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Abstract
Background A high rate of postoperative recurrence, especially early recurrence (ER) occurring within 1 year, seriously impedes
patients with hepatocellular carcinoma (HCC) from achieving long-term survival. This study aimed to establish a genomic-
clinicopathologic nomogram for precisely predicting ER in HCC patients after R0 resection.
Methods Two reliable datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases
were selected as the training and validation cohorts, respectively. The prognostic genes related to ER were screened out by
univariate Cox regression analysis and differential expression analysis. The gene-based prognostic index was constructed using
LASSO and Cox regression analyses, and its independent prognostic value was assessed by Kaplan-Meier and multivariate Cox
analyses. Gene set enrichment analysis (GSEA) was performed to explore the biological pathways related to the prognostic
index. Finally, the nomogram integrating all the independent prognostic factors was established and comprehensively evaluated
by calibration plots, the C-index, receiver operating characteristic curves, and decision curve analysis.
Results Nine dysregulated and prognostic genes related to ER (ZNF131, TATDN2, TXN, DDX55, KPNA2, ZNF30,
TIMELESS, SFRP1, and COLEC11) were identified (all P < 0.05). The prognostic index model based on the 9 genes was
successfully constructed using the TCGA cohort and showed a certain capability to discriminate the ER group from the non-ER
group (P < 0.05) and good independent prognostic value in terms of predicting poor early recurrence-free survival (P < 0.05).
Eight biological pathways significantly related to ER were identified by GSEA, such as “cell cycle”, “homologous recombina-
tion” and “p53 signaling pathway.” The genomic-clinicopathologic nomogram integrating the 9-gene-based prognostic index
and TNM stage displayed significantly higher predictive accuracy and clinical application value than that of TNM stage model
both in the training and validation cohorts (all P < 0.05).
Conclusions The novel genomic-clinicopathologic nomogram may be a convenient and powerful tool for accurately predicting
ER in HCC patients after R0 resection.
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Introduction

Hepatocellular carcinoma (HCC), which ranks as the sixth
most common malignancy and the fourth leading cause of
cancer death worldwide, is one of the major global public
health problems.1 Due to improvements in the early de-
tection and surgical techniques of HCC, numerous cura-
tive therapies have been applied to clinical practice, in-
cluding liver transplantation (LT), hepatic resection, and
local ablation.2 However, considering the current organ
shortage, strict indications for LT and limited ablation
extent, hepatic resection remains the most prevalent cura-
tive treatment for early-stage or partial intermediate-stage
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HCC patients to improve their prognosis.3 Nevertheless, a
high rate of postoperative recurrence poses a great chal-
lenge for the long-term overall survival of HCC
patients.4,5

It is estimated that HCC recurrence rates within 5 years
following hepatic resection currently approach 70%.6

Among them, two different types of HCC recurrence are
generally recognized using 1 year as the threshold of time
to recurrence after curative resection, namely early recur-
rence (ER) and late recurrence (LR).7 While LR can be
“de novo” tumors other from the original one, ER, which
occupies the main part of HCC recurrence, is presumed to
be “true recurrence” (pre-existing occult dissemination)
and is closely related to aggressive tumor characteristics
and worse prognosis in HCC patients.4,6,8,9 Thus, recog-
nizing HCC patients with high ER risk after curative hep-
atectomy is crucial for preoperative decision-making, per-
sonalization of follow-up strategies, economization of
medical resources, early detection of recurrent tumors,
timely postoperative intervention, and overall survival
improvement.

By integrating several clinicopathological characteristics
of HCC, numerous clinical staging systems and their mod-
ified models have been established, among which the TNM
staging system proposed by AJCC is one of the most widely
accepted tools for assessing the postoperative recurrence
and prognosis of HCC patients.10,11 However, in view of
the phenotypic and molecular heterogeneity of HCC, the
predictive accuracy of the TNM stage model for ER predic-
tion is unsatisfactory, indicating that conventional clinico-
pathologic evaluations (such as tumor size, number of nod-
ules, vascular invasion, lymph node metastasis, and distant
metastasis) regardless of HCC genetic characteristics no
longer meet the needs of clinical practice for postoperative
ER prediction in the era of precision medicine.4,12,13 To
date, gene-based prognostic models specifically designed
for ER prediction after curative hepatectomy have rarely
been reported. Thus, it is urgent and meaningful to construct
a gene-based prognostic model and explore that whether
combination of the TNM stage model with a gene-based
prognostic model could significantly enhance the predictive
accuracy for early HCC recurrence.

In this study, HCC patients with TNM stage I/II/IIIA
(7th edition) tumors, who were eligible to receive curative
hepatectomy as the initial treatment and were expected to
achieve long-term survival, were enrolled from two reli-
able public datasets (TCGA-LIHC and GSE76427). By
comprehensive bioinformatics and mathematical analyses,
we aimed to construct a genomic-clinicopathologic nomo-
gram for early HCC recurrence prediction by integrating
the TNM stage and a gene-based prognostic index, and
further determine its predictive accuracy compared with
that of the TNM stage model.

Materials and Methods

Data Preparation and Study Design

The clinical and mRNA-seq data (level 3) of the TCGA-LIHC
dataset (Illumina HiSeq RNA-seq platform), which included
377 primary liver cancer and 50 normal liver tissues, were
downloaded from the TCGA database. In addition, the clinical
information and mRNA profile data of 115 HCC and 52 nor-
mal liver tissues were also downloaded from the GSE76427
dataset (Illumina HT-12 V4.0 platform) in the GEO database.
The inclusion criteria of this study were as follows: (1) pa-
tients with pathological diagnosis of HCC; (2) patients with
complete mRNA profile and follow-up data; (3) patients with
TNM stage I (T1N0M0)/II (T2N0M0)/IIIA (T3aN0M0) tu-
mors (7th edition); and (4) patients receiving curative resec-
tion with tumor-negative margins (R0 resection) as the initial
treatment. Thus, 142 patients in the TCGA dataset and 99
patients in the GSE76427 dataset were enrolled serving as
the training and the validation cohorts, respectively. The nor-
malization of the raw data was carried out by the R package
“edgeR” (TCGA-LIHC dataset) or R package “lumi”
(GSE76427 dataset), and the normalized expression data were
log2-transformed. During the modeling process, the Z-score
was further calculated as the relative gene expression level in
HCC tissues for each selected gene to normalize the datasets
obtained from different platforms. As shown in Fig. 1, the
study design was briefly described in the flowchart.

Gene Selection and Construction of the Gene-Based
Model

First, genes significantly related to recurrence-free survival
(RFS) (P < 0.05) in the TCGA training cohort were screened
out by univariate Cox regression analysis using the R package
“survival.” Meanwhile, genes significantly related to RFS in
the GSE76427 dataset were also screened out as a validation
cohort. RFS was defined as the time from the date of initial
hepatectomy to the date of (intra- or extrahepatic) recurrence
or last follow-up. Next, by overlapping analysis, the common
prognostic genes of the two cohorts were retained for further
differential expression analysis. Besides comparing the
mRNA expression levels of the genes between the HCC tis-
sues and normal controls, the gene expressions at the protein
levels were also assessed by using the immunohistochemical
(IHC) staining data in the Human Protein Atlas (HPA) data-
base (Protein Atlas version 19) (http://www.proteinatlas.
org).14 Only those genes that were differentially expressed at
both the mRNA and protein levels in the two cohorts were
retained for further analysis. Then, by using the R package
“glmnet”, LASSO-penalized Cox regression analysis was
conducted using the TCGA dataset to select the best genes
for modeling. The best gene group for modeling was chosen
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based on the 10-fold cross-validation and lambda.min.
Finally, the best prognostic genes were included in the multi-
variate Cox regression analysis to obtain their coefficients (β
values) using the TCGA dataset. The prognostic index formu-
la was as follows: prognostic index = (β1 × Z-score of gene1)-
+ (β

2
× Z-score of gene2) + ... + (βn × Z-score of genen). Thus,

a gene-based prognostic index model was successfully con-
structed using the TCGA dataset.

Establishment and Validation of a Predictive
Nomogram

According to the results of multivariate Cox analyses, all the
independent risk factors associated with RFS were included to
establish a predictive nomogram using the R package “rms.”
The performance of the nomogram was comprehensively
evaluated. First, calibration plots were generated to visualize
the consistency between the actual probability of 1-year RFS
and the nomogram-predicted probability of 1-year RFS. In

addition, the concordance index (C-index) was calculated to
mathematically judge the predictive accuracy. Besides, time-
dependent receiver operating characteristic (ROC) curve anal-
ysis was conducted to measure the accuracy by calculating the
area under the curve (AUC) using the R package
“survivalROC.” Moreover, to judge the clinical application
value, decision curve analysis (DCA) was also carried out
with the R package “rmda.”

Gene Set Enrichment Analysis

To explore the potential cancer-associated pathways significant-
ly related to the high risk of early HCC recurrence as defined by
the gene-based prognostic index, gene set enrichment analysis
(GSEA) (reference gene sets: c2.cp.kegg.v6.0.symbols.gmt)
was performed using mRNA-seq data from the TCGA dataset.
The normalized enrichment score was calculated, and the gene
set was regarded as significantly enriched unless the normalized
p value was < 0.05 and false discovery rate q-value was < 0.05.

Fig. 1 The flowchart describing
the process of construction and
validation of the genomic-
clinicopathologic nomogram
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Statistical Analysis

Continuous variables in the different groups were compared
by the Student’s t test or Mann-Whitney test based on the
results of normality test and homogeneity test of variances.
Categorical variables in the TCGA cohort and the
GSE76427 cohort were assessed by Pearson’s chi-square test.
X-tile 3.6.1 was used to calculate the optimal threshold for
grouping (high/low group) based on the Kaplan-Meier (KM)
method for RFS.15 The RFS between two groups was com-
pared by KM analysis and the log-rank test. The independent
prognostic factors for RFS were identified by Cox regression
analysis, and hazard ratios (HRs) with 95% confidence inter-
vals (CIs) were obtained. Statistical analyses were conducted
with R version 3.4.2 and SPSS 22.0, and a two-tailed p value
< 0.05 was considered to be statistically significant.

Results

The Clinicopathological Characteristics of the Training
Cohort and the Validation Cohort

According to the strict inclusion criteria mentioned above, a
total of 142 patients in the TCGA dataset and 99 patients in the
GSE76427 dataset were finally enrolled in this study serving
as the training cohort and validation cohort respectively. As
shown in Table 1, the median follow-up time was 16.2 months
(interquartile range (IQR), 8.7–34.6 months) in the TCGA
training cohort and 9.1 months (IQR, 1.8–20 months) in the
GSE76427 validation cohort. In addition, except for patient
age (P < 0.05), no significant difference was detected between
the two cohorts for the other variables, including patient gen-
der, TNM stage, or recurrence status (all P > 0.05), suggesting
that GSE76427 cohort could serve as a reliable reference for
the TCGA training cohort.

Construction of Gene-Based Prognostic Index Model

Using the methods mentioned above, the optimal prognostic
gene group for modeling was obtained, which including
ZNF131 (zinc finger protein 131), TATDN2 (TatD DNase
domain containing 2), TXN (thioredoxin), DDX55 (DEAD
(Asp-Glu-Ala-Asp) box polypeptide 55), KPNA2
(karyopherin alpha 2), ZNF30 (zinc finger protein 30),
TIMELESS (timeless circadian clock), SFRP1 (secreted
frizzled-related protein 1), and COLEC11 (collectin sub-
family member 11) (Fig. 2). Based on the optimal thresholds
of the expression of the nine genes at the mRNA level, KM
analyses confirmed that HCC patients with high expression of
ZNF131, TATDN2, TXN, DDX55, KPNA2, ZNF30, and
TIMELESS or with low expression of COLEC11 and
SFRP1 were significantly more likely to have poor RFS in

both the TCGA cohort and GSE76427 cohort (Fig. 3).
Furthermore, differential expression analyses verified that
the nine prognostic genes were significantly dysregulated at
the mRNA level in HCC tissues relative to normal controls,
including the 7 upregulated genes (ZNF131, TATDN2, TXN,
DDX55, KPNA2, ZNF30, and TIMELESS) and the 2 down-
regulated genes (SFRP1 and COLEC11) (all P < 0.05)
(Fig. 4). Consistent with the mRNA expression data, the
dysregulations of these molecules at the protein level in
HCC were also identified using the IHC data in HPA database
(Supplementary Fig. 1). In addition, the clinical implications
of the nine dysregulated genes were also explored using the
TCGA dataset, and the results are shown in Supplementary
Table 1. By performing multivariate Cox regression analysis
using the TCGA dataset, the coefficients of the nine mRNA
signatures were calculated, and the formula of the gene-based
prognostic index model was as follows: prognostic index =
(0.460 × Z-score of ZNF131) + (0.437 × Z-score of
TATDN2) + (0.218 × Z-score of TXN) + (0.119 × Z-score of
DDX55) + (0.099 × Z-score of KPNA2) + (0.050 × Z-score of
ZNF30) + (0.012 × Z-score of TIMELESS) + (− 0.033 × Z-
score of SFRP1) + (− 0.142 × Z-score of COLEC11). We fur-
ther defined two groups, namely, the early recurrence (ER)
group and the non-early recurrence (non-ER) group, in both
TCGA cohort and GSE76427 cohort. The ER group repre-
sented patients with early HCC recurrence, while the non-
ER group included patients without HCC recurrence who
were followed up for at least 1 year and patients with late
HCC recurrence. As shown in Fig. 5, the prognostic index in
the ER group was significantly higher than that in the non-ER
group (all P < 0.05), and the prognostic index showed a cer-
tain capability to discriminate early HCC recurrence in both
the training cohort (AUC = 0.7759, P < 0.05) and validation
cohort (AUC = 0.8110, P < 0.05).

Identification of the Prognostic Value
of the Gene-Based Prognostic Index

First, the patients enrolled in the TCGA training cohort and
the GSE76427 validation cohort were severally split into
high or low risk of recurrence groups according to the best
cut-off values of the gene-based prognostic index. By gen-
erating KM survival curves, we observed that HCC patients
in the high-risk group had significantly worse RFS than pa-
tients in the low-risk group in both cohorts (all P < 0.05).
Importantly, the subgroup analyses based on TNM stage
indicated that the prognostic value of the prognostic index
was independent of the TNM stage (all P < 0.05) (Fig. 6). To
more precisely identify the independent prognostic value of
the gene-based prognostic index, Cox regression analyses
were conducted using the TCGA dataset with the intact clin-
ical data. As shown in Table 2, the prognostic index, TNM
stage and microvascular invasion were significantly
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associated with RFS of HCC patients in univariate Cox re-
gression analyses. The following multivariate analysis fur-
ther verified that the prognostic index (HR = 2.820 (2.005,
3.968), P < 0.001) was an independent predictor of poor
RFS of HCC patients by fully considering all potential prog-
nostic factors detected in the univariate analyses.

Functional Enrichment Analysis

GSEA was conducted to identify the potential biological
pathways related to the nine gene signatures using the
TCGA dataset. As shown in Supplementary Fig. 2, a total
of 8 KEGG signaling pathways were significantly

Table 1 The clinicopathological
characteristics of the HCC
patients in the TCGA training
cohort and GSE76427 validation
cohort

Variables Training cohort Validation cohort P value*
N = 142 (%) N = 99 (%)

Median follow-up (months) (IQR) 16.2 (8.7–34.6) 9.1 (1.8–20.0)

Age (year) 0.024

< 65 95 (66.9) 52 (52.5)

≥ 65 47 (33.1) 47 (47.5)

Gender 0.159

Male 102 (71.8) 79 (79.8)

Female 40 (28.2) 20 (20.2)

TNM stage (7th edition) 0.102

I (T1N0M0) 94 (66.2) 52 (52.5)

II (T2N0M0) 35 (24.6) 34 (34.4)

IIIA (T3aN0M0) 13 (9.2) 13 (13.1)

Histologic grade

G1-G2 70 (49.3) –

G3-G4 72 (50.7) –

Ishak score

0–4 53 (37.3) –

5–6 47 (33.1) –

Unknown 42 (29.6) –

Child-Pugh grade

A 117 (82.4) –

B 7 (4.9) –

Unknown 18 (12.7) –

AFP

Negative 73 (51.4) –

Positive 60 (42.3) –

Unknown 9 (6.3) –

Hepatitis B/C infection

No 45 (31.7) –

Yes 87 (61.3) –

Unknown 10 (7.0) –

MVI

No 99 (69.7) –

Yes 38 (26.8) –

Unknown 5 (3.5) –

Recurrence status 0.755

No 76 (53.5) 55 (55.6)

Yes 66 (46.5) 44 (44.4)

ER 38 (26.8) 19 (19.2)

LR 28 (19.7) 25 (25.2)

*Statistically significant P values are given in italics, P < 0.05

IQR, interquartile range; AFP, alpha fetoprotein; MVI, microvascular invasion; ER, early recurrence; LR, late
recurrence
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enriched in the high-risk group, including “cell cycle”,
“DNA r e p l i c a t i o n ” , “ b a s e e x c i s i o n r e p a i r ” ,
“spliceosome”, “nucleotide excision repair”, “RNA degra-
dation”, “homologous recombination”, and “p53 signaling
pathway” (all P < 0.05).

Establishment and Validation
of a Genomic-Clinicopathologic Predictive Nomogram

To develop a model with clinical application value for
predicting the ER of HCC after curative resection, a

Fig. 3 Kaplan-Meier survival analyses of the nine genes in both the TCGA training cohort and GSE76427 validation cohort

Fig. 2 Selection of the optimal genes for modeling by LASSO-penalized Cox regression analysis. a The optimal gene group was chosen by 10-fold
cross-validation and lambda.min; b LASSO coefficient profile of the genes
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genomic-clinicopathologic predictive nomogram (combined
model) was established by integrating the gene-based prog-
nostic index and the TNM stage, which were recognized as
independent risk factors of RFS in the multivariate Cox re-
gression model (Table 2 and Fig. 7a). Internal validation was
comprehensively performed in the TCGA training cohort.
First, calibration plots were generated that exhibited high con-
sistency between the actual proportion of 1-year RFS and the
nomogram-predicted probability of 1-year RFS (Fig. 7b). In
addition, the C-index of the combined model for RFS predic-
tion was 0.743 (0.673–0.813), which was remarkably im-
proved compared with that of the TNM stage model (C-index,
0.598 (0.533–0.663)) (P < 0.001). In addition, the predictive
accuracy of the nomograms was further assessed by time-
dependent ROC curves and the combined model had an ob-
viously larger AUC than that of the TNM stage model (1-year
AUC, 0.803 vs 0.627) (Fig. 7c). Moreover, to visually evalu-
ate the clinical application value of the nomograms, DCA
curves were further generated. The combinedmodel displayed
a significantly higher net benefit than that of the TNM stage
model (Fig. 7d).

The following validation was carried out using the
GSE76427 validation cohort. In line with the results described
above, calibration plots also showed that the prediction of the

combined model was in excellent accordance with the actual
observations in terms of the probability of 1-year RFS (Fig.
7e). In addition, the C-index of the combined model for RFS
prediction was 0.716 (0.632–0.800), which was also superior
to that of the TNM stage model (C-index, 0.562 (0.465–
0.659)) (P < 0.001). Furthermore, time-dependent ROC
curves and DCA curves still showed that the combined model
had an obviously larger AUC (1-year AUC, 0.804 vs 0.602)
and a higher net benefit than that of the TNM stage model
(Fig. 7f, g).

Discussion

Along with the increasing importance of mechanism research
on ER after hepatectomy, several molecular biomarkers relat-
ed to early HCC recurrence have been identified, such as
NUF2 (NUF2, NDC80 kinetochore complex component),
ECT2 (epithelial cell transforming 2), PRC1 (protein regulator
of cytokinesis 1), EDIL3 (EGF-like repeats and discoidin I-
like domains 3), FLNA (filamin A, alpha), AKR1B10 (aldo-
keto reductase family 1, member B10 (aldose reductase)),
CKAP2 (cytoskeleton associated protein 2), and
KIAA0101.16–23 Nevertheless, the specificity and sensitivity

Fig. 4 Differential expression analyses of the nine genes at the mRNA level. 7 upregulated genes (ZNF131, TATDN2, TXN, DDX55, KPNA2, ZNF30,
and TIMELESS) (a–g) and 2 downregulated genes (SFRP1 and COLEC11) (h, i) were identified in HCC tissues relative to normal liver tissues (NT)
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of the individual biomarkers alone were insufficient to accu-
rately predict postoperative ER in HCC patients, suggesting

that it might be necessary to integrate multiple gene signatures
into a single model or combine biomarkers with

Fig. 5 Comparison of the
prognostic index between the ER
group and the non-ER group, and
validation of its discrimination for
ER using the ROC curves in both
the training (a, b) cohort and val-
idation cohort (c, d)

Fig. 6 Kaplan-Meier survival analyses of the gene-based prognostic index using the X-tile optimal cut-off points, and its subgroup analyses based on
TNM stage both in the training (a–c) and validation cohorts (d–f)
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clinicopathologic factors to enhance the ER predictive accu-
racy. The RFS-related gene sets for HCC identified in some
key previous studies have been properly summarized in the
Supplementary Table 2, which might contribute to future stud-
ies exploring the molecular mechanisms of HCC recurrence.

To the best of our knowledge, multigene-based prognostic
models or combined models specifically designed for postop-
erative ER prediction have rarely been reported. In the last few
decades, a 20-gene-based model established by Kurokawa
et al., a 172-gene-based model established by Yoshioka
et al., and a 6-gene-based model established by Yuan et al.
have been reported sequentially as earlier attempts to compre-
hensively examine the molecular heterogeneity of ER and
predict ER in HCC patients following hepatectomy at the
molecular level.24–26 However, it is undeniable that the limi-
tations of those studies are obvious from the current perspec-
tive, such as their relatively small sample sizes, unreasonable
or inaccurate selection of the best genes for modeling (by
simply selecting the top predictive genes or including all the
DEGs), a lack of comprehensive evaluations of the predictive
accuracy or clinical application value, and a lack of compara-
tive studies with reference to existing clinical staging systems.
Recently, consistent with our views, a 24-mRNA-based pre-
dictive model for ER was proposed by Cai et al. by data
mining of the GEO and TCGA datasets, which relatively
avoided the deficiencies mentioned above and displayed good
discrimination and clinical usefulness.5 The achievements of
this study should be recognized, as well as its specific limita-
tions. First, the DEGs between HCC tissues and normal con-
trols included in the model were only identified at the mRNA
expression level without verification at the protein level. In
addition, the sequencing platforms of the 13 datasets were
varied and proper normalization of the raw data among the

different platforms was not performed. Furthermore, the 24-
mRNA-signature-integrated nomogram was just constructed
and internally validated using the GSE14520 dataset without
external validation in the TCGA dataset. Finally, the inclusion
criteria of the HCC patients in the study were disputable, such
as the undefined edition of TNM staging system, the patients
with advanced stage (TNM IIIB/IIIC) and the patients receiv-
ing hepatectomy with tumor-positive margins (R1 resection).
As we all know, the HCC patients with portal/hepatic vein
invasions (T3b) or adjacent organ invasions (T4) were not
highly recommended to receive resection according to
AASLD and EASL guidelines because of the high rate of
postoperative recurrence and poor long-term survival.27–29

And palliative resection with a positive residual tumor margin
was an important confounding factor in terms of aiming to
specifically explore the molecular mechanisms of ER and
construct a prognostic model for ER prediction following cu-
rative hepatectomy.30 Therefore, a powerful genomic-
clinicopathologic model specifically designed to predict ER
for HCC patients who are eligible for receiving curative re-
section (R0 resection) as initial treatment and who are expect-
ed to achieve long-term overall survival is still highly
anticipated.

In this study, two reliable datasets (TCGA-LIHC and
GSE76427), both with large sample sizes and based on the
Illumina platform, were selected for data mining. And 142
patients in TCGA-LIHC dataset and 99 patients in
GSE76427 dataset with TNM stage I/II/IIIA tumors and re-
ceiving R0 resection were finally included serving as the train-
ing and validation cohorts, respectively. Before screening the
best genes for modeling, proper normalization of the raw data
among the two datasets was performed to eliminate the influ-
ence of differences in the platforms. Importantly, the strategy

Table 2 Cox proportional hazard regression model analyses of recurrence-free survival in the TCGA training cohort

Variables Univariate analysis Multivariate analysis

HR (95%CI) P value* HR (95%CI) P value*

Prognostic index 2.719 (1.934, 3.821) < 0.001 2.820 (2.005, 3.968) < 0.001

Age (≥ 65 vs < 65) 1.008 (0.606, 1.678) 0.975 – –

Gender (female vs male) 1.266 (0.753, 2.129) 0.374 – –

TNM stage (II vs I) 1.901 (1.101, 3.285) 0.021 1.206 (0.627, 2.318) 0.575

(IIIA vs I) 2.939 (1.338, 6.456) 0.007 3.608 (1.603, 8.120) 0.002

Histologic grade (G3-G4 vs G1-G2) 1.289 (0.789, 2.104) 0.311 – –

Ishak score (5–6 vs 0–4) 1.314 (0.753, 2.292) 0.336 – –

Child-Pugh grade (B-C vs A) 0.473 (0.112, 2.001) 0.309 – –

AFP (positive vs negative) 1.189 (0.722, 1.959) 0.497 – –

Hepatitis B/C infection (yes vs no) 0.785 (0.459, 1.342) 0.376 – –

MVI (yes vs no) 1.805 (1.055, 3.090) 0.031 1.691 (0.897, 3.188) 0.104

*Statistically significant P values are given in italics, P < 0.05

HR, hazard ratio; CI, confidence interval; AFP, alpha fetoprotein; MVI, microvascular invasion
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of selecting the optimal genes for modeling was rigorous in
this study and the statistical approaches were reasonable and
advanced, such as overlapping analysis for mutual confirma-
tion, identification of DEGs at both mRNA and protein levels,
LASSO analysis for selecting optimal gene group and multi-
variate Cox regression analysis for calculating coefficients.
Thus, nine dysregulated and prognostic genes related to ER
(ZNF131, TATDN2, TXN, DDX55, KPNA2, ZNF30,
TIMELESS, SFRP1, and COLEC11) were identified and the

9-gene-based prognostic index model was successfully con-
structed. The subsequent assessments further showed that the
9-gene-based prognostic index not only had a certain ability to
discriminate the ER group from the non-ER group but also
was an independent prognostic indicator of poor early-RFS.

It has been reported that the nine genes integrated in the
gene-based prognostic index act as either oncogenes or anti-
oncogenes involved in the development and progression of
several cancers. For example, ZNF131 overexpression in

Fig. 7 Establishment and validation of the predictive nomogram. The
genomic-clinicopathologic nomogram for postoperative ER prediction
in HCC patients (a); the calibration curves, the time-dependent ROC

curves and the DCA curves of the nomogram for predicting 1-year RFS
in both the training cohort (b–d) and validation cohort (e–g)
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glioblastoma could promote the mitotic spindle integrity and
viability of glioblastoma stem-like cells.31 Upregulation of
TATDN2 was an independent risk factor of prostate cancer
recurrence.32 DDX55 was involved in RNA metabolism and
was regarded as a molecular signature associated with liver
metastasis in human colon carcinoma.33,34 ZNF30 was iden-
tified as an upregulated gene in prostate cancer mainly caused
by chromosomal gain (19q13.11).35 Downregulation of
COLEC11 was associated with the prognosis of esophageal
cancer and the metastasis of ovarian serous papillary
carcinomas.36,37 Importantly, in line with our results, the roles
of TXN, KPNA2, TIMELESS, and SFRP1 in HCC have been
identified in previous studies. TXN, a redox-sensitive protein,
was overexpressed in HCC tissues and associated with unfa-
vorable OS in HCC patients, while silencing TXN in HCC
cells could significantly induce cell senescence.38,39 KPNA2
upregulation was correlated with carcinogenic progression
and unfavorable OS and RFS in HCC, and it could accelerate
cell cycle progression by increasing CCNB2/CDK1
expression.40–42 Overexpression of TIMELESS might play a
protumorigenic role in HCC via interacting with CHEK2 and
EEF1A2.43 As a vital antagonist of the Wnt signaling path-
way, SFRP1 was frequently downregulated in HCC due to
promoter hypermethylation, which was associated with the
angiogenesis, tumor growth, and poor prognosis in
HCC.44–46 In addition, the significant correlations between
the expression of the dysregulated genes (such as KPNA2,
TIMELESS, TXN, DDX55, and SFRP1) and the underlying
liver diseases (such as liver fibrosis/cirrhosis and hepatitis b/c
infection) or other important clinicopathological characteris-
tics (such as histologic grade and serum AFP levels) of HCC
patients also highlighted the key involvement of these genes
in the development and progression of HCC. Moreover, by
performing GSEA based on the risk stratification of the prog-
nostic index, the potential biological pathways related to the
nine dysregulated and prognostic genes in HCC were further
identified in this study, such as “cell cycle”, “DNA replica-
tion”, “base excision repair”, “spliceosome”, “nucleotide ex-
cision repair”, “RNA degradation”, “homologous recombina-
tion”, and “p53 signaling pathway”, which would contribute
to the understanding of the underlying biological mechanisms
of ER following curative hepatectomy and the development of
novel target therapies in the future.

Nomogram is a convenient, visual, and powerful tool wide-
ly applied for precise prognosis assessment in cancer patients.
In this study, a genomic-clinicopathologic nomogram for ER
prediction after curative resection was established by integrat-
ing the 9-gene-based prognostic index and the TNM stage,
which were identified as prognostic indicators of poor early-
RFS using the TCGA dataset. The combined model displayed
significantly higher predictive accuracy than that of TNM
stage model, which were comprehensively evaluated by gen-
erating calibration curves, calculating the C-index (0.743 vs

0.598) and performing time-dependent ROC curve analyses
(1-year AUC, 0.803 vs 0.627). Following DCA also con-
firmed the higher clinical application value of the genomic-
clinicopathologic nomogram compared with that of the TNM
stage model. Importantly, subsequent validation by using the
GSE76427 cohort further verified the good calibration, dis-
crimination (C-index, 0.716 vs 0.562; 1-year AUC, 0.804 vs
0.602) , and cl inical usefulness of the genomic-
clinicopathologic nomogram with reference to the TNM stage
model. Thus, in view of the good performance of the
genomic-clinicopathologic nomogram for postoperative ER
prediction, the combined model might provide necessary
guidance for preoperative or postoperative decision-making.
On the one hand, the accurate risk stratification of ER based
on preoperative needle biopsy and molecular diagnosis could
guide the optimal choice of treatments (such as local ablation,
resection, transplantation, TACE or systemic therapy). On the
other hand, effective risk stratification of ER after surgery
would contribute to the optimization of postoperative surveil-
lance strategies (such as the monitoring time interval and ap-
propriate application of imaging examinations), the early de-
tection of tumor recurrence and timely adjuvant treatment
(such as re-resection, ablation and systemic therapy), which
may effectively improve the long-term overall survival of
HCC patients.

Conclusions

In conclusion, the genomic-clinicopathologic nomogram
established by integrating the 9-gene-based prognostic in-
dex and the TNM stage exhibited higher predictive accura-
cy and clinical application value for ER prediction after
curative hepatectomy (R0 resection) than that of the con-
ventional TNM staging system. This nomogram may be a
powerful and convenient tool for ER risk stratification to
help clinicians choose the optimal treatments based on pre-
operative biopsy or develop personalized strategies of post-
operative surveillance and adjuvant therapy for patients
with resectable HCC.
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