
in which patients died within a year (Table 1). The distri-
bution of comorbidities in the cohort is shown in online
supplementary Table 1.

Figure 1 Line chart of model AUCs for predicting 1-year mortality. The AUC of each model on the validation data set is plotted on the vertical
(y-axis) and the model type is indicated on the horizontal (x-axis). The variables incorporated into each model are listed in the color-coded
legend on the right hand side of the figure. The vertical error bars show the 95% confidence intervals around each AUC estimate. Each point

represents the AUC of one model.
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Predictive Performance of Models for Death
Within 1-Year of the End of a Hospitalization

Models with all four classes of variables had the highest
AUC (blue line, Fig. 1 and online supplementary Table 2).
Models with clinical-comorbidity variables alone had the
worst performance (red line, Fig. 1 and online
supplementary Table 2). RF models generally outper-
formed the LR models (Fig. 1 and online supplementary
Table 2). The AUC of models when inpatient death was
excluded was slightly lower (online supplementary
Table 2). Metastatic disease and tumors increased the
model AUC slightly but significantly when added to the
Demographic/Physiologic/Lab model (Fig. 1, purple and
green lines, online supplementary Table 2).

Variable Importance in the Random Forest
Variables

The highest ranking 27 features are shown in Fig. 1. Twenty-
five of the top 27 features are physiologic, laboratory, and
demographic variables (Fig. 2). Among the comorbidity var-
iables, metastatic disease and tumor were the highest ranking
(Fig. 2).

Model Calibration

The Hosmer-Lemeshow statistic for the Demographic/
Physiologic/Lab model was significant (p < 0.001, 10 bins)
indicating that the predicted probabilities deviated from the
observed probabilities within certain probability ranges.
The calibration of a model is a measure of how well the
probabilities estimated by the model reflect the observed
probabilities. A calibration plot of the RF models revealed
that when the probability of death was greater than 45%, the
predicted probability was slightly lower than the observed
probability (Figs. 3 and 4, online supplementary Tables 3
and 4). Similarly, at low probabilities of death, the model
slightly overestimated the probability of death (Figs. 3 and
4, online supplementary Tables 3 and 4). The difference
between predicted probability and the actual probability of
death was always less than 10% (Figs. 3 and 4, online
supplementary Tables 3 and 4.

Addressing Potential Selection Bias

We repeated the model development and testing using one of
two approaches: Approach 1: In this approach, each distinct
hospitalization was treated as a unit of analysis. We used the

Figure 2 Feature importance in the random forest models. The features are ranked by importance as measured by the mean decrease in the
Gini Index.
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last set of data from each available hospitalization for each
patient. Approach 2: In this approach, each unique patient was
treated as a unit of analysis. The data set was sampled and one
hospitalization for each patient was randomly selected for
inclusion analysis (i.e., random admission model). This was
done to test the effect of potential selection bias that could be
theoretically introduced by using multiple data points from the
same patient.23 Both these strategies yielded models with
nearly identical AUCs and predictive performance.

DISCUSSION

In our proof-of-concept study, we demonstrate that the last set
of EMR data from the end of a hospitalization (vital signs,
laboratory tests, and demographic information) can accurately
estimate the probability of death within a year. EMR data are
Bdirty^ with a significant amount of missing and erroneous
data. This makes it challenging to develop accurate mod-
els.8,24 Our approach relies on a relatively simple imputation
strategy to deal with missing data. We use an ML algorithm
(i.e., RF) capable of handling Bnoisy^ data. Our results high-
light the effectiveness of this approach for utilizing EMR data
in prognostic models.

We achieve an excellent discriminative performance for
predicting 1-year mortality by constructing an RF model that
utilizes Demographic/Laboratory/Physiologic variables. The
AUC of the model is 0.86 on the validation data set (Fig. 1,
online supplementary Table 2). This is one of the highest
AUCs described in multicondition, diverse, hospitalized
patients for predicting 1-year mortality.6 Adding the two high-
est ranking comorbidity variables (i.e., tumor and metastatic
disease) to this model increases the AUC by a small amount
(Fig. 1, online supplementary Table 2). However, the calibra-
tion curves for both these RF models are similar, yielding
identical probabilities of death (Figs. 3 and 4, online
supplementary Tables 3 and 4). At high probabilities of death,
both the RFmodels underestimate the risk of death at 1 year by
less than 10%. Compared to existing models in multicondition
hospitalized patients, these are well-calibrated models.6 The
AUC of the RF models is slightly lower when in-patient
deaths are excluded from the outcome. However, this degra-
dation in discriminative performance is not large enough to be
clinically meaningful (online supplementary Table 2). The
Demographic/Laboratory/Physiologic/Tumor/Metastasis
model is web-deployed at https://niceguy.shinyapps.io/shiny_
model2/ for purposes of demonstration.

Figure 3 Calibration plots of the Demographic/Physiologic/Lab RF model. The observed rate of death at 1 year within each one of the ten
probability bins is plotted on the y-axis. The predicted probability from the RF model is indicated on the x-axis. The dotted diagonal line

represents points along a perfectly calibrated model. Each point on the graph represents one of the ten bins of probability. The number beside
each point represents the total number of hospitalizations that fall within the particular bin. The bars delineate the 95% confidence intervals

around the observed probability.
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Age, BUN, platelet count, hemoglobin, creatinine, systolic
blood pressure, BMI, and pulse oxymetry readings are the
most important variables in the RF models (MD Gini score
of greater than 800). The majority of the predictive perfor-
mance of the RF model is derived from physiologic, biochem-
ical, and demographic variables. The clinical comorbidity
variables are less important (Figs. 1 and 2). This is not sur-
prising, as the billing data-based comorbidity index does not
capture the granularity of the physiologic/biochemical aspects
of disease. Although the Demographic/Laboratory/Physiolog-
ic RF model has a very good discrimination and calibration,
the highest AUC is achieved when all the comorbidity varia-
bles are added to this model (AUC 0.91, Fig. 1 and online
supplementary Table 2). It is worth highlighting the superior
discriminative performance of RF models compared to LR
models (Fig. 1, online supplementary Table 2). Unlike LRs,
RFs are able to capture non-linear relationships and deal with
Bnoisy^ data.20 However, one drawback of using RFmodels is
that the interpretation of variable importance is lost (i.e., there
are no odds ratios to interpret for variables).
Our models were developed and validated on a demograph-

ically, economically, and clinically diverse cohort. Our data set
includes data from a large multihospital health system. The

system encompasses a university tertiary care center and ur-
ban, suburban and semi-rural hospitals. Ultimately, our model
needs to be validated in other settings to demonstrate geo-
graphic and temporal portability.6,7 We used state death regis-
try data for ascertaining the date of death (for out-of-hospital
deaths). If a death were not reported to the Minnesota state
registry, then it would not be captured in our data set. To
minimize the impact of this issue, we included only emergent
hospitalizations in our analysis. This may result in our data
reflecting a Bsicker^ subset of patients than if elective admis-
sions were also included. It is likely that if we had included
non-emergent hospitalizations, the discriminative perfor-
mance would have been better (since our model performs very
well at identifying low-risk subgroups).
To the best of our knowledge, our study is the first and

largest study attempting to develop models for 1-year mortal-
ity by using granular EHR data at the end of a hospitaliza-
tion.6,25 Prior attempts at developing a 1-year mortality model
in diverse, multicondition hospitalized patients have suffered
from a number of drawbacks.6 They have relied on adminis-
trative, non-clinical data that frequently need to be manually
abstracted.3 Model development has been limited to specific
subpopulations of patients.6 These issues have limited model

Figure 4 Calibration plot of the Demographic/Physiologic/Lab +Metastasis + Tumor RF model. The observed rate of death at 1 year within
each one of the ten probability bins is plotted on the y-axis. The predicted probability from the RF model is indicated on the x-axis. The dotted
diagonal line represents points along a perfectly calibrated model. Each point on the graph represents one of the ten bins of probability. The
number beside each point represents the total number of hospitalizations that fall within the particular bin. The bars delineate the 95%

confidence intervals around the observed probability.
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use in clinical settings.6 We utilize variables directly available
to clinicians from the EHR. Compared to previous studies of
multicondition hospitalized patients, our cohort is significantly
larger and clinically diverse.6 Prior models have reported
AUCs in the 0.7–0.8 range for 1-year mortality.6,3 Our models
demonstrate excellent discrimination and calibration in com-
parison. Models that are based on Demographic/Laboratory/
Physiologic variables can be interfaced with the EHR using
common messaging standards such as HL7 to Bpull^ struc-
tured data elements. This can facilitate automated deployment
for decision support.14

Our work demonstrates that ML approaches such as RF can
utilize ubiquitously available granular EMR elements from the
end of a hospitalization to accurately estimate the risk of 1-
year mortality in a large heterogeneous multicondition cohort
of hospitalized patients. Future work is needed to validate such
models in other settings to test whether this approach is widely
portable.
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