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Abstract
Recent advances in highly conformal radiotherapies greatly extend the indications for radiotherapy of liver tumors. However, 
because of poor tolerance to hepatic radiation, estimation of the intensity of irradiation of the liver is important, particularly 
for a cirrhotic liver. Knowledge of radiation-induced hepatitis is important for understanding how to optimize hepatic radia-
tion therapy. Pathological changes of the irradiated liver, which include perivenular fibrosis, sinusoidal obstruction, and dam-
age to Kupffer cells and hepatocytes, can be visualized using clinical imaging techniques. This review article discusses and 
illustrates the pathological and radiological changes of hepatic tumors and the surrounding parenchyma of the irradiated liver.

Keywords  Radiation-induced liver disease · Focal liver injury · Focal liver reaction · Hepatocellular carcinoma · 
Pathology · Threshold dose

Introduction

Highly conformal radiotherapies such as stereotactic body 
radiotherapy and particle beam therapy can be safely 
administered. Knowledge of radiation-induced hepatitis is 
important for understanding how to optimize hepatic radia-
tion therapy. Radiation-induced hepatitis is described as 
“radiation hepatitis”, “radiation-induced hepatic toxicity”, 
“radiation-induced liver damage”, and “radiation-induced 
liver disease (RILD)”. RILD, which describes clinical and 
pathological features [1–4], refers to the severity of liver 
toxicity after high-dose radiotherapy delivered to large liver 
volumes or when the whole-liver tolerance dose (30–35 Gy) 
is exceeded during external beam radiotherapy (RT).

RILD has become infrequent since the advent of highly 
conformal radiotherapy methods. Focal liver changes fol-
lowing application of conformal radiotherapy techniques 
such as stereotactic ablative body radiotherapy, stereotactic 
body radiotherapy (SBRT), and proton and carbon ion ther-
apy, occur in the liver parenchyma surrounding irradiated 
tumors and may be symptomatic. The terms that describe 
post-irradiation imaging findings of computed tomogra-
phy (CT) and magnetic resonance imaging (MRI) include 
“focal liver injury”, “focal liver toxicity”, “focal liver reac-
tion”, “focal liver parenchymal damage”, and “focal partial 
liver irradiation effects” [5, 6]. There is no agreement on 
the terminology for describing focal hepatic changes after 
irradiation of the liver, and because most cases treated with 
highly conformal radiotherapy are inoperable, it is difficult 
to identify significant clinical associations of radiological 
findings with pathology.

Here, we use RILD to describe the effects of whole (clas-
sical) or focal (nonclassical) liver irradiation according to 
the original description published by Reed et al. [1]. We use 
“focal liver injury” to refer to focal hepatic radiation-induced 
changes revealed using CT and MRI. We discuss and illus-
trate the pathological and radiological changes of hepatic 
tumors and in the surrounding irradiated liver parenchyma.
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The clinical features of radiation‑induced 
liver disease

Post-irradiation liver damage ranges from asymptomatic 
conditions with or without biochemical abnormalities 
to fatal hepatic failure. The comprehensive term RILD 

includes conditions such as the different degrees of liver 
damage after veno-occlusive changes caused by whole or 
partial liver irradiation, although diagnostic criteria vary 
[2, 3]. Recent reports propose the separation of RILD into 
“classical” and “nonclassical” forms (Table 1) [4, 7, 8]. 
The onset of classical RILD occurs 2–12 weeks after radi-
ation therapy and appears after the whole-liver tolerance 

Table 1   Typical characteristics 
of hepatic radiation damage

RILD radiation-induced liver disease, CLD chronic liver disease, LFTs liver functional tests, ALP alkaline 
phosphatase, GOT glutamic-oxaloacetic transaminase, GPT glutamic pyruvic transaminase, Alb albumin, 
Plt platelet

CLD Fatigue Abdomi-
nal pain

LFTs Factors of Child–Pugh score

ascites T-bil Alb NH3 Plt

Classical RILD − + + ALP ↑↑
> 2 × the 

upper limit 
of normal

+ (↑) (↓) (↑) (↓)

Nonclassical RILD + + − GOT/GPT 
↑↑↑

5.0–
0.0 × upper 
limit of 
normal

+ ↑ ↓ ↑ ↓

Fig. 1   S8 HCC (arrowhead) treated with PBT (76 GyE/20 Fr). Dur-
ing the HAP of dynamic CT before treatment, irradiated surround-
ing liver tissue exhibited early enhancement caused by congestive 
changes in the sinusoids after liver irradiation during the acute phase 

(circle). T2WI T2-weighted image, HAP hepatic arterial phase, HBP 
hepato-biliary phase, HCC hepatocellular carcinoma, PBT proton 
beam therapy, GyE cobalt-gray equivalent, Fr fractions, HAP hepatic 
arterial phase
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dose (30–35 Gy) is exceeded. The hallmark of classical 
RILD is severe liver toxicity, accompanied by symptoms 
such as fatigue, abdominal pain, anicteric hepatomegaly, 
and ascites. An elevated level of alkaline phosphatase 
(> 2 × the upper limit of the normal or baseline value) is 

considered the most sensitive serum marker [9]. Patients 
with classical RILD progress to a chronic stage (liver 
fibrosis and failure) veno-occlusive disease (VOD) caused 
by radiation after 3–5 months [2, 8, 10].

Fig. 2   Straight-border sign after X-ray irradiation (60  Gy/30 
Fr/6 weeks). Dose-distribution lines for a patient with malignant mes-
othelioma who received postoperative radiation therapy of a pleural 
lesion (a). The straight-border sign (arrowhead) appeared at the end 

of treatment (b) and the irradiated area gradually shrank 5  months 
later (c). Scan delay for the HAP was 35-40 s, and the delayed phase 
(DP) was acquired 150 s after injection of the contrast enhancer. Pre 
unenhanced CT, HAP hepatic arterial phase, DP delayed phase



244	 Japanese Journal of Radiology (2018) 36:241–256

1 3

Nonclassical RILD, which is associated with the con-
formal RT technique, does not include the entire liver 
and causes focal liver damage. This serious condition is 
receiving attention now that whole organ irradiation is 

infrequently administered [7, 8, 11–13]. Most symptoms 
of nonclassical RILD resemble those of hepatic failure, 
including markedly elevated levels of serum transaminases 
and worsening of the Child–Pugh score (e.g., jaundice, 
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ascites). Morbidity depends on the extent of preexisting 
hepatic pathology. During the clinical course of patients 
with chronic liver disease, the onset of nonclassical RILD 
occurs 1–12 weeks after radiation therapy [5, 6].

The clinical utility of the diagnosis of nonclassical 
RILD and its underlying pathology is poorly understood. 
Efforts to generate a scoring system for nonclassical 
RILD according to the National Cancer Institute Com-
mon Terminology Criteria for Adverse Events (CTCAE) 
[14] include the introduction of the variables as follows: 
(1) Elevated levels of liver transaminases (greater than 
CTCAE Gr. 3) of patients with normal baseline values or 
greater than CTCAE Gr. 4 levels in patients with base-
line values greater than CTCAE Gr. 3. (2) Decline in 
liver function (worsening of Child–Pugh class ≥ 2) in the 
absence of classical RILD [7, 11]. Sanuki et al. define 
three clinically relevant events that affect overall sur-
vival of patients with hepatocellular carcinoma (HCC) 
if they occur within 12 months after administration of 
SBRT as follows: (1) Elevated liver transaminase levels 
(CTCAE Gr. 3) within 3 months of completion of RT. 
(2) Thrombocytopenia (CTCAE Gr. 3). (3) Worsening of 
the Child–Pugh score to > 8) [7]. CT and MRI of focally 
irradiated liver can identify focal hepatic changes. Some 
cases of focal liver injury after highly conformal irradia-
tion worsen to nonclassical RILD. To avoid misdiagnosis, 
radiologists should, therefore, become familiar with the 
imaging features of focal liver injury caused by liver irra-
diation and possible mimics (Figs. 1, 2, 3) [5, 6].

The pathological changes in irradiated liver

The pathological changes in irradiated liver can be 
approximately divided into acute (1–3 months), subacute 
(3–6 months), and chronic (> 6 months) phases. In the acute 
phase, massive portal and systemic venous congestion, fibrin 
thrombi within sinusoids, perisinusoidal hemorrhages, reac-
tive hyperemia, atrophy, and degeneration of hepatocytes are 

widely observed around the centrilobular areas of hepatic 
acinus, the so-called zone III. In this phase, Kupffer cells 
exhibit radiation damage. In the subacute phase, obstruc-
tion of sublobular veins is superimposed upon the acute-
phase findings. In the chronic phase, moderate elastosis 
in the walls of the central veins and mild elastosis in the 
walls of perivenular sinusoids cause occlusion of the central 
veins because of fibrosis, lobular collapse and distortion, and 
accumulation of Kupffer cells, occasionally with deposition 
of hemosiderin [2, 3, 5, 6].

The main pathological changes in the irradiated liver are 
congestion caused by obstruction of hepatic venous outflow 
through a combination of endothelial cell edema, terminal 
hepatic venule narrowing, sinusoidal congestion, zonal 
parenchymal atrophy, and accumulation of collagen in the 
subendothelial space (space of Disse). These events predom-
inate around zone III, and the histopathological features are 
similar to those of VOD induced by causes (e.g., high-dose 
chemotherapy, viral infection), including occlusive fibrosis 
of intrahepatic veins, congestion with extravasation of red 
blood cells, and alternating areas of hepatocyte atrophy and 
regeneration (Fig. 4) [1].

Radiation that damages the subendothelial basement 
membrane leads to activation and aggregation of platelets 
and stimulates dormant hepatic stellate cells [3, 4]. Dam-
age to the hepatic venule endothelium contributes to the 
formation of microthrombi that cause venous obstruction, 
panlobular congestion, hepatocyte loss, and fibrosis medi-
ated by transforming growth factor-β1 (TGF-β1) [15–18]. 
In animal studies, TGF-β1 levels increases in irradiated 
dose dependent and it was significantly correlated with the 
fibrosis [17, 18]. Further, radiation damage to Kupffer cells 
is important to consider when we evaluate the findings of 
superparamagnetic iron oxide (SPIO) MRI of the patients 
who undergo radiotherapy. The radiosensitivity of these 
specialized macrophages is higher compared with that of 
the hepatocyte [19].

CT and MRI imaging of RILD and focal liver 
injury

CT imaging

Whole-liver irradiation causes classical RILD, characterized 
by anicteric hepatomegaly and ascites without jaundice. CT 
imaging shows low periportal attenuation with or without 
enhancement and contrast-enhanced CT reveals heterog-
enous liver enhancement caused by liver congestion [20, 21].

After focal irradiation of the liver, the irradiated hepatic 
parenchyma, compared with the surrounding nonirradiated 
hepatic parenchyma, typically shows hypoattenuation on 

Fig. 3   Recurrent HCC of a man in his 70  s with hepatitis C-related 
liver cirrhosis, Child–Pugh class A. Recurrent HCC after TACE and 
RFA (S8, arrowhead) was treated using SBRT (60 Gy/10 Fr). Clini-
cal course analyzed using dynamic CT with planning dose distribu-
tions. The early enhancement of the tumor disappeared 1  month 
after SBRT, and focal liver injury appeared in the irradiated area (a). 
Unenhanced and enhanced CT revealed the irradiated hepatic paren-
chyma. In this case, type-1 findings according to Kimura’s classifi-
cation appeared from 1–6  months after treatment (b). Scan delays 
for HAP and PVP were 35–40 and 70  s, respectively. The DP was 
imaged 150  s after injection of the contrast medium. Pre unen-
hanced CT, HAP hepatic arterial phase, PVP portal venous phase, DP 
delayed phase, HCC hepatocellular carcinoma, TACE transcatheter 
arterial chemoembolization, RFA radiofrequency ablation, SBRT ste-
reotactic body radiotherapy

◂
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unenhanced CT and hyperattenuation on contrast-enhanced 
CT, with nonanatomical distribution secondary to focal 
congestive and fibrotic changes characteristic of focal liver 
injury.

Considering the relationship between pathological 
changes and imaging findings, the cause of hypoattenu-
ation on unenhanced CT is attributable to hepatic edema 
or congestion caused by pathologically focal VOD-related 
changes, fibrotic changes, hemorrhagic or necrotic changes 
or both. Radiotherapy causes venous occlusion and hepatic 
fibrosis, which change hepatic hemodynamics because of 
occluded venous drainage and decreased portal-vein inflow 
with compensating increased arterial inflow. Therefore, the 
abnormal early enhancement of the irradiated liver occurs 
during the arterial phase of dynamic CT and MRI.

The outflow obstruction caused by VOD, revealed by 
abnormal arterial enhancement, is followed by a hetero-
geneous portal venous phase and delayed-phase enhance-
ment caused by the concentration of contrast media in 
dilated hepatic sinusoids and the retention of contrast 
media in the interstitium of hypertrophied fibrous tissue, 
particularly during the delayed phase [22]. Further, there 
is delayed washout of contrast from fibrotic tissue. These 
factors explain why the irradiated parenchyma shows pro-
longed enhancement throughout the dynamic phases.

When nonconformal radiotherapy is administered to 
the liver, the borders of the altered attenuation areas are 
straight and their distributions are not anatomic. This is 
called a “straight-border sign” (Fig. 2). There are other 
causes of the straight-border sign, such as vascular 

Fig. 4   Pathological specimens of patients with hepatic VOD after 
liver irradiation. a A patient with lower intrathoracic esophageal can-
cer 10 days after completing curative chemoradiotherapy (88.4 Gy/52 
fractions/112 treatments. Loupe image of azan stain showing mas-
sive hepatic congestion around the centrilobular area (zone III, aster-
isk). b, c A patient with lung cancer in the left lower lobe 25 days 
after completion of chemoradiotherapy (40 Gy/20 fractions). Dilated 
hepatic sinusoids and aggregation of red blood cells (b, asterisk) are 
located in the centrilobular area [b, magnification (× 100) of the cen-

trilobular area stained with hematoxylin and eosin]. Moderate elasto-
sis in the wall of the central vein (c, arrow) and sinusoidal dilatation 
and mild elastosis in the walls of perivenular sinusoids (c, arrow-
head), reflecting panlobular congestion (c, magnification [× 100] of 
the centrilobular area stained using Elastic von Gieson stain). Histo-
pathological features of the radiation-induced liver disease are indis-
tinguishable from those of VOD caused by other pathologies. VOD 
veno-occlusive disease, PT portal tract
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obstruction, arterioportal shunt, focal fatty infiltration, and 
confluent hepatic fibrosis [21, 23]; however, they conform 
to an anatomical distribution. However, a pseudoanatomic 
distribution is occasionally observed after rectangular, 
two-port irradiation using a wedge device or proton beam 
irradiation (Fig. 1). Reference to planning dose-distribu-
tion lines will help correctly diagnose focal liver injury 
(Figs. 1, 5, 6, 7). The irradiated liver gradually shrinks; 
the surrounding liver parenchyma not exposed to radia-
tion undergoes compensatory hypertrophy, particularly 
in the chronic phase [24], and displays normal (lower) 
enhancement.

According to Kimura et  al. [25], the dynamic CT 
enhancement pattern after focal liver irradiation can be 
classified into the patterns as follows: Type 1, hyperden-
sity in all enhanced phases, which is observed in otherwise 

normal irradiated liver; Type 2, hypodensity in the arterial 
and portal venous phases; and Type 3, isodensity in all 
enhanced phases. Kimura et al. [25] further reported that 
the majority of subjects exhibited Type 1. Half of Types 
2 and 3 subjects (Child–Pugh class A) reverted to Type 
1. After 3–6 months, Child–Pugh class B was a signifi-
cant predictor of a Type 3 appearance. In most patients 
with Child–Pugh class A, the dynamic enhancement pat-
tern significantly reverted to Type 1 (Figs. 3, 6), remain-
ing stable for ≥ 1 year. These features most likely reflect 
the pathological changes after irradiation as a function of 
the severity and reversibility of the baseline pathology of 
the liver, such as the degree of hemodynamic alteration, 
hepatic fibrosis, and inflammation.

Fig. 5   Dose-distribution lines of different radiotherapy techniques: 
conventional external beam radiation therapy (a), stereotactic body 
radiotherapy (b), proton beam therapy (c), and carbon ion ther-
apy (d). In conformal radiotherapy such as SBRT or particle beam 

therapy, a straight border is not always present. To diagnose focal 
liver injury, it is important to refer to the radiation dose-distribution 
images. SBRT stereotactic body radiotherapy
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Fig. 6   CT images of focal liver injury after PBT for HCC. A man in 
his 70 s with hepatitis C-related liver cirrhosis, Child–Pugh A, with 
hypervascular HCC (S3, arrowhead) treated using PBT (66 GyE/10 
Fr) (a). Contrast-enhanced CT images before treatment (b), 3 months 
after (c), and 6 months after (d). Using Kimura’s Classification, type 
3 findings appeared 3 months after treatment (c), changing to type 1 

at 6  months (d). Scan delay for the HAP was 35–40  s and the DP 
was acquired 150 s after injection of the contrast medium. Pre unen-
hanced CT, HAP hepatic arterial phase, DP delayed phase, PBT pro-
ton beam therapy, HCC hepatocellular carcinoma, GyE cobalt-gray 
equivalent, Fr fractions
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MRI of RILD and focal liver injury

MRI analysis of Classical RILD reveals the same findings 
as CT, which includes anicteric hepatomegaly, ascites, and 
liver congestion. Further, periportal edema is revealed by 
hyperintensity in T2-weighted images (T2WIs) and het-
erogenous liver enhancement with enhanced contrast 
because of liver congestion.

After focal liver irradiation, MRI visualizes focal liver 
injury using various sequences (Figs. 1, 7, 8). The straight-
border sign of conventional radiotherapy, the border 
between the irradiated and nonirradiated liver can again be 

distinguished, and the conformal radiotherapy techniques 
identify their targets as rounded focal shapes. To diagnose 
focal liver injury, it is important to refer to the radiation 
dose-distribution images (Fig. 5). In areas of focal edema 
or congestion caused by VOD and hepatic fibrosis, irradi-
ated liver parenchyma typically exhibits a sharply defined 
wide band of hypointensity on T1-weighted images 
(T1WI), hyperintensity on T2WIs, slight hyperintensity 
on diffusion-weighted imaging (DWI), and low apparent 
diffusion coefficient (ADC) values correspond to the radia-
tion port [26–28]. Dynamic contrast-enhanced MRI often 
reveals early straight-border enhancement persisting into 
the delayed phase, similar to dynamic CT (Figs. 1, 7) [21, 

Fig. 7   A patient with nonalcoholic steatohepatitis, Child–Pugh class 
5, with a 30-mm HCC in S8 who underwent PBT (66 GyE/10 Fr). 
Imaging of irradiated liver using different sequences of dynamic 
EOB-MRI at treatment planning. Focal liver injury was apparent 
3  months after treatment, demonstrated by a well-defined band of 
hyperintensity on T2WI (a) and hypointensity on T1WI (c) of the 
irradiated liver, corresponding to the radiation port. The area under-
going arterial enhancement (d), which decreased in size after PBT, 
was observed as a sharp hypointense border between the irradiated 

and nonirradiated areas as a during the HBP of EOB-MRI (f). The 
area of HCC was hypointense in the DWI (b), suggesting the absence 
of viable HCC cells. The size of the focal area of the injured liver 
decreased and the decrease in the volume of the focal liver injury vol-
ume is revealed in this series of follow-up MRI images. HCC hepa-
tocellular carcinoma, PBT proton beam therapy, GyE cobalt-gray 
equivalent, Fr fractions, T2WI T2-weighted image, DWI diffusion-
weighted image, T1WI T1-weighted image, HBP hepato-biliary phase
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22]. These findings reflect the pathological changes of 
acute, subacute, and chronic disease phases.

The most sensitive technique that can visualize early 
phase focal liver injury may be SPIO-MRI [19]. Damage 
to Kupffer cells is accompanied by a functional decrease in 
their phagocytic capacity for SPIO. Decreased SPIO uptake 
appears as hyperintensity on long echo-time gradient images 
(Fig. 8). Although its use is currently limited to the detec-
tion of hepatocellular carcinoma [29], SPIO imaging can 
visualize focal liver injury earlier than hepatocyte-specific 
gadolinium agents such as gadoxetate disodium (gadolinium 
ethoxybenzyl diethylenetriamine pentaacetic acid [Gd-EOB-
DTPA]) and gadobenate disodium (gadobenate dimeglumine 
[Gd-BOPTA]) [30], which are widely used to identify HCCs 
and liver metastases [31, 32].

Gd-EOB-DTPA is mainly incorporated into hepatocytes 
by organic anion transporting polypeptide (OATP) 1B3 
and its uptake rate significantly correlates with OATP1B3 
expression in normal hepatocytes and HCC cells [33, 34]. 
OATP1B3 is predominantly expressed in hepatocytes dis-
tributed around zone III in normal liver parenchyma [35]. 
Because a major histopathological change in radiation-
induced liver damage predominantly occurs in zone III, the 
hepato-biliary phases (HBPs) of Gd-EOB-DTPA-enhanced 

MRI (EOB-MRI) can demonstrate focal liver injury as 
a defined hypointense area 3  months after irradiation 
(Fig. 7) [24].

Other reasons that explain why the hypointensity of irra-
diated parenchyma detected using EOB-MRI to analyze the 
HBPs include direct damage to hepatocytes, inhibition of 
the expression of the OATP1B3 receptor, and inhibition of 
Gd-EOB-DTPA transport by the accumulation of collagen in 
the subendothelial space (space of Disse). Moreover, hepato-
cytes as well as Kupffer cells and sinusoidal endothelial cells 
play key roles in reducing the signal intensity of EOB-MRI. 
The cytokines released by these cells influence the decrease 
of the Gd-EOB-DTPA uptake by transporter proteins in the 
irradiated parenchyma, thereby decreasing hepatocyte-spe-
cific Gd-EOB-DTPA uptake [36].

Likelihood of RILD after radiation therapy

The prediction of the likelihood of RILD is clinically impor-
tant for patients who undergo liver irradiation. The liver is 
a redundant organ, comprising multiple functional subunits 
(hepatic lobules) capable of regeneration that allow a part 
of the liver to be sacrificed without loss of function. Various 

Fig. 8   Each sequence in the MR 
imaging shows RILD. SPIO-
MRI long TE image (a), HAP 
with dynamic Gd-EOB-DTPA 
enhancement (b), T2WI (c), 
HBP with Gd-EOB-DTPA (d). 
The focal liver injury can be 
visualized on MRI using vari-
ous sequences. RILD radiation-
induced liver disease, SPIO 
super paramagnetic iron oxide, 
HAP hepatic arterial phase, 
HBP hepato-biliary phase
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approaches and models, which are available for predicting 
RILD, use radiation doses as variables in a mathematical 
model, for example, the Lyman–Kutcher–Burman normal 
tissue complication probability model [37–39]. Others use 
clinical and dosimetric variables as in the logistic regres-
sion model [40], an artificial neural network model [41], 
and dose-volume histogram analysis as in the Quantitative 
Analyses of Normal Tissue Effects in the Clinic (QUAN-
TEC) review [42, 43].

These theories are applied to a patient’s clinical back-
ground and the planning data for each treatment strategy. 
For example, in the QUANTEC review, the liver tolerance 
doses are divided according to a diagnosis of primary cancer 
arising in a liver with chronic liver disease vs metastasis 
arising in an otherwise normal liver [42, 43]. The QUAN-
TEC study separated patients undergoing whole vs focal 
liver irradiation. The important factors for predicting RILD 
are whole-liver radiation dose, background hepatic reserve, 
mean normal liver dose, and normal liver volume (less than 
the threshold dose) [42, 43].

The analysis of residual liver volume after resection is 
important and formulas are available that predict the stand-
ard liver volume [44, 45]. For example, the percentage vol-
ume of nonirradiated normal liver is significantly related 

to liver function after proton beam therapy [46]. However, 
no formula calculates the residual liver volume after radio-
therapy. If the focal hepatic changes in CT or MRI accurately 
shows damaged liver as a loss of functional area, determin-
ing the threshold doses of these changes may be clinically 
important for calculating residual liver volume before radia-
tion therapy to provide a preliminary estimate of residual 
liver volume before hepatectomy for HCC or liver metas-
tases [2, 47–50].

Nakamura et al. reported a useful prediction parameter for 
irradiated liver using EOB-MRI for SBRT of HCC. Briefly, 
their original parameter, weighted liver-spleen contrast for 
each radiation dose area for the HBP of EOB-MRI, is use-
ful for predicting changes in hepatic function after SBRT, 
independent of standard parameters, which are calculated 
according to the mean liver dose and the percentage of the 
liver volume exposed to > 20 Gy [51].

Fig. 9   Enhanced dynamic imaging of irradiated HCC and liver using 
Gd-EOB-DTPA. HCC (S5/6) treated using PBT 66 GyE/10 Fr before 
treatment (a). HAP at each follow-up period (b). HCC without early 
enhancement during the arterial phase. Volume reduction of the HCC 

and surrounding focal liver injury. Pre unenhanced CT, HAP hepatic 
arterial phase, TP transitional phase, HBP hepato-biliary phase, mo 
months, HCC hepatocellular carcinoma, PBT proton beam therapy, 
GyE cobalt-gray equivalent, Fr fractions
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Evaluation of the response of HCC 
after radiotherapy

It is important to evaluate the therapeutic response to malig-
nant tumors after radiation therapy, although assessment 
can be challenging. T1WI and T2WI images of recurrent 

tumors and the irradiated areas show similar characteristics. 
Most residual masses show hypointensity during the HBP of 
EOB-MRI and it is difficult to distinguish them from the sur-
rounding irradiated liver. In Gd-DTPA-enhanced dynamic 
MRI, recurrent HCC typically shows early enhancement, 
followed by a rapid washout (Figs. 9, 10, 11) [52]. However, 

Fig. 10   A man with HCC in his 70  s with hepatitis B-related liver 
cirrhosis, Child–Pugh class A, treated using PBT (66 GyE/10 Fr). 
Dynamic EOB-MRI images before treatment (a) and after treatment 
after 17 (b) and 27  months (c) show progression of the recurrent 
HCC after PBT. An irradiated HCC exhibiting a scar-like appearance 
that was hypointense during unenhanced and all enhancement phases 
(b, arrowhead). The focal liver injury surrounding the scar-like HCC 
area was hypointense in precontrast images, hyperintense during 
the HAP, hypointense during the PVP, and isointense during the TP 
(b). Focal liver injury surrounding a recurrent HCC (c) was hypoin-

tense in precontrast T1WIs and was locally controlled at 17 months, 
although regrowth of the tumor appeared after 27 months (c). Salvage 
TACE + RFA was administered and provided local tumor control for 
8 months until death. Scan delay of the HAP was 20–35 and 70–90 s 
for the PVP. DP was acquired 4–5 min after injection of the contrast 
medium. Pre unenhanced CT, HAP hepatic arterial phase, PVP portal 
venous phase, TP transitional phase, HCC hepatocellular carcinoma, 
PBT proton beam therapy, TACE transcatheter arterial chemoemboli-
zation, RFA radiofrequency ablation
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the irradiated liver parenchyma shows early enhancement 
and contrast enhancement tends to be more prominent and 
prolonged, as discussed in the section on CT and MRI 

imaging of RILD and focal liver injury. Thus, radiologists 
should be aware that the early stain of residual HCC may 
be masked in the early enhancement of the surrounding 
hepatic parenchyma. Characteristic findings revealed by the 
time-intensity curve of a dynamic MRI study with contrast 
enhancement provide clues that distinguish recurrent HCC 
from radiation-induced hepatic injury [52].

Several sets of response evaluation criteria are available 
for estimating the therapeutic effects on tumors. These cri-
teria are as follows: (1) Measuring changes in tumor size 
(WHO guidelines; Response Evaluation Criteria in Solid 
Tumors [RECIST]) [53, 54]. (2) Measuring changes in 
enhancement (European Association for the Study of the 
Liver [EASL] guidelines) [54, 55]. (3) Measuring changes in 
tumor enhancement size (Modified RECIST [m-RECIST]) 
[56, 57]. (4) Measuring tumor necrosis as an unenhanced 
area in the tumor [Response Evaluation Criteria in Can-
cer of the Liver by the Liver Cancer Study Group of Japan 
(RECICL)] guidelines (Fig. 11; Table 2) [58].

These criteria are used for patients with HCC who 
undergo chemotherapy, transarterial chemoembolization, 
and percutaneous ablation (percutaneous ethanol injec-
tion or radiofrequency). In contrast to these locoregional 

Fig. 11   Changes in arterial staining after treatment of HCC. Tumor 
regression with (a case 1) and without (b case 2, arrow) disappear-
ance of tumor staining. Tumor regression and the disappearance of 
tumor staining are useful for the estimation of therapeutic effects. 
However, some HCCs gradually become smaller without disappear-
ance of early staining. In these two cases, HCC was locally controlled 

longer than 3 years after PBT. Some HCCs exhibit arterial enhance-
ment after radiotherapy and the irradiated surrounding liver typically 
shows early enhancement. These findings are confusing and can be 
misdiagnosed as recurrent HCC. HAP hepatic arterial phase, HBP 
hepato-biliary phase, HCC hepatocellular carcinoma, PBT proton 
beam therapy

Table 2   Estimation of the therapeutic effect on HCC according to 
response evaluation criteria

Tumor regression shown in Fig. 11 without (a, Case 1) or with disap-
pearance of stained tumor tissue (b, Case 2, arrow). However, some 
HCCs underwent gradual decreases in size without the disappear-
ance of early staining. In these two cases, HCCs were locally con-
trolled > 3 years after PBT
PBT proton beam therapy, RECIST response evaluation criteria in 
solid tumors, m-RECIST modified RESIST, EASL European Associa-
tion for the Study of the Liver, RECICL response evaluation criteria 
in cancer of the liver by the Liver Cancer Study Group of Japan, PR 
partial response, CR complete response, TE treatment effect

Case 1 Case 2

At 3 months At 6 months At 3 months At 6 months

RECIST PR PR PR PR
m-RECIST CR CR PR PR
EASL CR CR PR PR
RECICL TE4(CR) TE4(CR) TE3(PR) TE3(PR)
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treatments, dynamic CT and MRI analyses of HCC after 
radiation therapy often show gradual decreases in tumor size 
with preserved arterial blood supply (Fig. 11) [59, 60]. It is 
important to know that the residual contrast enhancement 
of CT or MRI used to analyze HCCs does not necessarily 
indicate a remaining viable tumor [60].

Irradiated HCCs may retain early enhancement and, 
therefore, RECIST, EASL, m-RECIST, and RECICL miss 
or underestimate clinically complete and partial remissions 
of HCCs when assessing the therapeutic efficacy of locore-
gional radiation therapies. Local control is often assessed 
using CT and MRI to simply determine if there is incre-
mental tumor enlargement. For example, 93% of viable, 
treated HCCs show hyperintensity and hypointensity on 
DWI and ADC maps, respectively. Mean signal intensity 
ratios and ADC values of viable tumors are significantly 
higher and lower, respectively, compared with those of 
irradiated liver. These findings led to the conclusion that 
adding DWI to conventional MRI is useful for detecting 
viable HCC tumors treated with radiotherapy compared 
with conventional MRI alone (Fig.  7) [28]. However, 
standard criteria that consider this feature are not avail-
able for the evaluation of irradiated HCC. Further studies 
are, therefore, required to establish more accurate post-
radiation criteria to assess HCC.

Conclusions

Knowledge of the pathological changes and imaging fea-
tures of RILD and the changes in the surrounding liver and 
irradiated regions are important for understanding imaging 
findings after radiation therapy. Focal liver injury after focal 
liver irradiation can be visualized during the HBP of EOB-
MRI. Caution must be used in monitoring HCC after radia-
tion therapy, because some nonviable lesions retain arterial 
enhancement. DWI may be helpful in these cases, although 
further study is required to evaluate therapeutic effects.
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