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Abstract
Purpose  To develop a support vector machine (SVM) classifier using CT texture-based analysis in differentiating focal-type 
autoimmune pancreatitis (AIP) and pancreatic duct carcinoma (PD), and to assess the radiologists’ diagnostic performance 
with or without SVM.
Materials and methods  This retrospective study included 50 patients (20 patients with focal-type AIP and 30 patients with 
PD) who underwent dynamic contrast-enhanced CT. Sixty-two CT texture-based features were extracted from 2D images of 
the arterial and portal phase CTs. We conducted data compression and feature selections using principal component analysis 
(PCA) and produced the SVM classifier. Four readers participated in this observer performance study and the statistical 
significance of differences with and without the SVM was assessed by receiver operating characteristic (ROC) analysis.
Results  The SVM performance indicated a high performance in differentiating focal-type AIP and PD (AUC = 0.920). The 
AUC for all 4 readers increased significantly from 0.827 to 0.911 when using the SVM outputs (p = 0.010). The AUC for 
inexperienced readers increased significantly from 0.781 to 0.905 when using the SVM outputs (p = 0.310). The AUC for 
experienced readers increased from 0.875 to 0.912 when using the SVM outputs, however, there was no significant differ-
ence (p = 0.018).
Conclusion  The use of SVM classifier using CT texture-based features improved the diagnostic performance for differenti-
ating focal-type AIP and PD on CT.
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Introduction

Autoimmune pancreatitis (AIP) is a rare chronic pancrea-
titis marked by pancreatic enlargement, irregular pancre-
atic duct stenosis, and elevated serum immunoglobulin 
4 (IgG4) levels, mediated by autoimmune mechanisms 
[1]. AIP doesn't have any characteristic clinical mani-
festations and is often misdiagnosed as pancreatic duct 
carcinoma (PD), and therefore, some patients undergo 
unnecessary surgery as a result [2]. On the other hand, 
the imaging findings associated with serological exami-
nations (IgG4 and Ca19-9) plays an important role in 
the distinction between these entities. Since, 7–10% of 
pancreatic cancer patients show high serum IgG4 levels, 
and some AIP patients may exhibit equivocal serum IgG4 
levels and elevated levels of CA19-9, the utility of the 
serological examinations may be limited [3–6]. There-
fore, the diagnostic imaging is the key in differentiating 
between AIP and PD.

AIP is categorized into Type 1 and Type 2. Type 1 is 
common, and is regarded as a prototype of IgG4-related 
disease, with high serum levels of IgG4 (> 140 mg/dl), 
IgG4-positive plasma cell infiltration, and sclerosis. 
Type 2 is considered granulocytic epithelial lesions. Both 
types can present various morphological changes of the 
pancreas, which include diffuse, focal/mass-forming, or 
multifocal disease [7–9]. Focal-type AIP is accounting 
for 33–41% of the cases of AIP [10, 11]. Differentiation 
between focal-type AIP and PD by conventional imaging 
methods can be difficult.

Multiple imaging techniques, including CT, MRI, and 
18F-fluorodeoxyglucose positron-emission tomography/com-
puterized tomography (18F-FDG PET/CT), have been used for 
solving this problem [12–14].

Recent advances and application developments of radi-
omics have helped the improvement of disease predic-
tion and classification accuracy in differentiating tumors. 
Many researchers have used texture-based analysis in an 
attempt to differentiate tumors using machine learning 
[15–17]. However, to our knowledge, only a few stud-
ies have investigated CT texture-based analysis to dif-
ferentiate focal-type AIP and PD via a machine learning 
approach [17–19]. In addition, the impact of machine 
learning model on observer performance has not been 
reported in previous studies.

The purpose of this study was to develop a CT texture-
based support vector machine (SVM) classifier in differ-
entiating focal-type AIP and PD via a machine learning 
approach, and to compare the diagnostic performance with 
and without the SVM classifier.

Materials and methods

Subjects

Our institutional review board approved this retrospective 
study and informed consent from patients was waived. We 
retrospectively reviewed the medical records of all patients 
who had undergone abdominal dynamic contrast-enhanced 
CT at our hospital between March 2005 and August 2019, 
and selected for this analysis the patients who met the 
following criteria: (a) fulfilled with the International 
Consensus Diagnostic Criteria (ICDC) for AIP [20] or 
Revised Japanese Pancreas Society criteria of AIP [21]; 
or (b) histopathologically diagnosed with PD after surgical 
resection at our institution. Finally, 20 patients with focal-
type AIP (11 men, 9 women; mean age, 65.3 years; range, 
46–81 years) and 30 patients with PD (18 men, 12 women; 
mean age, 66.9 years; range, 52–82 years) were included 
for this study. In the AIP group, 14 patients were diag-
nosed on the basis of ICDC, all of whom had type 1 AIP 
(definite, 12; probable, 2). All patients were diagnosed on 
the basis of the Japanese diagnostic criteria (definite, 12; 
probable, 4; possible, 4). In the PD group, the number of 
patients with clinical T stages 1a, 1b, 1c, 2, 3 and 4 were 0, 
0, 8, 22, 0 and 0, respectively. All patients with focal-type 
AIP and PD underwent CT examinations before receiving 
therapy. Intergroup comparisons between focal-type AIP 
and PD were performed using Chi-square test for categori-
cal variables and the Student’s t test for numeric variables.

Image acquisition

In the AIP group, the number of patients scanned on a 
16-slice MDCT scanner (Aquilion®, Toshiba Medi-
cal Systems, Tokyo, Japan), a 32-slice MDCT scanner 
(Aquilion®, Toshiba Medical Systems, Tokyo, Japan), 
a 64-slice MDCT scanner (Aquilion®, Toshiba Medical 
Systems, Tokyo, Japan), and a 320-slice MDCT scan-
ner (Aquilion ONE®, Toshiba Medical Systems, Tokyo, 
Japan) were 4, 1, 12, and 3, respectively. In the PD group, 
the number of patients scanned on the 64-slice MDCT 
scanner (Aquilion®, Toshiba Medical Systems, Tokyo, 
Japan) and the 320-slice MDCT scanner (Aquilion ONE®, 
Toshiba Medical Systems, Tokyo, Japan) were 21 and 9, 
respectively.

CT data of the 16-slice MDCT scanner were acquired 
using the following parameters: tube voltage, 120 kV; 
tube current, 200 mA without automatic exposure control; 
gantry rotation speed, 0.5 s; collimation, 16 × 2 mm; and 
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beam pitch, 0.938. CT data of the 32-slice MDCT scan-
ner were acquired using the following parameters: tube 
voltage, 120 kV; tube current, 270 mA without automatic 
exposure control; gantry rotation speed, 0.5 s; collima-
tion, 32 × 1 mm; and beam pitch, 0.828. CT data of the 
64-slice MDCT scanner were acquired using the follow-
ing parameters: tube voltage, 120 kV; tube current, auto-
matic exposure control with a fixed noise index (SD 10 
at 3 mm thickness) gantry rotation speed, 0.5 s; collima-
tion, 32 × 1 mm; and beam pitch, 0.828. CT data of the 
320-slice MDCT scanner were acquired using the follow-
ing parameters: tube voltage, 120 kV; tube current, auto-
matic exposure control with a fixed noise index (SD 10 at 
3 mm thickness); gantry rotation speed, 0.5 s; collimation, 
80 × 0.5 mm; and beam pitch, 0.813.

After unenhanced images had been acquired, non-ionic 
contrast material (550 mg I/kg body weight) was injected 
through the peripheral venous line within 30 s. Arterial 
phase imaging was performed with fixed delay or bolus 
triggering, usually between 35 and 40 s post-injection, and 
portal phase imaging was performed at 60–70 s.

The helical data of the 16-slice MDCT scanner were 
reconstructed using FBP with our standard reconstruction 
kernel (FC10). The helical data of the 32- and 64-slice 
MDCT scanner were reconstructed using FBP with our 
standard reconstruction kernel (FC14). The helical data 
of the 320-slice MDCT scanner were reconstructed using 
AIDR3D (weak or mild setting) with our standard recon-
struction kernel (FC14). The image reconstruction was 
performed in a 32 to 45 cm display field of view depend-
ing on the patient's physique. CT image analysis was per-
formed using arterial and portal phase images with a 3 mm 
section thickness at 3-mm intervals.

Texture feature extraction

The overall flowchart explaining the process in this study 
is shown in Fig. 1. We chose an axial image slice of arte-
rial and portal phase on the basis of the maximum diameter 
of the lesion. Texture parameter calculation was performed 
with the software LIFEx ([20]; version 4.00, available at 
https://​www.​lifex​soft.​org/). Two-dimensional segmenta-
tion was performed by manually drawing a region of inter-
est (ROI) around the lesion outline as big as possible by one 
radiologist (K.A) (Fig. 2), and verified and confirmed by 
another radiologist (T.H); both were blinded to the patients’ 
clinical outcomes. First, we calculated 37 texture features 
defined in LIFEx version 4.00 software. The texture features 
of each ROI were then obtained, we excluded the data of six 
texture features (i.e., GLRLM_LGRE, GLRLM_LRLGE, 
GLRLM_SRLGE, GLZLM_LGZE, GLZLM_LZLGE and 
GLZLM_SZLGE) since they showed zero values in all of 
the ROIs from pancreatic lesions. Therefore, we used the 31 
textural feature data set for this study. The 31 texture features 
used in this study are shown in Table 1. Finally, we used a 
total of 62 texture features from arterial and portal phases.

Data compression and feature selection

To keep the interpretability as well as the high classification 
performance of the classifier, we conducted data compres-
sion and feature selections by using principal component 
analysis (PCA). Since we could not make any prior selec-
tion of features based on their mathematical definitions or 
previous studies, we compressed all of the 62 features by 
extracting original features as well as new features with 
PCA. After compressing the data, we selected the principal 

Fig. 1   Overall flowchart 
explaining the process in this 
study. First, texture features 
were extracted from arterial and 
portal phase CT images using 
two-dimensional analysis. Then, 
we conducted data compres-
sion and feature selections 
using principal component (PC) 
analysis. Subsequently, the 
support vector machine (SVM) 
classifier was conducted and the 
diagnostic accuracy was evalu-
ated. Finally, the effect of SVM 
on observers’ performance with 
SVM outputs was also evaluated

https://www.lifexsoft.org/
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components (PC) which were able to explain at least 80% of 
the total variance and plotted their scores. We then selected 
the best two components with scores that clearly separated 
between the AIP group and PD group subjectively. We 
also performed Wilcoxon–Mann–Whitney tests to assess 
objectively whether the score differences were significant 
between the two groups. p < 0.025 was considered statisti-
cally significant.

SVM classifier construction and evaluation

We constructed an SVM classifier to predict the disease type 
(AIP or PD) using the two principal components selected in 
the previous section. SVM is a discriminant function that 
uses multiple features to classify into two classes. When 
the e1071 package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​
e1071/​index.​html) is used, the SVM model function outputs 
a decision value for each region. Each region is classified 
according to whether the output value of the discriminant 
function exceeds 0 or not. When the output value is greater 
than zero, unknown data is classified as AIP. When the out-
put value is less than zero, unknown data is classified as 
PD. In the training phase, we constructed many classifiers 
with various hyper parameter combinations. Then we chose 
the best model that was able to classify the regions with 
the smallest classification error (i.e. the highest accuracy). 

The tunable hyper-parameters in this work were the cost of 
misclassification (C) and the inverse of the standard devia-
tion of the RBF kernel (γ). Coarse grid searches were used 
to tune these parameters and threefold cross-validation was 
conducted to find the average performance of the classifier. 
Sensitivity, specificity, accuracy, positive predictive value 
(PPV) and negative predictive value (NPV) were calculated 
using this classification result. On the other hand, receiver 
operating characteristic (ROC) analysis was performed using 
the output data of the discriminant function, and the area 
under the curve (AUC) was calculated. For observer perfor-
mance study, a model was trained using the 2 folds as train-
ing data. The resulting model was validated on the remaining 
part of the data (i.e. a test data) and extracted output. The 
data analyses were conducted by using the R software pro-
gram (version 3.4.1; www.R-​proje​ct.​org).

Observer performance study

We used an independent test method for diagnostic perfor-
mance evaluation, and one radiologist lined up 20 patients 
with focal-type AIP and 30 patients with PD in random 
order. Four radiologists with 5, 6, 24 and 30 years of expe-
rience participated in the observer performance study. The 
performance of the SVM classifier and clinical data were 
not informed. Assessment of each radiologist’s performance 

Fig. 2   Arterial phase (a) and portal phase (b) images of a patient with pancreatic duct carcinoma (PD). Arterial phase (c) and portal phase (d) 
images of a patient with focal-type autoimmune pancreatitis (AIP). A manually defined ROI is drawn in the pancreatic lesion by LIFEx software

https://cran.r-project.org/web/packages/e1071/index.html
https://cran.r-project.org/web/packages/e1071/index.html
http://www.R-project.org
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was determined by receiver operating characteristic (ROC) 
analysis with a continuous rating scale with a 0–100 scale. 
First, the readers reviewed an axial image slice of the arterial 
and portal phase of the lesion without SVM outputs. Axial 
images were chosen for the pancreas masses avoiding other 
key findings (such as lymph node (LN) swellings, vascular 
invasion or pancreatic duct dilatations). Subsequently, SVM 

outputs (the percentage of probability for each category) 
were presented to the observers via the bar graph, and a 
second observer performance study with SVM outputs was 
performed. The time interval between the first and second 
review was more than one month. The performance of the 
4 readers was evaluated in terms of sensitivity, specificity, 
accuracy, PPV and NPV, and the AUC of the ROC. We 
divided readers into two groups, experienced and inexpe-
rienced, and the statistical significance of the differences 
between AUC values for radiologists with and without SVM 
outputs was evaluated by DeLong's test. For the both clas-
sifier performance and the observer performance, the data 
analyses were conducted by using the R software program 
(version 3.4.1; www.R-​proje​ct.​org). The sensitivities, spe-
cificities, PPV, NPV, and AUC of the SVM classifier were 
calculated automatically by the R software.

Results

The clinical characteristics of 20 focal-type AIP and 30 PD 
patients are summarized in Table 2. No significant differ-
ences were found in age, sex or lesion size between the two 
groups.

Table 1   Summary of the texture features for the analysis

 Feature name Symbol/
abbrevia-
tion

Geometry based and histogram based features
Skewness –
Kurtosis –
Entropy log10 –
Entropy log2 –
Energy –
Gray-level co-occurrence matrix (GLCM)
Homogeneity –
Energy –
Contrast –
Correlation –
Entropy log10 –
Entropy log2 –
Dissimilarity –
Neighborhood gray-level different matrix (NGLDM)
Contrast –
Coarseness –
Busyness –
Grey level run length matrix GLRLM) –
Short-Run Emphasis SRE
Long-Run Emphasis LRE
Low Gray-level Run Emphasis LGRE
High Gray-level Run Emphasis HGRE
Short-Run High Gray-level Emphasis SRHGE
Long-Run Low Gray-level Emphasis LRLGE
Long-Run High Gray-level Emphasis LRHGE
Gray-Level Non-Uniformity for run GLNU
Run Length Non-Uniformity RLNU
Run Percentage RP
Grey level zone length matrix (GLZLM)
Short-Zone Emphasis SZE
Long-Zone Emphasis LZE
High Gray-level Zone Emphasis HGZE
Short-Zone High Gray-level Emphasis SZHGE
Long-Zone Low Gray-level Emphasis LZLGE
Long-Zone High Gray-level Emphasis LZHGE
Gray-Level Non-Uniformity for zone GLNU
Zone Length Non-Uniformity ZLNU
Zone Length Non-Uniformity Zone Percentage ZP 

Table 2   Clinical data of patients with focal-type autoimmune pancre-
atitis (AIP) and pancreatic duct carcinoma (PD)

ERP endoscopic retrograde pancreatography, MRCP magnetic reso-
nance cholangiopancreatography
a According to the 8th edition of the TNM classification of malignant 
tumors

Focal-type AIP
n = 20 (± SD)

PD
n = 30 (± SD)

p

Age (y) 65.25 ± 9.40 66.87 ± 8.45 0.539
Male/Female 11/9 18/12 0.953
Lesion size (mm) 33.54 ± 13.62 26.96 ± 7.78 0.061
IgG4 > 280 (mg/dl) 8
280≧IgG4≧135 (mg/dl) 7
Narrowing of main pancratic 

duct on ERP/MRCP
18

Pathological findings 9
Other organ involvement 6
Effectiveness of steroid 

therapy
15

cT Stagea

T1a 0
T1b 0
T1c 8
T2 22
T3 0
T4 0

http://www.R-project.org


1161Japanese Journal of Radiology (2022) 40:1156–1165	

1 3

We chose the best combination of principal components 
that could separate AIP group and PD group by plotting 
their scores (Fig. 3). As showing on Fig. 3, the combi-
nation of the second principal component (PC2) and the 
third principal component (PC3) was chosen because 
they could clearly separate two groups subjectively. The 
scores of PC2 and PC3 showed significant differences in 
focal-type AIP and PD (both p < 0.001) (Table 3). The top 
three texture features in PC2 loadings were arterial phase 
Skewness, portal phase NGLDM Coarseness and portal 
phase Skewness. The bottom three texture features in 
PC2 loadings were arterial phase GLRLM HGRE, arterial 
phase GLZLM HGZE and arterial phase GLRLM SRHGE 
(Table 4). The top three texture features in PC3 loadings 
were portal phase GLRLM RLNU, portal phase GLZLM 
GLNU and portal phase GLRLM GLNU. The bottom 
three texture features in PC3 loadings were arterial phase 

NGLDM Coarseness, arterial phase NGLDM Contrast 
and arterial phase GLRLM SRE (Table 5). ROC curves 
were adopted to determine the diagnostic performance 
of SVM classifiers in differentiating focal-type AIP and 
PD (Fig. 4). The parameters of SVM classifier including 
AUC, sensitivity (%), specificity (%), accuracy (%), PPV 
(%), and NPV (%) were 0.920, 100.0, 75.0, 90.0, 85.7 and 
100.0%, respectively.

ROC curves were adopted to determine the diagnostic 
performance of all readers in differentiating focal-type AIP 
and PD (Fig. 5). The AUC without and with SVM outputs 
for each radiologist are shown in the Table 6. The AUC of 
all radiologists without SVM outputs were 0.827 and those 
with were 0.911 (p = 0.010). Divided into two groups, the 
AUC of the experienced group without SVM outputs was 
0.875 and that with was 0.912 (p = 0.310). The AUC of the 
inexperienced group with SVM outputs was 0.781 and that 
with was 0.905 (p = 0.018).

Fig. 3   Scatterplot of the two principal components (PCs). Each dot 
represents an autoimmune pancreatitis (AIP) (red circle) or a pan-
creatic duct carcinoma (PD) (blue triangle). Dots were clearly sepa-
rated between the AIP and the PD groups

Table 3   Comparison of selected principal component (PC) scores 
between focal-type autoimmune pancreatitis (AIP) and pancreatic 
duct carcinoma (PD)

*A significant difference (p < 0.025)

Focal-type AIP (n = 20) PD (n = 30) p

PC2 score −2.26 ± 2.03 1.50 ± 3.42  < .001*
PC3 score 1.59 ± 2.58 −1.06 ± 2.75  < .001*

Table 4   Loadings of the second principal component (PC2)

ap arterial phase, pp portal phase

Texture feature PC2 loading

ap Skewness 0.1995
pp NGLDM Coarseness 0.1721
pp Skewness 0.1617
ap Kurtosis 0.1182
pp NGLDM Contrast 0.0855
・・・ ・・・
ap GLCM Entropy log2 −0.2055
ap GLCM Entropy log10 −0.2056
ap GLRLM SRHGE −0.2157
ap GLZLM HGZE −0.2356
ap GLRLM HGRE −0.2377

Table 5   Loadings of the third principal component (PC3)

ap arterial phase, pp portal phase

Texture feature PC3 loading

pp GLRLM RLNU 0.2366
pp GLZLM GLNU 0.2332
pp GLRLM GLNU 0.2296
ap GLRLM RLNU 0.2249
ap Kurtosis 0.2172
・・・ ・・・
pp NGLDM Coarseness −0.1814
ap GLZLM HGZE −0.1819
ap GLRLM SRE −0.1839
ap NGLDM Contrast −0.1871
ap NGLDM Coarseness −0.2567
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Discussion

We developed an SVM classifier to differentiate focal-type 
AIP and PD and evaluated the diagnostic performance of 
readers with and without SVM outputs. To our knowledge, 
there is no prior study dealing with observer performance 
study for CT texture-based analysis in differentiating 

focal-type AIP and PD using machine learning approaches. 
Although the SVM outputs improved the diagnostic per-
formance for all four readers including the experienced 
radiologists, an observer category with less experience 
benefited from the SVM outputs more. The AUC for inex-
perienced radiologists with the SVM outputs (0.905) was 
higher than that for experienced radiologists without the 
SVM outputs (0.875). These results may suggest that the 
SVM classifier may be more useful for inexperienced radi-
ologists and the radiologist’s performance in differentiat-
ing focal-type AIP and PD depends on their experience.

In machine learning, SVMs are learning algorithms for 
analyzing data used for classification. The SVM can build a 
model that classifies new data into different categories from 
a set of training examples, each of them belonging to one 
of the categories. Relative to the other machine learning 
methods, SVMs are powerful methods at recognizing subtle 
patterns in complex datasets [23]. For diagnostic classifica-
tion, an SVM classification scheme of CT/MRI texture anal-
ysis was used for differentiating glioma vs. primary central 
nervous system (CNS) lymphoma [16], renal cell carcinoma 
(RCC) vs. angiomyolipoma (AML) [24] and LN metastasis 
[25]. It has been reported that SVM based on MRI textural 
features was noninferior to expert human evaluation in the 
differentiation of CNS lymphoma and glioma [16]. You et al. 
reported SVM based on CT textural features (SVM on TF) 
of renal masses could accurately differentiate AML without 
visible fat from RCC [24]. Yang et al. reported that in pre-
dicting occult LN metastasis of lung cancer before surgery, 
the performance of the SVM on TF was higher than that of 
the model based on clinical-histopathologic features (i.e., 

Fig. 4   The receiver operating characteristic curve (ROC) for differen-
tiating focal-type autoimmune pancreatitis (AIP) and pancreatic duct 
carcinoma (PD) of the support vector machine (SVM) classifier. The 
areas under the curve (AUC) were 0.920

Fig. 5   a Receiver operating characteristic curves (ROCs) for differ-
entiating focal-type autoimmune pancreatitis (AIP) and pancreatic 
duct carcinoma (PD) of all the readers with support vector machine 
(SVM) outputs. The areas under the curves (AUCs) of the 4 readers 

were 0.85, 0.90, 0.79, and 0.78, respectively. b ROCs for differentiat-
ing focal-type AIP and PD of all the readers with SVM outputs. The 
AUCs of the 4 readers were 0.91, 0.92, 0.91, and 0.90, respectively
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age, sex, tumor location, diameter, and histology)[25]. Con-
sidering these classification abilities, we developed texture-
based SVM classifier in differentiating focal-type AIP and 
PD in this study.

CT is one of the most commonly used imaging modalities 
for the diagnosis of pancreatic lesions. Although known to 
be difficult in the diagnosis of focal-type AIP based on imag-
ing, previous studies reported that some imaging findings of 
CT were useful in distinguishing focal-type AIP from PD. 
These imaging findings contained; delayed homogeneous 
enhancement on dynamic CT, a hypoattenuating capsule-
like rim, the presence of the “duct-penetrating” sign (mass 
penetrated by an unobstructed pancreatic duct), the absence 
of significant upstream main pancreatic duct (MPD) dilata-
tion (> 5 mm), the absence of atrophic changes in the body 
and the tail of the pancreas, and enhanced duct sign (wall 
enhancement of MPD in the lesion) on multiphase contrast-
enhanced CT [6, 26–29]. Furuhashi et  al. reported that 
homogeneous enhancement during the portal phase, dotted 
enhancement during the pancreatic phase, duct-penetrating 
sign, enhanced duct sign and capsule-like rim were more 
frequently observed in focal-type AIP. On the other hand, 
ring-like enhancement during the delayed phase and peri-
pancreatic strands with a length of at least 10 mm were more 
frequently observed in PD. Focal-type AIP was identified 
with 82% sensitivity and 98% specificity by using any four 
of these seven findings [26]. Although AIP was more likely 
to show a dotted enhancement in the pancreatic phase and 
a homogeneous enhancement in the portal phase, PD was 
more likely to show a heterogeneously decreased enhance-
ment in the portal phase. In our study, we were able to objec-
tively assess intralesional heterogeneity by using CT texture-
based analysis to differentiate focal-type AIP and PD via a 
machine learning approach. Our results of CT texture analy-
sis may support the findings of previous subjective studies.

In MRI, Choi et  al. reported that the homogeneous 
enhancement (p = 0.001), duct penetrating sign (p < 0.001), 
and an ADC value less than 0.9407 × 10–3 mm2/s (p < 0.001) 
were significant for differentiating focal-type AIP from PD 
in multivariate analysis. When two of these three criteria 
were satisfied, 80% (12/15) of focal-type AIPs were iden-
tified with specificity of 98.7% [12]. 18F-FDG PET/CT 

findings have also been reported to differentiate AIP from 
PD (p < 0.05) with the AUCs of 0.700 (early SUV max) 
and 0.687 (delayed SUV max) in the previous study [14]. 
Although we developed SVM classifier based on only CT 
texture, a combination of the imaging features of these 
modalities may be more practical in clinical settings.

In our study, AUC, sensitivity (%), specificity (%), accu-
racy (%), PPV (%), and NPV (%) of our SVM classifier were 
0.920, 100.0, 75.0, 90.0, 85.7, and 100.0%, respectively. 
Differentiation between focal AIP and PD should ideally 
be based on a combination of CT, MRI, and PET imaging 
findings, however, there are cases that are difficult to dif-
ferentiate even with all these imaging findings. We believe 
that CT texture analysis can be a new quantitative tool in 
the differential diagnosis of pancreatic lesions as well as 
ADC values or SUV max. However, the performance of our 
learning model was lower than that of prior published work 
in differentiating AIP from PD with CT radiomics features 
[17]. In the previous study AIP patients included not only 
focal-type but also nearly diffuse type and diffuse type. Our 
study was limited to only focal type AIP and PD with surgi-
cal indication. This may be the cause of relatively low AUC 
values compared to previous studies.

Our SVM outputs could significantly improve reader’s 
performance including that of the expert readers. There 
were five cases in which all radiologists diagnosed cor-
rectly and the SVM failed to do so, and only one case 
in which all radiologists failed and the SVM diagnosed 
correctly. It is interesting to analyze the discrepancies 
between the SVM output and the radiologist’s interpreta-
tion, particularly for those cases in which the radiologists 
diagnosed correctly and the SVM failed to do so. Figure 6 
shows the representative case of the SVM failure. In this 
case, the tumor had an absence of atrophic changes in the 
body and the tail of the pancreas and an absence of signifi-
cant upstream MPD dilatation. This case was more typical 
of AIP, however, the SVM classified it as a PD. One cause 
of disagreement between radiologists and the SVM classi-
fier may be that radiologists take into account the changes 
in the surroundings of lesions, such as atrophic changes in 
the body and the tail of the pancreas, upstream MPD dila-
tation, and a hypoattenuating capsule-like rim. Radiomics 

Table 6   Observer performance 
for differentiating focal-type 
autoimmune pancreatitis (AIP) 
and pancreatic duct carcinoma 
(PD) with and without support 
vector machine (SVM) outputs

AUC​ the area under ROC curve
*A significant difference (p < 0.05)

Observer No.1 No.2 No.3 No.4 All Experienced 
group (No.1 
and 2)

Inexperienced 
group (No.3 
and 4)

Exp. years 30 24 6 5
AUC without SVM 0.852 0.900 0.789 0.783 0.827* 0.875 0.781*
AUC with SVM 0.912 0.918 0.913 0.898 0.911* 0.912 0.905*
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represents a method for the quantitative description of 
medical images. It is, however, important to note that radi-
omics should only be viewed as an additional tool and not 
as a standalone diagnostic algorithm [30]. Furthermore, 
we believe that ideally, machine learning should be used 
by radiologists applying it with other key image findings 
who have the knowledge of the limitation of radiomics.

Our study has several limitations. First, our study was a 
retrospective study with only a small number of patients. 
Second, the CT scanners used in our study were not uni-
form between patients and an inter-scanner difference may 
have affected the texture analysis results. Further studies 
with a larger study population and uniform CT scanner 
are needed to confirm the results of this study. Third, the 
readers reviewed only an axial image slice of the arte-
rial and portal phase of the lesion in the observer perfor-
mance study. This process might be influenced in readers 
performance. Fourth, in the present study, we constructed 
the SVM classifier to differentiate focal-type AIP and PD, 
though etiologies other than those diseases can also appear 
as pancreatic mass. Finally, lesion segmentation in our 
study was conducted manually by only one radiologist 
confirmed by the other radiologist because prior studies 
of CT texture analysis have shown good to excellent inter-
observer agreement [31–35]. However, a risk of subjective 
tendency or bias must be considered.

In conclusion, CT texture analysis via a machine learn-
ing approach can help clinicians differentiate focal-type 
AIP and PD. Where radiologists effectively incorporate 
machine learning methods into the clinical practices their 
diagnostic abilities will be extremely important.
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