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Abstract
Background Surgical resection is the only potentially curative treatment for patients with colorectal, liver, and pancreatic cancers.
Although these procedures are performed with low mortality, rates of complications remain relatively high following
hepatopancreatic and colorectal surgery.
Methods The American College of Surgeons (ACS) National Surgical Quality Improvement Program was utilized to identify
patients undergoing liver, pancreatic and colorectal surgery from 2014 to 2016. Decision tree models were utilized to predict the
occurrence of any complication, as well as specific complications. To assess the variability of the performance of the classifica-
tion trees, bootstrapping was performed on 50% of the sample.
Results Algorithms were derived from a total of 15,657 patients who met inclusion criteria. The algorithm had a good predictive
ability for the occurrence of any complication, with a C-statistic of 0.74, outperforming the ASA (C-statistic 0.58) and ACS-
Surgical Risk Calculator (C-statistic 0.71). The algorithm was able to predict with high accuracy thirteen out of the seventeen
complications analyzed. The best performance was in the prediction of stroke (C-statistic 0.98), followed by wound dehiscence,
cardiac arrest, and progressive renal failure (all C-statistic 0.96). The algorithm had a good predictive ability for superficial SSI
(C-statistic 0.76), organ space SSI (C-statistic 0.76), sepsis (C-statistic 0.79), and bleeding requiring transfusion (C-statistic 0.79).
Conclusion Machine learning was used to develop an algorithm that accurately predicted patient risk of developing complica-
tions following liver, pancreatic, or colorectal surgery. The algorithm had very good predictive ability to predict specific
complications and demonstrated superiority over other established methods.
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Introduction

Surgical resection is the only potentially curative treatment for
patients with colorectal, liver, and pancreatic cancers.
Although these procedures are now performed with very
low mortality, the incidence of complications remains high
following hepatopancreatic (HP) or colorectal surgery123

Postoperative complications are deleterious events for pa-

tients, impacting perioperative mortality, cancer recurrence,
patient-reported experiences, and hospital costs4,5,6,7 For ex-
ample, Silber et al. demonstrated that the development of a
complication after surgery, even seemingly mild ones, may
markedly alter the patient’s long-term prognosis, and risk of
death.8 Among patients with cancer, the development of post-
operative complications has been independently associated
with worse recurrence-free survival (RFS) and overall surviv-
al (OS)9,10 In addition, our group has demonstrated that com-
plications interact in a synergistic manner among patients who
develop more than one complication, increasing the risk of
death exponentially, rather than in an additive way.11

Moreover, postoperative complications result in increased
length of hospital stay (LOS), which translates into increased
hospital costs and a higher financial burden for patients12,13,14
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Accurately predicting the risk of a postoperative complica-
tion is important for appropriate patient selection prior to sur-
gery, for guiding perioperative decision-making, determining
the necessary level of vigilance in the postoperative period, as
well as directing early interventions. A number of risk strati-
fication and predictive tools have been proposed to stratify a
patient’s risk of postoperative morbidity and mortality, such as
the American College of Surgeons Surgical Risk Calculator
(ACS-SRC), American Society of Anesthesiologists (ASA)
score, and the Physiologic and Operative Severity Score for
the Enumeration of Mortality and Morbidity (POSSUM)
score15,16,17 Nevertheless, these predictive tools are subjective
and have only a moderate predictive ability with limited clin-
ical applicability18,19,20 In addition, these predictive tools and
risk calculators were developed based on the premise that the
variables in the models interact in a linear and additive fash-
ion. In clinical reality, however, the interaction between co-
morbidities and physiological factors may not be exactly
linear.21 Instead, a patient’s risk for developing complications
after a surgical procedure is multifactorial. Specifically, pre-
operative general health, physiologic capacity to withstand the
surgical insult, type of anesthesia, and type of surgery all need
to be factored into the equation. In turn, certain variables in a
risk prediction model might gain or lose significance depend-
ing on the absence or presence of other factors.

Machine-learning techniques have been gaining popularity
in the field of medicine as a more comprehensive, “non-line-
ar”, and accurate method to predict patient outcomes.22 In
particular, decision-tree algorithms, which sort through a vast
number of variables looking for combinations that reliably
predict outcomes, may be superior to the classic “linear” pre-
dictive tools currently used by clinicians for patient
prognostication23,24 To this end, the objective of the current
study was to develop a machine-learning algorithm to predict
the risk of postoperative complications following liver, pan-
creatic, and colorectal surgery using a large, national database.

Methods

Data Sources and Study Population

The American College of Surgeons National Surgical Quality
Improvement Program (ACS-NSQIP) database is the largest,
most reliable, and best-validated database in surgery25,26,27

Using the ACS-NSQIP participant use data file (PUF), pa-
tients who underwent hepatic, pancreatic, and colorectal sur-
gery between 2014 and 2016 were identified. Information in
the final dataset included preoperative comorbidities and peri-
operative clinical variables, as well as 30-day postoperative
complications and mortality. Patients who underwent emer-
gency surgery and individuals who were younger
than 18 years of age were excluded. The analyses were

performed on complete cases only; patients with missing data
on the variables used to develop the algorithm were excluded.

Development of the Machine Learning-Based
Decision-Tree Learning Algorithm and Statistical
Analyses

Variables associated with preoperative patient characteristics
were used to design the models, while variables representing
postoperative complications were considered as dependent
variables. The seventeen outcomes of interest included inci-
dence of superficial surgical site infection (SSI), deep
incisional SSI, pulmonary embolism, organ space SSI, sepsis,
wound dehiscence, urinary tract infection, deep vein throm-
bosis, myocardial infarction, pneumonia, unplanned intuba-
tion, stroke, cardiac arrest, septic shock, bleeding requiring
transfusion, progressive renal insufficiency, and use of venti-
lator for > 48 h.

Classification trees were constructed to create decision tree
models to predict the occurrence of any complication in addi-
tion to the occurrence of specific complications (Appendix
1).28 Classification tree learning is a common machine learn-
ing approach to classify patients into distinct groups with dis-
tinct outcomes. The algorithm iteratively dichotomizes pa-
tients until an end node is reached. Variables used to construct
the tree may be used more than once and variables closer to
the top of the tree (also known as “root node”) tend to have
more clinical significance than those closer to the end nodes
(also known as “leaves”).

The performance of the decision-tree learning algorithm to
predict any 30-day postoperative complication, as well as each
of the postoperative complications was measured by the C-
statistic, also known as the area under the curve (AUC) and
was obtained utilizing logistic regression.29 TheC-statistic is a
measure of concordance between model-based risk estimates
and observed events, which has been used as a measure of
model performance in several prior risk prediction models.30

The classification tree grouped patients into distinct end nodes
and provided an estimate for the probability of a complication.
As such, each patient was assigned a probability of complica-
tion, and that value was used as the sole predictor in a logistic
regression to assess the predictive performance of the algo-
rithm. To assess the variability of the performance of the clas-
sification trees, bootstrapping was performed on 50%
samples.31 Bootstrapping is a statistical method in which mul-
tiple subsamples of the original population are taken, and sta-
tistical analyses are applied to each subsample in an effort to
more accurately assess the variability of parameter estimates.
To compare the performance of the current algorithm to the
ASC-SRC, the prediction of morbidity included in the ACS-
NSQIP data under the MORBPROB field was utilized.

Descriptive statistics for baseline characteristics were pre-
sented as median (interquartile range [IQR]) and frequency
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(%) for continuous and categorical variables, respectively. To
assess differences among baseline characteristics relative to
the type of surgical procedure, Kruskal-Wallis one-way anal-
ysis of variance and chi-squared tests were used for continu-
ous and categorical variables, respectively. All analyses were
preformed using SAS v9.4.

Results

The comprehensive decision-tree learning algorithms were
derived out of a total of 15,657 patients undergoing
hepatopancreatic (HP) and colorectal surgery who met inclu-
sion criteria. In total, 685 patients who underwent hepatic
surgery, 6012 who underwent pancreatic surgery, and 8960
who underwent colorectal surgery were included. The base-
line characteristics of patient cohort utilized for the algorithm
development are described in Table 1. Among patients includ-
ed in the study who had a liver resection, 54.9% (n = 376) had
a postoperative complication, whereas 52.3% (n = 3142) and
28.5% (n = 2555) of patients who underwent a pancreatic and
colorectal surgery, respectively, developed a complication fol-
lowing surgery (p < 0.001).

Thirty-Day Postoperative Morbidity and 30-Day
Individual Postoperative Complications

The decision-tree algorithm for the occurrence of any compli-
cation within 30 days following a liver, pancreatic, or colorec-
tal resection is depicted in Fig. 1. The algorithm had good
predictive ability for the occurrence of any complication, with
a c-statistic of 0.74, outperforming the ASA (c-statistic 0.58)
and providing similarly strong results as the ACS-SRC (c-
statistic 0.71).

The algorithm predicted the occurrence of specific 30-day
postoperative complications with a good to extremely high
accuracy (c-statistic range from 0.76 to 0.98) (Table 2). The
algorithm was also able to predict with high accuracy (c-sta-
tistic > 0.8); thirteen out of the seventeen postoperative com-
plications analyzed. The best performance was in the predic-
tion of a stroke (c-statistic 0.98), followed by wound dehis-
cence, cardiac arrest, and progressive renal failure (all c-sta-
tistic 0.96). The algorithm had a good predictive ability (c-
statistic > 0.7) for other outcomes such as superficial SSI (c-
statistic 0.76), organ space SSI (c-statistic 0.76), sepsis (c-
statistic 0.79), and bleeding requiring transfusion (c-statistic
0.79).

Fig. 1 depicts the decision-tree algorithm for the calculation
of the risk to develop any complication after HP or colorectal
surgery. Figure 2 depicts the top of the decision-tree that dis-
plays the root node (node zero). The first split in the tree is
between the types of surgical procedure, which were catego-
rized by the algorithm as HP and colorectal, highlighting the

distinction between the procedure types and allowing for the
remainder of the tree to be procedure-specific. Following pro-
cedure type, the next variable sorted by the algorithm was
patient hematocrit. Subsequently, the decision-tree defined
different “questions” depending on the response to the previ-
ous question, and the direction was determined by successive
individual responses based on the machine learning algorithm.
For example, in Fig. 2, the third variable analyzed by the
algorithm was “albumin” for patients undergoing colorectal
surgery with a hematocrit lower than 32.2 g/dl, while for pa-
tients undergoing colorectal surgery with a hematocrit higher
than 32.2 g/dl the next variable analyzed was the surgical
approach. Of note, the optimal cutoff values for each contin-
uous variable introduced in the decision-tree were determined
by the machine-based learning algorithm itself. Unique
decision-tree nodes were developed for each patient as differ-
ent values or responses were introduced, until a final individ-
ual risk was generated.

Discussion

Machine learning is a subfield of artificial intelligence com-
prising a wide variety of data-driven methods and algorithms
that use historical data for acquiring knowledge and making
predictions or inferences on new data25,32 These algorithms
have the ability to learn and improve its own performance
with time, allowing predictions to become increasingly more
accurate as the model is exposed to more information. The
application of machine-learning methodologies is relatively
new in medicine, and there remains a substantial unfamiliarity
around its utility in healthcare. Among the numerous possible
applications, machine-learning techniques can be applied to
large clinical datasets for the development of robust risk
models. To this point, the current study was important because
it developed a machine-learning algorithm to predict the risk
of postoperative complications following HP and colorectal
surgery. The algorithm developed in the current study demon-
strated a good ability to predict patient risk of developing any
complication following HP and colorectal surgery,
outperforming the ASC-SRC and the ASA score. In addition,
the accuracy of the algorithm was extremely high for the vast
majority of the specific complications analyzed, with the c-
statistics ranging from 0.76 for superficial SSI and organ
space SSI to 0.98 for stroke.

Although the practical application of machine learning
techniques to the medical field has been relatively limited
compared with other fields, in recent years an increasing num-
ber of studies have proposed the utilization of machine learn-
ing algorithms for different purposes. For example, Zhao et al.
used machine learning to develop an accurate predictive mod-
el for case duration of robotic-assisted surgery in order to
increase utilization of robotic units during block time.33 In a
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Table 1 Preoperative characteristics of patients undergoing colorectal, liver, and pancreatic surgery who met the inclusion criteria

Preoperative characteristics Total N = 15,657 Liver N = 685 Pancreas N = 6012 Colorectal N = 8960 p value

Age (median, IQR) 66 (57, 75) 65 (57, 72) 66 (58, 73) 66 (56, 76) < 0.001

ASA class < 0.001

1 104 (0.7%) 2 (0.3%) 19 (0.3%) 83 (0.9%)

2 3927 (25.1%) 158 (23.1%) 1274 (21.2%) 2495 (27.8%)

3 10,412 (66.5%) 478 (69.8%) 4365 (72.6%) 5569 (62.2%)

4 1210 (7.7%) 47 (6.9%) 354 (5.9%) 809 (9%)

5 4 (0%) 0 (0.0%) 0 (0.0%) 4 (0%)

Functional status < 0.001

Independent 15,222 (97.2%) 682 (99.6%) 5957 (99.1%) 8583 (95.8%)

Partially dependent 381 (2.4%) 3 (0.4%) 50 (0.8%) 328 (3.7%)

Totally dependent 54 (0.3%) 5 (0.1%) 0 (0.0%) 49 (0.5%)

Dyspnea < 0.001

At rest 57 (0.4%) 2 (0.3%) 11 (0.2%) 44 (0.5%)

Moderate exertion 1156 (7.4%) 32 (4.7%) 334 (5.6%) 790 (8.8%)

No 14,444 (92.3%) 651 (95%) 5667 (94.3%) 8126 (90.7%)

Clinical T stage < 0.001

T1 1598 (10.2%) 180 (26.3%) 618 (10.3%) 800 (8.9%)

T2 2603 (16.6%) 297 (43.4%) 920 (15.3%) 1386 (15.5%)

T3 9212 (58.8%) 162 (23.6%) 4104 (68.3%) 4946 (55.2%)

T4 2244 (14.3%) 46 (6.7%) 370 (6.2%) 1828 (20.4%)

Clinical N stage < 0.001

N0 7835 (50%) 489 (71.4%) 2460 (40.9%) 4886 (54.5%)

N1 6385 (40.8%) 184 (26.9%) 3552 (59.1%) 2649 (29.6%)

N2 1437 (9.2%) 12 (1.8%) 0 (0.0%) 1425 (15.9%)

Diabetes 1542 (9.8%) 46 (6.7%) 804 (13.4%) 692 (7.7%) < 0.001

Smoking 2443 (15.6%) 139 (20.3%) 1028 (17.1%) 1276 (14.2%) < 0.001

COPD 813 (5.2%) 35 (5.1%) 255 (4.2%) 523 (5.8%) < 0.001

Ascites 128 (0.8%) 5 (0.7%) 21 (0.3%) 102 (1.1%) < 0.001

CHF 224 (1.4%) 4 (0.6%) 24 (0.4%) 196 (2.2%) < 0.001

Hypertension 8648 (55.2%) 365 (53.3%) 3316 (55.2%) 4967 (55.4%) 0.54

Acute renal failure 39 (0.2%) 1 (0.1%) 8 (0.1%) 30 (0.3%) 0.045

CRF on dialysis 92 (0.6%) 1 (0.1%) 15 (0.2%) 76 (0.8%) < 0.001

Chronic steroid use 505 (3.2%) 21 (3.1%) 179 (3%) 305 (3.4%) 0.34

> 10% loss body weight* 1788 (11.4%) 62 (9.1%) 1030 (17.1%) 696 (7.8%) < 0.001

Bleeding disorder 720 (4.6%) 23 (3.4%) 205 (3.4%) 492 (5.5%)

Pre-operative transfusion 548 (3.5%) 6 (0.9%) 64 (1.1%) 478 (5.3%) < 0.001

Serum Na+ (median, IQR) 139 (137, 141) 139 (137, 141) 139 (137, 141) 139 (137, 141) < 0.001

BUN 14 (10, 18) 14 (11, 18) 14 (11, 18) 13 (10, 18) < 0.001

Creatinine 0.83 (0.7, 1) 0.83 (0.7, 1) 0.8 (0.7, 1) 0.86 (0.7, 1.03) < 0.001

Albumin 3.8 (3.4, 4.2) 3.9 (3.5, 4.2) 3.9 (3.4, 4.2) 3.8 (3.3, 4.2) < 0.001

Total bilirubin 0.5 (0.38, 0.8) 0.6 (0.4, 1) 0.7 (0.4, 1.59) 0.5 (0.3, 0.7) < 0.001

AST 22 (17, 33) 33 (24, 57) 28 (20, 49) 20 (15, 26) < 0.001

Alkaline phosphatase 85 (66, 121) 111 (77, 194) 112 (77, 211.5) 76 (62, 95) < 0.001

WBC 6.9 (5.55, 8.6) 6.92 (5.7, 8.7) 6.9 (5.6, 8.5) 6.9 (5.5, 8.7) 0.37

HCT 36.8 (32.3, 40.6) 38.7 (35, 42.1) 37.8 (34.1, 41) 35.6 (31, 40.1) < 0.001

Platelet count 249 (198, 313) 237 (185, 304) 240 (190, 298) 257 (204, 325) < 0.001

PTT 29.5 (26.9, 32.3) 30 (27, 32.9) 29.6 (26.9, 32.2) 29.4 (26.8, 32.2) 0.1

INR 1 (1, 1.1) 1 (1, 1.1) 1 (1, 1.1) 1.02 (1, 1.1) < 0.001

PT 12 (10.9, 13.3) 12.3 (11, 13.6) 11.7 (10.8, 13) 12.3 (11.1, 13.6) < 0.001
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separate study, Harvin et al. used machine learning to identify
factors associated with changes in surgical decision-making
regarding the use of damage control laparotomy following the

implementation of a quality improvement intervention.34

Moreover, Canchi et al. reviewed the use of machine learning
models to predict the risk of rupture among patients with

Fig. 1 A macro view of the
decision-tree algorithm for the
prediction of patient risk of de-
veloping any complication fol-
lowing colorectal, liver, or pan-
creatic surgery is presented. Red
nodes depict a population where a
majority had a complication, and
blue nodes represent a population
where a minority had a
complication

Table 1 (continued)

Preoperative characteristics Total N = 15,657 Liver N = 685 Pancreas N = 6012 Colorectal N = 8960 p value

Minimally invasive surgery 7090 (45.3%) 81 (11.8%) 1018 (16.9%) 5991 (66.9%) < 0.001

30-day mortality 266 (1.7%) 35 (5.1%) 91 (1.5%) 140 (1.6%) < 0.001

Postoperative complication 6073 (38.8%) 376 (54.9%) 3142 (52.3%) 2555 (28.5%) < 0.001

*in the last 6 months; COPD chronic obstructive pulmonary disease; CHF congestive heart failure;CRF chronic renal failure; BUN blood urea nitrogen;
AST aspartate aminotransferase; WBC white blood count; HCT hematocrit; PTT partial thromboplastin time; INR international normalized ratio; PT
prothrombin time
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abdominal aortic aneurysms.35 The authors noted that using
machine learning to analyze complex radiological data com-
bined with clinical data was a valuable tool for surgical deci-
sion-making.35 Moreover, Yeong et al. used machine learning
to develop a noninvasive method to predict skin burn healing
time.36 In fact, this machine-based model was able to predict
which burns would heal in less than 14 days with 96% pre-
dictive accuracy.

Compared with conventional regression analyses, ma-
chine learning algorithms can improve predictive accuracy
by capturing complex, nonlinear relationships observed in
the data.37 In the current study, a decision-tree learning
approach was used to develop a risk model to predict com-
plications after complex abdominal surgery. In our model,
patient-level variables used to develop the decision-tree
included a large number of clinical and laboratory param-
eters that are typically readily available in the patient elec-
tronic health record (EHR) (Table 1). The use of decision-
tree learning methodology has the advantage of easy inter-
pretability and high accuracy, as demonstrated in previous
studies38,39 With the use of decision-tree learning, the al-
gorithm developed in the current study learned from actual
patient outcomes as it was able to perform a comprehen-
sive analysis of the interactions between all predictive fac-
tors influencing a patient’s risk of developing a complica-
tion. In the process of estimating the risk of developing
complications after surgery, the decision trees take differ-
ent directions depending on the “answer” to each “ques-
tion,” with different variables being subsequently required

for the final risk prediction (Fig. 1). To this point, instead
of adopting a linear method, the algorithm presented in the
current study was able to detect the complex relationship
among different variables and calculate individual patient
risk in a more individualized manner.

The performance of the algorithm developed in the cur-
rent study demonstrated superiority over established
methods. Specifically, when we compared the accuracy of
our decision-tree as a predictive model, the C-statistic for the
prediction of patient risk of developing a complication fol-
lowing HP or colorectal surgery was 0.74, which performed
similarly to the ASC-SRC (C-statistic 0.71) and
outperformed the ASA score (C-statistic 0.58). In addition,
when analyzing the risk of developing specific complica-
tions, the predictive ability was extremely high for the ma-
jority of the outcomes, ranging from 0.76 to 0.98 (Table 2).
In the preoperative period, the accurate measurement of pa-
tient risk can not only facilitate a discussion about the risks
and benefits of surgery during informed consent but also
serves to identify patients who would benefit from preoper-
ative strategies that could offset the risk. While it is true that
many preoperative patient-level factors are non-modifiable,
several measures can be adopted in order to mitigate patient
risk of developing certain complications40,41 Patients at in-
creased risk of developing progressive renal insufficiency
should not be prescribed nephrotoxic medications in the
perioperative period. In the future, the integration of the
current algorithm to patient EHRs will allow providers to
make a timely and accurate prediction of patient risk of
developing complications after surgery, so as to adopt tai-
lored preventive measures and aid bedside decision-making.

Several limitations should be considered when
interpreting the results of the current study. The perfor-
mance and generalizability of machine-learning algorithms
are dependent on the quality of data analyzed and, as with
any retrospective study, selection biases resulting from the
data collection methodology adopted by the ACS-NSQIP
was a possibility. Moreover, the algorithm only included
variables obtained by the ACS-NSQIP. To this point, it is
possible that other preoperative factors not measured in the
current algorithm will be more important predictive factors
of patient risk. Nevertheless, the ACS-NSQIP database is
widely recognized as the largest, most reliable, risk-
adjusted and case-mix-adjusted, validated database in
surgery25,42 In addition, although certain outcomes of in-
terest may extend beyond the 30 postoperative days, out-
comes in the ACS-NSQIP data were limited to a 30-day
follow-up period. The current study also did not assess
patient risk of developing a procedure-specific complica-
tions such as anastomotic leak, pancreatic fistula, or post-
operative liver failure. Furthermore, although the algo-
rithm was able to estimate risk with high accuracy, causal-
ity between variables and outcomes cannot be determined

Table 2 Predictive ability of the algorithm for specific postoperative
complications as measured by the C-statistic

Outcome C-statistic

Stroke 0.98 (0.97, 0.99)

Cardiac arrest 0.96 (0.92, 0.98)

Progressive renal insufficiency 0.96 (0.92, 0.97)

Wound dehiscence 0.96 (0.94, 0.98)

Myocardial infarction 0.95 (0.93, 0.97)

Deep incisional SSI 0.93 (0.9, 0.95)

Pulmonary embolism 0.93 (0.88, 0.95)

Ventilator > 48 h 0.88 (0.86, 0.9)

Septic shock 0.87 (0.85, 0.89)

DVT 0.87 (0.84, 0.89)

Unplanned intubation 0.86 (0.84, 0.88)

Pneumonia 0.84 (0.82, 0.86)

Urinary tract infection 0.82 (0.78, 0.85)

Sepsis 0.79 (0.78, 0.81)

Bleeding requiring transfusion 0.79 (0.77, 0.8)

Superficial surgical site infection 0.76 (0.74, 0.78)

Organ space SSI 0.76 (0.74, 0.77)

Any complication 0.74 (0.73, 0.75)
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based solely on the decision tree. Finally, while we did
internally validate the results of the classification tree, fur-
ther research is needed to externally validate the results of
the current algorithm.

In conclusion, we used machine learning to develop and
validate a decision-tree learning–based algorithm that uses
data readily available in patient EHRs for the prediction of
patient risk of developing complications following liver, pan-
creatic, or colorectal surgery. The algorithm presented in the
current study had good predictive ability as measured by the
C-statistic and outperformed the ASA risk classification and
the ACS-SRC. Future studies assessing the feasibility of the

integration of the algorithm to patient EHRs and its implemen-
tation to the clinical practice are warranted.
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