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Abstract

Bipolar disorders (BDs) represent one of the leading causes of disability and morbidity globally. The use of functional
magnetic resonance imaging (fMRI) is being increasingly studied as a tool to improve the diagnosis and treatment of BDs.
While morphological biomarkers can be identified through the use of structural magnetic resonance imaging (sMRI), recent
studies have demonstrated that varying degrees of both structural and functional impairments indicate differing bipolar sub-
types. Within fMRI, resting-state fMRI has specifically drawn increased interest for its capability to detect different neuronal
activation patterns compared to task-based fMRI. This study aims to review recently published literature regarding the use
of fMRI to investigate structural-functional relationships in BD diagnosis and specifically resting-state fMRI to provide an
opinion on fMRI’s modern clinical application. All sources in this literature review were collected through searches on both
PubMed and Google Scholar databases for terms such as ‘resting-state fMRI’ and ‘functional neuroimaging biomarkers
of bipolar disorder’. While there are promising results supporting the use of fMRI for improving differential accuracy and
establishing clinically relevant biomarkers, additional evidence will be required before fMRI is considered a dependable
component of the overall BD diagnostic process.

Keywords Neuroimaging - fMRI - Biomarkers - Grey matter - White matter - Resting-state fMRI - Psychiatric disorders -
Bipolar depression disorder - Mood disorder

Introduction

Psychiatric disorders are a series of mental health conditions
that have historically been diagnosed on the basis of behav-
ioral observation. This process is often highly inaccurate,
as it relies upon a variety of subjective factors such as self-
reporting, communication, and symptom awareness. With
the multitude of inaccuracies and uncertainties that stem
from this diagnostic pipeline, there is a clear need for more
reliable diagnostic measures. Compounding the difficulty in
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identifying psychiatric disorders, there is a potential problem
when a patient who has already been screened begins to
demonstrate new symptoms or changes in presentation, also
called diagnostic overshadowing [1]. Furthermore, patients
that cannot be thoroughly examined or refuse to cooperate
interfere with examinations that rely on active participation.

Bipolar depression disorder (BD) is considered one of
the leading disabling psychiatric conditions. There are many
questions regarding its pathophysiology as it is an affective
disorder that undergoes varying fluctuation levels [2]. Its
etiology is also unknown, although both genetic and envi-
ronmental factors have been determined to contribute to risk
of development. To further complicate the issue, bipolar
depression disorder (BD) and unipolar depression disorder
(UD) are frequently miscategorized. Although 20% of BD
individuals receive the correct diagnosis during a depressive
episode within the first year of seeking treatment, nearly
60% of BD individuals are initially diagnosed with UD
depression [3]. In attempts to refine the diagnostic process,
researchers are investigating neuroimaging as a method of
establishing a solidified relationship between specific brain
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structures and understanding the neural substructure of
psychiatric disorders. Over the last decade, there has also
been increased interest in establishing clinically pertinent
biomarkers for psychiatric disorders. These biomarkers have
multiple clinical applications, including improving the diag-
nostic accuracy of BD and providing supplemental informa-
tion for observations and interviews [4]. Additionally, bio-
markers may also illustrate varying progressive stages of
BD, which can help streamline treatment options depending
on its severity. While structural magnetic resonance imag-
ing (sMRI) has repeatedly identified potential biomarkers
for bipolar disorder, a lack of understanding regarding the
pathophysiology of this psychiatric disorder and its subtypes
has obstructed the establishment of legitimate biomarkers
from a united perspective.

Functional magnetic resonance imaging (fMRI) is consid-
ered to be a useful methodology for identifying biomarkers
in both diagnostic and therapeutic processes [5]. This imag-
ing technique is currently one of the most used neuroimaging
modalities, alongside SMRI and positron emission tomog-
raphy (PET) scans [6]. While task-based fMRI has been
widely utilized to discern cognitive abnormalities in func-
tional activation, the conduction of resting-state fMRI has
garnered significant interest as a pathway towards discerning
legitimate biomarkers. Hohenfeld et al. describe this imag-
ing modality as a “biomarker-surrogate” that can be used to
gain insight into obtaining true biomarkers [7]. Functional
MRI focuses on the blood oxygen level-dependent (BOLD)
signal to map neuronal activity as a function of external
oxygen uptake. Resting-state fMRI expounds on this imag-
ing method by monitoring changes to the BOLD signal when
there are no stimulus or explicit tasks being done [8]. This
methodology is capable of exploring the intrinsic segrega-
tion and specialization of brain neural networks.

In this review, we aim to scrutinize the recent literature to
determine the diagnostic applications and limitations of task-
based and resting-state fMRI in BD. More specifically, we
report on the use of fMRI to determine structural-functional
relationships, and we collect analysis results of resting-state
fMRI in investigating limbic-system-specific biomarkers for
accurate and specific diagnosis for BD.

Methods

The search for relevant literature involved both PubMed
and Google Scholar databases. Our search included terms
related to fMRI and neuroimaging for psychiatric disorders,
such as ‘Neuroimaging’, ‘tMRT’, ‘biomarkers’, ‘grey matter’,
‘white matter’, ‘resting-state fMRI’, and ‘psychiatric disor-
ders’ among others. We excluded studies published before
2000, as well as preprints, pre-clinical trials, duplicates,
and studies with redundant information such as those with

overlapping patient cohorts. The remaining 40 studies were
selected for synthesis by the authors based on their relevance
to the topic in question. Table 1 below shows the number
of subjects and mean age of the included studies (Table 1).
The authors received no financial support for the research,
authorship, and/or publication of this article.

Results
Structural findings and biomarkers

Structural neuroimaging has concretely established multiple
brain abnormalities in varying BD subtypes. Recent findings
indicate that BD patients demonstrate morphological abnor-
malities in both grey and white matter. For example, grey
matter atrophy has been recorded in both the inferior and left
superior frontal gyrus, while white matter integrity was seen
to be reduced in the superior longitudinal fasciculus and the
corticospinal tract [9]. Grey matter volume reductions in
the lateral orbitofrontal cortex have also been recorded in

Table 1 Number of subjects and mean age (+standard deviation) in
years for the studies included in the “Results”

Study Number of bipo- Mean age (+SD)
lar subjects

Syan et al. (2018) [8] 897 34+£5.26

Tang et al. (2020) [9] 35 31.49+8.05

Nugent et al. (2006) [10] 36 39+8.1

Lan et al. (2020) [11] 32 359+11.7

Ott et al. (2019) [12] 29 43.97+10.40

Hibar et al. (2018) [13] 1837 383+£11.7

Koshiyama et al. (2020) [14] 211 45.7+11.6

Velakoulis et al. (2006) [15] 89 349+9.6

Tang et al. (2018) [16] 43 32.51+5.31

Rosso et al. (2007) [17] 20 23+3

Damme et al. (2020) [18] 114 20.71+2.00

Maletic et al. (2014) [19] - -

Nunez et al. (2011) [20] 19 11.1£2.6

Lu et al. (2009) [21] 24 10.54+2.81

Joshi et al. (2016) [22] 45 399+12.1

Townsend et al. (2012) [23] 32 37+13

Altshuler et al. (2005) [24] 11 36+7.6

Radua et al. (2012) [25] 965 24, range 15-35

Calhoun et al. (2009) [26] -
1040 -

Chen etal. (2011) [27]

Ambrosi et al. (2017) [28] 36 31.0+11.3
Yu et al. (2020) [29] 23 28.52+10.17
Du et al. (2019) [30] 32 -

Brady et al. (2017) [31] 47 293+11.5
Wang et al. (2020) [32] 1047 -
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individuals receiving medication for both bipolar I and II
[10]. BD patients also present a deficit of axial diffusivity
compared to major depressive disorder or healthy volunteer
populations [11]. The hippocampus has also been targeted
as a potential biomarker for BD, and sMRI has repeatedly
observed hippocampal volume reduction across multiple
neuropsychiatric disorders [12]. In a multicenter study of
1837 adults with BD, Hibar et al. noted markedly thinner
cortical grey matter in the temporal, parietal, and frontal
regions in both hemispheres. Additionally, BD was associ-
ated with reduced surface area and thickness in the supra-
marginal gyrus and insula [13]. Furthermore, Koshiyama
et al. observed lower fractional anisotropy in the cingulate
gyrus and white matter irregularities in the fornix and corpus
callosum in individuals with BD when compared to healthy
control subjects [14].

The amygdala has been a popular region of interest in
characterizing BD and other psychiatric disorders. More
generally, lesions of the amygdala are connected to deficits
in emotional expression and memory. Although most studies
report decreased amygdala volumes in bipolar youths, this
has not been the case for adults. Recent examinations of
BD adult individuals have been varied, demonstrating both
increased and decreased amygdala volumes [15-17]. In a
meta-analysis of literature focusing on this topic in adoles-
cents with BD specifically, it was concluded that structural
amygdala abnormalities are present in bipolar youths, but
the same irregularities did not appear to be present in adults.
These results suggest that there are age-specific changes in
structural and functional connectivity. Tang et al. recently
published a cross-sectional study examining structural and
functional connectivity in the prefrontal-amygdala cir-
cuitry of women placed in different age groups and found
that changes in the structural composition of this circuitry
are associated with BD in women aged 2645 years [16].
Interestingly, because amygdala volume is generally meas-
ured following the onset of BD, it is not concretely known
whether abnormal volume levels predate BD risk or are
merely associated with the disorder. Additionally, a sig-
nificant amount of past literature has treated this region of
interest as a homogenous structure without considering the
potential issues that may arise due to its many differences in
connectivity to other areas of the brain [18]. These obser-
vations coupled with treatment-related improvement across
BD, schizophrenic, and unipolar disorder patients illustrate
how structural neuroimaging has firmly contributed to
improving clinical treatment of BD.

A wide majority of recent studies have utilized single-
modality MRI, whether solely structural or functional. As
this understandably limits the amount of the brain that can
be seen, a combined structural-functional multimodal imag-
ing analysis has been seen to provide deeper, more extensive
insight. While revealing promising results through structural
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neuroimaging, Tang et al. discussed how the incorporation
of functional imaging data could help explore a potential
structural-functional covariant pattern in BD [9]. This is
not to discredit the usefulness of structural neuroimaging,
as there have been many positive morphological abnormali-
ties identified in BD patients. However, the importance of
understanding intrinsic functional irregularities cannot be
overstated. Identifying deviations from expected connectiv-
ity may provide information on BD progression, as well as
give information regarding potential vulnerability to devel-
oping BD.

Standard fMRI findings

Structural and functional distinctions are increasingly being
recognized as a more precise and objective assessment tool
for diagnosis compared to behavioral evaluation. While
potential structural biomarkers in bipolar disorder have been
obtained through sMRI, it is hypothesized that the structural
reductions in grey matter may correlate to functional defi-
cits. An observed decrease in prefrontal cortical activity may
contribute to inadequate management of the default mode
network (DMN), which has an effect on mood and cogni-
tive processing. Furthermore, both grey and white-matter
differences have been reported in the early stages of BD
progression [19]. Decreased thickness is not the only factor
that may impact neuronal processing; multiple studies have
already published examples of reduced activation stemming
from increased inferior frontal cortex (IFC) thickness. Nufiez
et al. reported that decreased activation intensity in the right
inferior frontal gyrus (IFG) was associated with a pattern
of increased thickness in the right pars triangularis [20].
Reduced activation was also linked to increased IFC region
thickness during orthographic processing tasks in a study
examining the relationships between brain activation and
structure in cohorts of normally developing children [21].
Furthermore, Joshi et al. report that reduced cortical thick-
ness is associated with reduced cingulate fMRI activation,
as well as a thinner cortex being associated with increased
fMRI activation in bipolar patients [22]. Together, these
findings suggest that reduced activation in the cingulate
region may possess an underlying structural etiology, high-
lighting the importance of future research to simultaneously
assess both structure and functionality. In stable mood state
patients with bipolar I disorder, functional neuroimaging
during the performance of a response inhibition task showed
significantly reduced activation in the region of interest com-
pared to healthy subjects [23]. Additionally, an evaluation
of activation in the lateral orbitofrontal cortex found robust
activation of the right orbitofrontal cortex in control sub-
jects only [24]. Radua et al. used a multimodal meta-analysis
to characterize a close relationship between structural and
functional brain alterations, albeit in individuals with the
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first episode of psychosis. An abnormal functional response
was also demonstrated in the bilateral insulae as well as the
medial anterior cingulate cortices [25].

Relationships between structural and functional obser-
vations should continue to be explored, as multiple stud-
ies have shown reduced regional activation to be connected
with response inhibition. Future results can potentially
provide information regarding the clinical progression and
illness severity of BD. To better analyze information and
improve the diagnostic process, utilization of multimodal
imaging data is becoming increasingly popular. Calhoun
et al. reported on combining independent component analy-
sis with fMRI data to accurately differentiate between BD,
schizophrenia, and healthy control patients [26]. Functional
neuroimaging has been used to more precisely diagnose and
classify BD disorder. For example, through functional neu-
roimaging, researchers have been able to better discern the
nuanced differences between BD subtypes and differences
between BD subtypes and psychiatric disorders [3]. Addi-
tionally, identifying the specific functional ramifications that
accompany identified abnormalities in gray matter, white
matter, and neurological bodies may result in the develop-
ment of legitimate biomarkers; therefore, contributing infor-
mation for utilization in various intervention methods.

While functional MRI has broadly improved neuroimag-
ing in diagnosing patients, studies have utilized two types of
fMRI patient environments for collecting data. Both resting-
state and task-based fMRI highlight the patient’s condition
during collection of BOLD signals. With task-based fMRIs,
neuronal BOLD signals are tracked while the participant
performs a task. This form of functional mapping has been
successful in identifying some biomarkers and differentiat-
ing psychiatric disorders. However, resting-state fMRI, dur-
ing which the participant is not being neuronally stimulated
and the BOLD signals are collected when the patient is in
a resting state, has been shown to be a different avenue for
determining more legitimate biomarkers. Signals detected in
the absence of neuronal stimulation better reflect intrinsic
functional brain networks and regions.

Resting-state and task-based MRI

Research has used both resting-state and task-based fMRI
for diagnosing and categorizing BD. For example, research-
ers have observed attenuated activation of the inferior fron-
tal cortex with emotional and cognitive tasks as well as
enhanced limbic activation with emotional tasks [27]. While
results like those from task-based fMRI have been helpful,
many researchers are looking towards increased utilization
of resting-state fMRI. Because resting-state fMRI results
are collected in an unstimulated state, the neuronal func-
tional connectivities can indicate disease progression. Fur-
thermore, resting-state fMRI emphasizes the ‘background’

noise and spontaneous brain activity that task-based imag-
ing regularly tries to minimize. Hohenfeld et al. investigated
biomarkers for Alzheimer’s and Parkinson’s disorders using
resting-state fMRI. While this study focuses on BD, its find-
ings demonstrate that resting-state fMRI can be used as a
“biomarker-surrogate.” That is, although resting-state fMRI
does not detect the neural network activation patterns seen
in the presence of stimulus, it does detect the character-
istic networks and spontaneous brain activation that give
insight into neuronal activation patterns [7]. Because BD
has been linked to dysregulation in emotional processing
and regulation, resting-state fMRI would also be a better
avenue compared to task-based for further investigations.
Furthermore, there has been extensive investigation of a
brain region called the default mode network (DMN) that
routinely decreases activation during attention-demanding
tasks. This region has been tied to BD subtype categoriza-
tion and targeted imaging of the DMN provides insight task-
based fMRI could not provide.

When imaging BD patients, resting-state fMRI has
uncovered a multitude of biomarkers linked to BD and its
subtypes. Ambrosi et al. observed differences including
lower levels of resting-state functional connectivity between
the left insula and mid-dorsolateral prefrontal cortex in BD
patients compared to individuals with major depressive dis-
order or healthy controls, indicating the possibility of vary-
ing pathophysiological mechanisms producing emotional
dysfunction in these disorders [28]. While both unipolar
depression and bipolar depression demonstrate abnormal
frontal and sensorimotor network functional connectivity,
Yu et al. determined that bipolar depression exhibited more
widespread affected connectivity patterns that primarily
encompassed the sensorimotor network [29]. “Neuromark”
is a newly developed framework that utilizes independent
component analysis (ICA) to extract functional network
information; usage deriving functional network measures
was demonstrated to classify BD with an individual-class
accuracy of 89%. This study also reported > 90% classifica-
tion accuracy between BD and UD patients with overlapping
depressive symptoms, highlighting the promise of potential
brain imaging biomarkers compared to traditional behavioral
evaluation [30]. Within BD patients, studies have also shown
resting-state fMRI can be used to differentiate functional
connectivity of the DMN across BD mood and trait states
[31, 32]. Further, abnormal functional connectivities have
been observed in the amygdala, ventrolateral prefrontal cor-
tex, cingulate cortex, and medial prefrontal cortex among
BD patients compared to healthy controls. A recent study
suggests that stability in the default mode network, salience
network, and frontoparietal network may be indications of
BD patients in remission [8]. In general, while task-based
fMRI has revealed many neurological markings of BD, rest-
ing-state fMRI utilization has provided a new avenue for a
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more comprehensive evaluation of the BD patient’s under-
lying pathology. The key results and limitations of these
studies are summarized below (Table 2).

Discussion

At present, the determination of fMRI’s true clinical and
diagnostic applicability should remain a subject of exten-
sive research going forward. This review examines the
most recent findings regarding potential biomarkers located
within the limbic system and the potential utility of resting-
state fMRI in identifying legitimate biomarkers. While many
studies contend that sMRI plays a significant role in the
identification of structural irregularities in bipolar patients,
the importance of developing a deeper understanding of the
relationship between structural and functional abnormalities
should not be undervalued. By utilizing neuroimaging for
the purpose of identifying disease biomarkers, this will in
turn affect the implementation of various treatment modali-
ties and elucidate biological pathways within the brain [33].
However, although studies have yielded promising
results, resting-state fMRI is still at times viewed with skep-
ticism within the neuroradiology community [34]. One rea-
son for this is that the fMRI blood oxygen level-dependent
activity (BOLD) signal develops at a gradual pace and can
result in poor temporal resolution. However, this tradeoff
can be considered necessary to obtain real-time functional
data [35]. While there is promise to the idea of identifying
structural-functional relationships in individuals with bipo-
lar disorder, it is possible that these functional deficits and
abnormalities are correlated to the structural disturbances
of connected areas, rather than the region of interest itself.
The aforementioned Du et al. study detailing Neuromark
as a method for extracting functional network biomarkers
utilizes multivariate source-based morphometry (SBM) with
an ICA component [30]. SBM has been increasingly uti-
lized as an alternative to voxel-based morphometry (VBM)
when investigating functional connectivity due to the fact
that VBM is limited as a univariate method. Ashburner and
Friston detail the assumptions of voxel-based morphometry
including correct identification of the structures being evalu-
ated and the elimination of confounding effects, while dis-
cussing potential improvements to the segmentation process.
[36]. In a study incorporating ICA to determine gray matter
variations respective to schizophrenia (SZ), Xu et al. present
their SBM approach as an alternative to VBM and reported
a difference in results when comparing the two methods of
harrianalysis. The most significant source of gray matter
changes identified by the SBM approach occurred in the
bilateral temporal lobe; conversely, the VBM approach iden-
tified the thalamus as the location of these changes. Fur-
thermore, SBM was able to identify changes in other brain
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structures such as the basal ganglia and parietal lobe, dem-
onstrating how it can be a viable alternative to VBM [37].
Related to Xu et al.’s schizophrenic focus, Sorella et al. used
SBM to examine dissimilarities in gray matter between BD
and SZ patients, finding that SZ is characterized by deficits
in a specific network (IC 6). This study represented the first
usage of SBM to investigate the neural bases in a compara-
tive manner between BD and SZ patients, and the discovery
of this observation encourages the continued use of SBM
to examine the relationship between these disorders [38].
In a recent study, SBM was used to examine the relation-
ship between tumor necrosis factor (TNF)-o and gray matter
networks in major depressive disorder (MDD) patients [39].
Although conducted with small sample sizes, the authors
were still able to identify an association between elevated
serum TNF-a levels in early MDD progression with changes
within the prefrontal network [39]. When taken together,
these studies demonstrate the practicality of multivariate
source-based morphometry in the analysis of psychiatric
disorders and encourage the continued use of SBM to iden-
tify more relationships among the various brain networks.

Furthermore, one of the hallmarks involving the defini-
tion of a biomarker is reliability, and there is still uncertainty
regarding how results involving reproducible networks can
be applied on an individual basis. Even cooperative patients
can cause physiological noise that can confound data. For
example, respiration, though unavoidable, can produce
inaccurate connectivity patterns if abnormal and may not
completely get filtered out [34]. Still, enthusiasm regard-
ing this imaging modality should not be tempered, provided
that focus is directed on overcoming standardization issues,
minimizing physiological noise, and improving the reliabil-
ity and reproducibility of results. Although this methodology
has the potential to elucidate the mechanistic underpinnings
of psychiatric disorders, the absence of an externally medi-
ated behavior means that it will likely continue to work in
conjunction with, rather than in lieu of, standard task-based
imaging.

Neuroimaging as a whole should continue to play a large
role in the search for biomarkers of bipolar disorder. While
sMRI has produced promising results, functional neuroimag-
ing has demonstrated strong clinical utility, as well as varia-
tions in functional activity, that appear to be roughly tied to
a potential structural etiology [19, 40]. To evaluate potential
abnormalities in the frontal cortex, resting-state fMRI has
emerged as a preferred imaging modality over traditional
task-related fMRI from a clinical perspective. Any abnor-
malities discovered may help define intervention targets with
increased precision. Future research should continue to work
towards determining the full clinical utility of resting-state
fMRI methods of analysis. A standardized method of data
collection is required for any evidence to be considered sig-
nificant going forward. Observed functional abnormalities
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should be emphasized, as these may contribute informa-
tion that may contribute towards concretely establishing
the structural etiology of bipolar disorder. Additionally, as
many studies are being conducted in a cross-sectional man-
ner, an increased number of longitudinal studies will serve
to help clarify the true relationship between structural and
functional abnormalities and bipolar disorder.

Conclusion

Recent literature on the utility of fMRI to determine bio-
markers for patients with bipolar disorder demonstrate its
potential to become a clinically dependent component of the
diagnostic and therapeutic processes. Before this becomes
concretely assimilated into practice, however, more con-
sistent high rates of classification accuracy are necessitated
for distinguishment between the various bipolar subtypes
and psychiatric disorders such as major depressive disorder
(MDD). In addition, while resting-state fMRI has exhib-
ited promise towards identifying corticolimbic biomarkers
in particular, there is still a need for additional studies to
establish reliable and clinically legitimate biomarkers in
bipolar patients.
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