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Abstract
Background  Procedure-specific complications can have devastating consequences. Machine learning–based tools have the 
potential to outperform traditional statistical modeling in predicting their risk and guiding decision-making. We sought to 
develop and compare deep neural network (NN) models, a type of machine learning, to logistic regression (LR) for predicting 
anastomotic leak after colectomy, bile leak after hepatectomy, and pancreatic fistula after pancreaticoduodenectomy (PD).
Methods  The colectomy, hepatectomy, and PD National Surgical Quality Improvement Program (NSQIP) databases were 
analyzed. Each dataset was split into training, validation, and testing sets in a 60/20/20 ratio, with fivefold cross-validation. 
Models were created using NN and LR for each outcome. Models were evaluated primarily with area under the receiver 
operating characteristic curve (AUROC).
Results  A total of 197,488 patients were included for colectomy, 25,403 for hepatectomy, and 23,333 for PD. For anasto-
motic leak, AUROC for NN was 0.676 (95% 0.666–0.687), compared with 0.633 (95% CI 0.620–0.647) for LR. For bile 
leak, AUROC for NN was 0.750 (95% CI 0.739–0.761), compared with 0.722 (95% CI 0.698–0.746) for LR. For pancreatic 
fistula, AUROC for NN was 0.746 (95% CI 0.733–0.760), compared with 0.713 (95% CI 0.703–0.723) for LR. Variables 
related to intra-operative information, such as surgical approach, biliary reconstruction, and pancreatic gland texture were 
highly important for model predictions.
Discussion  Machine learning showed a marginal advantage over traditional statistical techniques in predicting procedure-
specific outcomes. However, models that included intra-operative information performed better than those that did not, 
suggesting that NSQIP procedure-targeted datasets may be strengthened by including relevant intra-operative information.
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Introduction

Procedure-specific complications can have devastating con-
sequences. For example, anastomotic leak after colectomy 
is associated with increased morbidity, length of stay, re-
admissions, and mortality, as well as local recurrence and 
cancer-specific mortality for oncologic surgeries.1–3 Predic-
tive models can be helpful to estimate a patient’s specific 
risk for post-operative complications, guide peri-operative 
decision-making such as ostomy placement or early drain 
removal, and perform risk adjustment for comparing post-
operative outcomes.

Prior predictive models, such as the American College of 
Surgeons (ACS) Surgical Risk Calculator, provide accurate 
estimates of overall mortality and morbidity.4 However, this 
model, and others which are based on the National Surgical 
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Quality Improvement Program (NSQIP) dataset, fall short 
in their ability to predict procedure-specific outcomes.5–7

Machine learning, a branch of artificial intelligence (AI), 
uses computer algorithms that identify patterns within data 
without explicit instructions and has the potential to iden-
tify subtle, non-linear patterns. Machine learning has been 
successfully applied to the prediction of post-operative out-
comes, but previous projects have focused on broader, rather 
than procedure-specific, outcomes, such as overall morbid-
ity and mortality.8,9 Our hypothesis is that machine learn-
ing could be helpful in the prediction of procedure-specific 
outcomes. This study seeks to develop machine learning 
models for predicting three procedure-specific outcomes: 
anastomotic leak following colectomy, bile leak following 
hepatectomy, and pancreatic fistula following pancreaticodu-
odenectomy (PD). We also sought to compare the machine 
learning models with logistic regression.

Materials and Methods

Data Source

We used the colectomy, hepatectomy, and pancreatectomy 
procedure–targeted datasets from the ACS National Sur-
gical Quality Improvement Program (NSQIP) database. 
All available years for colectomy (2012–2019), hepatec-
tomy (2014–2019), and pancreatectomy (2014–2019) were 
included. Patients missing primary outcome data were 
excluded. Patients undergoing colectomy who underwent 
concurrent ostomy placement were also excluded. From the 
pancreatectomy dataset, patients undergoing procedures 
other than PD were excluded. This study was determined to 
be exempt from institutional review board approval.

Outcomes

For each procedure type, we sought to predict a procedure-
specific outcome: anastomotic leak for colectomy, bile leak 
for hepatectomy, and pancreatic fistula for PD. Anastomotic 
leak included leaks requiring treatment with antibiotics, 
percutaneous drainage, or reoperation. Bile leak included 
leaks requiring percutaneous drainage or reoperation. Pan-
creatic fistula included grade B or C fistulas for 2018–2019 
(fistula grading was implemented in NSQIP in 2018). For 
2014–2017, clinically relevant pancreatic fistulas were 
defined according to methods described by Kantor et al.6,10

Predictive Models

Each dataset was split into training, validation, and test-
ing sets in 60%, 20%, and 20% ratios, respectively, using 
randomly selected data from all years. The training set was 

used for model development, the validation set was used for 
model adjustment and to monitor overfitting, and the test 
set was reserved for evaluation of model performance after 
completion of development. Cross-validation was used to 
create 5 different train/test splits to verify model consistency. 
We selected a deep neural network (NN) as our machine 
learning approach, as it has been previously demonstrated to 
have improved performance compared with tree-based meth-
ods (such as random forest) in prediction of post-operative 
outcomes from the NSQIP database.8,9,11 This deep learning 
approach uses layers of functions, each containing model 
weights, to transform input data into output data representing 
predictions.12 Dropout (random removal of functions within 
layers) and early stopping (stopping training when validation 
set accuracy decreases) were used to reduce overfitting.13 
Logistic regression (LR) models were also created for com-
parison. LR was implemented with no regularization and no 
variable elimination techniques to approximate a standard 
implementation. Models were implemented in Python (ver-
sion 3.9) with use of the Pandas,14,15 SciKitLearn,16 and 
Keras17 libraries.

Input data included all available peri-operative variables 
within the core NSQIP database and procedure-targeted 
variables that would be known prior to the occurrence of 
the outcome of interest (Tables 1 and 2 and Supplemen-
tary Table 1). Missing variables from the datasets were 
addressed by imputation techniques, which is standard 
data pre-processing. Missing categorical values were 
imputed as “unknown” and missing continuous values as 
the median.9,13,18 Further details are available in the Sup-
plementary Appendix and code is available at https://​github.​
com/​gomez​lab/​nsqip_​proce​dures​pecif​ic.

Evaluation

Models were evaluated primarily with area under the 
receiver operating characteristic curve (AUROC). The 
receiver operating characteristic curve plots the true positive 
rate against the false positive rate and the AUROC summa-
rizes the model’s ability to distinguish positive cases from 
negative cases. AUROC ranges from 0.5 (random guess-
ing) to 1 (perfect classification). AUROCs were compared 
between models using the Delong test with significance set 
at p < 0.05.19 In addition, the area under the precision-recall 
curve (AUPRC) was also calculated for each model, which 
assesses a model’s ability to identify all positive cases with-
out identifying false positives. A random classifier will have 
an AUPRC equal to the rate of the positive class (e.g., rate 
of anastomotic leak) and a perfect classifier will have an 
AUPRC of 1.0. The relative importance of input variables 
was estimated for procedure-specific variables using Shap-
ley additive explanations (SHAP) for NN models and odds 
ratios for LR models.20
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Table 1   Key input variables by procedure

Colectomy Pancreatectomy Hepatectomy

Age, mean (SD) 62.0 (14.9) 63.4 (12.8) 59.2 (13.7)
Sex, n (%) Female 96357 (53.0) 19583 (49.8) 12681 (50.0)

Male 85485 (47.0) 19711 (50.2) 12,656 (50.0)
Non-binary 3 (0.0) 0 (0.0) 0 (0.0)

Race, n (%) White 133433 (73.4) 29199 (74.3) 16084 (63.5)
Black or African American 16916 (9.3) 3327 (8.5) 2059 (8.1)
Asian 5571 (3.1) 1629 (4.1) 1717 (6.8)
American Indian or Alaska Native 776 (0.4) 116 (0.3) 95 (0.4)
Native Hawaiian or Pacific Islander 412 (0.2) 70 (0.2) 63 (0.2)
Unknown 24737 (13.6) 4953 (12.6) 5319 (21.0)

Hispanic ethnicity n (%) Yes 9055 (5.6) 1977 (5.6) 1378 (6.7)
BMI, mean (SD) 28.7 (6.7) 27.9 (6.1) 28.5 (6.3)
ASA classification 1 4204 (2.3) 260 (0.7) 350 (1.4)

2 77345 (42.5) 9354 (23.8) 6310 (24.9)
3 87662 (48.2) 27070 (68.9) 16800 (66.3)
4 11835 (6.5) 2552 (6.5) 1824 (7.2)
5 613 (0.3) 24 (0.1) 11 (0.0)
Unknown 186 (0.1) 34 (0.1) 42 (0.2)

Functional status Independent 176926 (97.7) 38924 (99.2) 25115 (99.3)
Partially Dependent 3553 (2.0) 293 (0.7) 158 (0.6)
Totally Dependent 679 (0.4) 25 (0.1) 15 (0.1)

Dyspnea At rest 741 (0.4) 60 (0.2) 57 (0.2)
With moderate exertion 11434 (6.3) 2058 (5.2) 1337 (5.3)
No 169670 (93.3) 37176 (94.6) 23943 (94.5)

Diabetes Requiring insulin 9118 (5.0) 4839 (12.3) 1555 (6.1)
Not requiring insulin 18943 (10.4) 5293 (13.5) 2938 (11.6)
No diabetes 153784 (84.6) 29162 (74.2) 20844 (82.3)

Hypertension 87817 (48.3) 20445 (52.0) 11589 (45.7)
Heart failure 1949 (1.1) 157 (0.4) 93 (0.4)
Ascites 996 (0.5) 114 (0.3) 131 (0.5)
COPD 9016 (5.0) 1586 (4.0) 900 (3.6)
Renal failure 697 (0.4) 30 (0.1) 22 (0.1)
Dialysis 1598 (0.9) 156 (0.4) 81 (0.3)
Chronic steroid use 13313 (7.3) 1220 (3.1) 817 (3.2)
Smoking 28987 (15.9) 6703 (17.1) 3851 (15.2)
Bleeding disorder 6593 (3.6) 1206 (3.1) 842 (3.3)
Weight loss (> 10%) 7279 (4.0) 4659 (11.9) 975 (3.8)
Pre-operative transfusion 4213 (2.3) 319 (0.8) 147 (0.6)
Wound classification Clean 1823 (1.0) 2621 (6.7) 3647 (14.4)

Clean/contaminated 139733 (76.8) 31308 (79.7) 20032 (79.1)
Contaminated 22625 (12.4) 4317 (11.0) 1129 (4.5)
Dirty/Infected 17664 (9.7) 1048 (2.7) 529 (2.1)

Transfer status Not transferred 172906 (95.1) 38211 (97.3) 24881 (98.2)
From acute care hospital 3632 (2.0) 781 (2.0) 277 (1.1)
From nursing home 1502 (0.8) 75 (0.2) 38 (0.2)
From outside ED 3148 (1.7) 169 (0.4) 110 (0.4)
From other 544 (0.3) 51 (0.1) 26 (0.1)

Sodium, mean (SD) 139.1 (3.1) 139.0 (3.1) 139.3 (2.8)
Blood urea nitrogen, mean (SD) 15.5 (9.5) 15.6 (7.4) 15.1 (6.9)
Creatinine, mean (SD) 1.0 (0.7) 0.9 (0.5) 0.9 (0.5)

Albumin, mean (SD) 3.8 (0.6) 3.9 (0.6) 4.0 (0.5)
White blood cell count, mean (SD) 7.9 (3.6) 7.3 (2.8) 6.9 (3.1)
Hematocrit, mean (SD) 38.3 (5.9) 38.3 (5.2) 39.4 (5.0)
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Data are n (%) unless otherwise specified. BMI body mass index, ASA American Society of Anesthesiologists, COPD chronic obstructive pul-
monary disease, PATOS present at time of surgery

Table 1   (continued)

Colectomy Pancreatectomy Hepatectomy

Platelet count, mean (SD) 268.0 (95.3) 250.0 (91.6) 236.2 (90.8)
Operative time, mean (SD) 173.0 (88.2) 371.9 (128.5) 239.9 (121.7)

Table 2   Procedure-targeted variables for colectomy, hepatectomy, and pancreatectomy

Colectomy

CPT, n (%) Colectomy 28472 (15.7)
Colectomy with coloproctostomy 14051 (7.7)
Colectomy with abdominal and transanal approach 312 (0.2)
Colectomy with ileocolostomy 23458 (12.9)
Laparoscopic colectomy 48250 (26.5)
Laparoscopic colectomy with ileocolostomy 33206 (18.3)
Laparoscopic colectomy with coloproctostomy 34096 (18.8)

Indication, n (%) Acute diverticulitis 11348 (5.8)
Bleeding 1244 (0.6)
Chronic diverticular disease 30920 (15.7)
Colon cancer 75478 (38.4)
Colon cancer w/ obstruction 8433 (4.3)
Crohn’s Disease 11641 (5.9)
Enterocolitis (e.g., C. Difficile) 395 (0.2)
Non-malignant polyp 18981 (9.7)
Other 31764 (16.1)
Ulcerative colitis 846 (0.4)
Volvulus 5609 (2.9)

Emergent indication, n (%) Not emergent 178150 (90.4)
Bleeding 1121 (0.6)
Obstruction 6904 (3.5)
Other 2256 (1.1)
Perforation 6072 (3.1)
Toxic colitis 948 (0.5)

Pre-operative steroid use, n (%) 10459 (5.4)
Mechanical bowel prep, n (%) 109434 (63.9)
Antibiotic bowel prep, n (%) 81762 (47.1)
Pre-operative chemotherapy, n (%) 7485 (3.8)
Approach, n (%) Open (planned) 55977 (28.4)

Laparoscopic 61348 (31.2)
Laparoscopic w/ open assist 46797 (23.8)
Laparoscopic w/ unplanned conversion to open 13803 (7.0)
Robotic 11531 (5.9)
Robotic w/ open assist 6283 (3.2)
Robotic w/ unplanned conversion to open 969 (0.5)
Other 127 (0.1)
Hepatectomy

CPT code, n (%) Hepatectomy, partial lobectomy 17073 (67.4)
Hepatectomy, trisegmentectomy 2050 (8.1)
Hepatectomy, total left lobectomy 2274 (9.0)
Hepatectomy, total right lobectomy 3940 (15.6)
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Table 2   (continued)

Colectomy

Indication, n (%) Colorectal metastasis 8403 (33.1)

Other metastasis 1503 (6.0)

Hepatocellular carcinoma 4575 (18.0)

Cholangiocarcinoma 2233 (8.8)

Hepatic adenoma 1005 (4.0)

Hemangioma 802 (3.2)

Hepatic cyst 722 (2.8)

Gallbladder cancer 655 (2.6)

Focal nodular hyperplasia 474 (1.9)

Biliary cyst 416 (1.6)

Hepatic abscess 190 (0.7)

Other 4425 (17.4)
Biliary stent placed, n (%) Yes, endoscopic 948 (3.8)

Yes, percutaneous 216 (0.9)
Yes, other/unknown 102 (0.4)
No 23943 (95.0)
Unknown 194 (0.8)

Drain placed, n (%) 11229 (44.3)
Neo-adjuvant systemic chemotherapy, n (%) 6566 (25.8)
Portal vein embolization, n (%) 877 (3.5)
Pre-operative intra-arterial infusion, n (%) 222 (0.9)
Pre-operative ablation, n (%) 169 (0.7)
Viral hepatitis, n (%) Hepatitis B 1124 (4.9)

Hepatitis B and C 133 (0.6)
Hepatitis C 1670 (7.3)
None 19677 (86.4)
Other 158 (0.7)

Approach, n (%) MIS 5777 (22.8)
MIS w/ conversion 999 (3.9)
Open (planned) 18616 (73.3)

Liver texture, n (%) Cirrhotic 2461 (9.7)
Congested 468 (1.8)
Fatty 3229 (12.7)
Fibrosis 256 (1.0)
Normal 7030 (27.7)
Unknown 11959 (47.1)

Number of concurrent partial resections, n (%) 0 12688 (50.7)
1 6822 (27.3)
2 3011 (12.0)
3 or more 2439 (9.8)
Pancreatectomy

CPT, n (%) Pancreaticoduodenectomy 14679 (63.2)
Pylorus-sparing pancreaticoduodenectomy 8554 (36.8)
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Table 2   (continued)

Colectomy

Indication, n (%) Pancreatic adenocarcinoma 12931 (55.7)

Ampullary/duodenal adenocarcinoma 3627 (15.6)

Biliary adenocarcinoma 1761 (7.6)

Neuroendocrine tumor 1247 (5.5)

Benign neoplasm of pancreas 945 (4.1)

Cystic lesion 1101 (4.7)

Chronic pancreatitis 865 (3.7)

Other 756 (3.3)
Jaundice, n (%) 10102 (43.8)
Pre-operative biliary stent, n (%) Endoscopic stent 10950 (49.1)

No stent at time of surgery 10229 (45.9)
Percutaneous stent 696 (3.1)
Stent of other or unknown type 405 (1.8)

Pre-operative chemotherapy, n (%) 4857 (21.0)
Pre-operative radiation therapy, n (%) 1863 (8.1)
Approach, n (%) Minimally invasive (MIS) 1863 (8.1)

Open (planned) 21172 (91.1)
Pancreatic duct size, n (%) 3–6 mm 9780 (42.1)

 < 3 mm 5748 (24.7)
 > 6 mm 3031 (13.0)
Unknown 4674 (20.1)

Pancreas gland texture, n (%) Hard 7517 (32.4)
Intermediate 2117 (9.1)
Soft 8143 (35.0)
Unknown 5456 (23.5)

Type of reconstruction, n (%) Not performed 739 (3.3)
Pancreaticogastrostomy 511 (2.3)
Pancreaticojejunal duct-to-mucosal 19499 (86.0)
Pancreaticojejunal invagination 1915 (8.4)

Drains placed, n (%) Yes 20649 (89.0)
Vascular resection, n (%) Not performed 18950 (82.4)

Artery 435 (1.9)
Vein 2860 (12.4)
Vein and artery 766 (3.3)

Drain amylase (POD1), mean (SD) 3475.8 (10299.8)
Incision type, n (%) Subcostal type 1916 (8.2)

Upper midline 9179 (39.5)
Other 177 (0.8)
Unknown 11961 (51.5)

Gastrojejunostomy, n (%) Antecolic 3832 (16.5)
Retrocolic 1611 (6.9)
Not performed 192 (0.8)
Unknown 17598 (75.7)
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Results

Colectomy

The colectomy dataset included 257,913 patients. After 
application of exclusion criteria, 197,488 patients remained. 
A total of 6012 (3.05%) patients experienced an anastomotic 
leak. After splitting, 118,493 patients were included in 
the training group, 39,497 patients were included in the 
validation group, and 39,498 patients were included in 
the test group. Further input variable characteristics for 
all groups are described in Table 1. On the test set, NN 
obtained an AUROC of 0.676 (95% 0.666–0.687) and an 
AUPRC of 0.104 (95% CI 0.092–0.115). LR obtained an 
AUROC of 0.633 (95% CI 0.620–0.647) and an AUPRC of 
0.056 (95% CI 0.051–0.061) (Table 3). Receiver operating 
characteristic and precision-recall curves for anastomotic 
leak are shown in Figs. 1a and 2a. Comparison using the 
Delong test showed a significant difference between the 

AUROC of NN and LR with p < 0.001. Of the variables 
within the procedure-targeted dataset, approach, mechanic 
bowel prep, and antibiotic bowel prep contributed most to 
the NN model output, compared with chemotherapy, pre-
operative steroid use, and antibiotic bowel prep for the LR 
model (Table 4).

Hepatectomy

The hepatectomy dataset included 25,595 patients. After 
application of exclusion criteria, 25,403 patients remained. 
A total of 966 (3.8%) patients experienced a bile leak. After 
splitting, 15,242 patients were included in the training group, 
5,080 patients were included in the validation group, and 
5,081 patients were included in the test group. On the test 
set, NN obtained an AUROC of 0.750 (95% CI 0.739–0.761) 
and an AUPRC of 0.134 (95% CI 0.115–0.153) (Table 3). 
LR obtained an AUROC of 0.722 (95% CI 0.698–0.746) 
and AUPRC of 0.114 (95% CI 0.090–0.139). Receiver 

Table 2   (continued)

Colectomy

Drain location, n (%) Biliary anastomosis 157 (0.7)

Pancreatic & Biliary Anastomosis 3946 (17.0)

Pancreatic anastomosis 964 (4.1)

Pancreatic parenchyma 119 (0.5)

Type(s) cannot be determined 536 (2.3)

Unknown 17511 (75.4)
Drain system type, n (%) Closed 10599 (45.6)

Closed and Open 122 (0.5)
Open 96 (0.4)
Unknown 12416 (53.4)

Wound protector, n (%) Yes 4131 (17.8)
No 11334 (48.8)
Unknown 7768 (33.4)

Pre-incision antibiotic, n (%) 1st generation cephalosporin 5302 (22.8)
2nd or 3rd generation cephalosporin 4493 (19.3)
Broad spectrum 6125 (26.4)
Other 552 (2.4)
Unknown 6761 (29.1)

Table 3   Area under the receiver 
operating characteristic and 
precision-recall curves for 
neural network and logistic 
regression models

AUROC mean AUROC 95% CI AUPRC mean AUPRC 95% CI

Anastomotic Leak—NN 0.68 0.67–0.69 0.10 0.09–0.12
Anastomotic Leak—LR 0.63 0.62–0.65 0.06 0.05–0.06
Bile Leak—NN 0.75 0.74–0.76 0.13 0.12–0.15
Bile Leak—LR 0.72 0.70–0.75 0.11 0.10–0.14
Pancreatic Fistula—NN 0.75 0.73–0.76 0.35 0.33–0.37
Pancreatic Fistula—LR 0.71 0.70–0.72 0.29 0.28–0.30
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operating characteristic and precision-recall curves for 
anastomotic leak are shown in Figs. 1b and 2b. Compari-
son using the Delong test showed a significant difference 
between the AUROC of NN and LR with p = 0.003. Of the 
variables within the procedure-targeted dataset, placement 
of drain intra-operatively, biliary reconstruction, surgical 
approach, biliary stent placement, use of Pringle maneuver, 
and number of concurrent resections contributed most to the 
NN model, compared with biliary reconstruction, Pringle 
maneuver, surgical approach, neoadjuvant chemo-emboli-
zation, placement of drain, and neoadjuvant chemo-infusion 
for the LR model (Table 4).

Pancreaticoduodenectomy

The PD dataset included 23,437 patients. After applica-
tion of exclusion criteria, 23,233 patients remained. A 
total of 3,346 (14.4%) patients experienced a pancreatic 

fistula. After splitting, 13,940 patients were included in 
the training group, 4,647 patients were included in the vali-
dation group, and 4,646 patients were included in the test 
group. On the test set, NN obtained an AUROC of 0.746 
(95% CI 0.733–0.760) and an AUPRC of 0.346 (95% CI 
0.327–0.365) (Table 3). LR obtained an AUROC of 0.713 
(95% CI 0.703–0.723) and an AUPRC of 0.294 (95% CI 
0.281–0.307). Receiver operating characteristic and preci-
sion-recall curves for anastomotic leak are shown in Figs. 1c 
and 2c. Comparison using the Delong test showed a signifi-
cant difference between the AUROCs of NN and LR with 
p < 0.001. Of the variables within the procedure-targeted 
dataset, pancreatic gland texture, indication, drain amylase 
on post-operative day 1, type of reconstruction, and duct 
size contributed most to the NN model output, compared 
with placement of drain intra-operatively, gland texture, pre-
operative chemotherapy, type of reconstruction, and indica-
tion for the LR model (Table 4).

Fig. 1   Receiver operating characteristic curves for procedure-specific outcomes: a Anastomotic leak b Bile leak c Pancreatic fistula. NN—neural 
network, LR—logistic regression

Fig. 2   Precision-recall curves for procedure-specific outcomes: a Anastomotic leak b Bile leak c Pancreatic fistula. NN—neural network, LR—
logistic regression
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Discussion

This study developed and compared machine learning and 
logistic regression models which predict procedure-spe-
cific complications after colectomy, hepatectomy, and PD. 
Overall, the NN showed marginal improvement over LR in 
terms of predictive accuracy. There was a marked difference 
between models’ predictive ability for various outcomes, 
with anastomotic leak after colectomy less accurately pre-
dicted compared with bile leak after hepatectomy and pan-
creatic fistula after PD for both the NN and LR approaches. 
Evaluation of variable importance using SHAP values and 
odds ratios showed that both models emphasized intra-oper-
ative variables as risk factors. Notably, the colectomy pro-
cedure–targeted dataset includes much less intra-operative 
information compared with hepatectomy and PD.

While machine learning applied to the entire NSQIP 
dataset predicts general outcomes with high accuracy 

(AUROC 0.88–0.95) and significantly outperforms the 
ACS risk calculator,4,8 machine learning to predict pro-
cedure-specific complications in the current project does 
not show as clear of an advantage over LR. For anasto-
motic leak, previous models developed using LR and the 
NSQIP dataset obtained AUROCs of 0.65–0.66, similar to 
our machine learning models, although they significantly 
outperform the ACS Surgical Risk Calculator (AUROC 
0.58).5,21,22 Models developed using LR on single-insti-
tution and regional datasets, which also incorporate 
more intra-operative information, have obtained higher 
AUROCs 0.73–0.82.7,23 LR models created for bile leak 
and pancreatic leak from non-NSQIP datasets resulted 
in AUROC (0.65–0.79), similar to results for our mod-
els.24–30 One previous study did apply machine learning 
methods to predict pancreatic fistula in a smaller, single-
institution dataset of 1769 patients with an AUROC 0.74, 
also similar to our model.31

Table 4   Relative importance 
of input variables compared 
between neural network and 
logistic regression using SHAP 
values and odds ratios

* Odds ratio is sorted by distance from 1 (null value)

Variable SHAP value Variable Odds ratio*

Anastomotic leak
  Approach 0.016 Chemotherapy 1.32
  Mechanical bowel prep 0.016 Steroid use 1.25
  Antibiotic bowel prep 0.014 Antibiotic bowel prep 0.81
  Emergent indication 0.011 Mechanical bowel prep 0.86
  Steroid use 0.010 Approach 1.14
  Chemotherapy 0.009 Emergent indication 0.94
  Indication 0.009 Indication 1.01

Bile leak
  Use of drain 0.034 Biliary reconstruction 1.88
  Biliary reconstruction 0.029 Pringle maneuver 1.42
  Approach 0.017 Approach 1.37
  Biliary stent 0.016 Neoadjuvant chemo-embolization 1.37
  Pringle maneuver 0.015 Use of drain 1.37
  # of concurrent resections 0.011 Neoadjuvant chemo-infusion 0.73
  Concurrent ablation 0.01 Biliary stent 1.22
  Viral hepatitis 0.009 Neoadjuvant ablation 1.19
  Neoadjuvant therapy 0.009 Neoadjuvant chemotherapy 1.17
  Neoadjuvant chemo-embolization 0.008 Viral hepatitis 1.13

Pancreatic fistula
  Gland texture 0.039 Drains placed 1.27
  Indication 0.036 Gland texture 1.25
  Drain amylase (POD1) 0.027 Chemotherapy 0.89
  Reconstruction 0.010 Reconstruction 1.09
  Duct size 0.008 Indication 0.92
  Vascular resection 0.006 Radiation therapy 0.93
  Biliary stent 0.006 Vascular resection 0.94
  Jaundice 0.006 Duct size 0.94
  Radiation therapy 0.006 Antibiotic 0.96
  Chemotherapy 0.005 Jaundice 0.97
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A particularly interesting finding from this study is that 
certain outcomes, in particular anastomotic leak after colec-
tomy, are much more difficult to predict from the NSQIP 
dataset compared with bile leak and pancreatic fistula. This 
is likely because the NSQIP dataset does not include intra-
operative variables for colectomy, in contrast to hepatectomy 
and pancreatectomy. Tellingly, models for anastomotic leak 
based on non-NSQIP datasets which include relevant intra-
operative information, such as number of staple fires, occur-
rence of intra-operative adverse events, and need for intra-
operative transfusion, have improved accuracy (AUROC 
0.73–0.82) that are more similar our results for hepatectomy 
and PD.7,23 This aligns with a body of literature showing a 
strong link between intra-operative performance and post-
operative outcomes, indicating that the incorporation of 
intra-operative information is key to predicting procedure-
specific outcomes.31–34

This comparison does have some limitations. First, use of 
NSQIP as training data introduces selection bias because only 
hospitals participating in the NSQIP program are included. 
In addition, predictions are limited to 30-day outcomes. For 
some variables, data may be missing because of the clini-
cal scenario and for those variables, assumptions made using 
imputation techniques may not be valid. Missing data for 
pancreatectomy variables has also improved over time, mak-
ing earlier years less useful for model training. Second, this 
study is not an exhaustive analysis of every procedure-specific 
complication in NSQIP. Rather, it analyzes the abdominal 
surgical procedures with the most robust procedure-targeted 
datasets. Finally, while direct comparison of the absolute val-
ues of SHAP and odds ratios is not valid, their use for relative 
importance can provide insights into model decision-making.

Conclusion

In conclusion, our results show that machine learning has a 
marginal advantage over traditional statistical techniques in 
predicting procedure-specific outcomes based on the NSQIP 
dataset. However, models which include intra-operative vari-
ables performed better compared with those that did not, 
suggesting that NSQIP procedure-targeted datasets may be 
strengthened by the collection of relevant intra-operative 
information. The application of machine learning to datasets 
which include multi-modal data, such as real-time electronic 
health record information and assessments of intra-operative 
surgeon performance, represents a target of future research.
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