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regression analysis was performed to determine the associ-
ation between the CT data and forced vital capacity (FVC).
Results  For each scanner, the extent of fibrosis as deter-
mined by GHNC was significantly correlated with the radi-
ologists’ score. In multivariate analysis, the extent of fibro-
sis as determined by GHNC was significantly correlated 
with FVC (p < 0.001). There was no significant difference 
between the results obtained using different CT scanners.
Conclusion  Gaussian histogram normalized correlation 
was feasible, irrespective of the type of CT scanner used.

Keywords  Computer-aided design · Lung · Lung 
disease · Multidetector computed tomography · Pulmonary 
fibrosis

Introduction

Idiopathic pulmonary fibrosis (IPF) is a devastating lung 
disease that leads to breathlessness and ultimately respira-
tory failure and death [1]. Some new drugs (e.g., pirfeni-
done and nintedanib) have recently been developed that 
could significantly reduce the rate of disease progression 
[2–6]. Pirfenidone could improve progression-free sur-
vival [5]. The development of drugs for pulmonary fibro-
sis has increased the demand for biomarkers that can be 
used to evaluate disease progression and the effect of 
these drugs. In previous randomized trials [5, 6], a decline 
in the forced vital capacity (FVC) was used as one meas-
ure. However, the FVC is not decreased early in the dis-
ease, and the FVC is affected by emphysema. Pulmonary 
function tests (PFTs) are not easy to perform for patients 
with oxygen therapy and a history of pneumothorax. 
Thus, accurate surrogate markers are needed to manage 
patients with IPF.

Abstract 
Purpose  To evaluate the feasibility of automated quan-
titative analysis with a three-dimensional (3D) computer-
aided system (i.e., Gaussian histogram normalized correla-
tion, GHNC) of computed tomography (CT) images from 
different scanners.
Materials and methods  Each institution’s review board 
approved the research protocol. Informed patient con-
sent was not required. The participants in this multicenter 
prospective study were 80 patients (65 men, 15 women) 
with idiopathic pulmonary fibrosis. Their mean age was 
70.6  years. Computed tomography (CT) images were 
obtained by four different scanners set at different expo-
sures. We measured the extent of fibrosis using GHNC, 
and used Pearson’s correlation analysis, Bland–Altman 
plots, and kappa analysis to directly compare the GHNC 
results with manual scoring by radiologists. Multiple linear 
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Computed tomography (CT) is an essential imaging 
modality for detecting and diagnosing IPF [1, 7]. Many 
studies have demonstrated a high correlation between the 
severity of CT findings, pulmonary function, and progno-
sis [8–11]. Thus, if simple and reliable methods need to 
be established, quantitative analysis of CT is a potential 
candidate. Visual inspection and scoring are conventional 
methods for quantitatively evaluating lung abnormalities on 
CT [11]. Visual scoring, however, is a difficult task for less 
experienced radiologists. In addition, visual assessment 
by expert chest radiologists is associated with substantial 
intra- and inter-reader variability [12, 13].

To circumvent these shortfalls, automated and objective 
tools using computer-assisted diagnosis (CAD) have been 
proposed [10, 14–22]. From a technological standpoint, 
CAD for diffuse lung disease is commonly viewed as a tex-
ture analysis problem [23]. An artificial neural network has 
been applied to solve this problem [17, 19]. However, an 
artificial neural network requires a larger number of train-
ing datasets (e.g., more than one hundred datasets) [24]. 
This requirement is a disadvantage for relatively rare dis-
eases such as IPF. Some systems based on artificial neural 
networks cannot be applied to different types of scanners 
from those used to train the network [22].

In this study, we examined the clinical utility of the 
Gaussian histogram normalized correlation (GHNC) sys-
tem. Gaussian histogram normalized correlation requires a 
small number of datasets—approximately 20 datasets—for 
use as predesigned samples. The original two-dimensional 
(2D) version was reported by Asakura et al. [25], and the 
three-dimensional (3D) version was reported by Iwao et al. 
[26]. The feasibility and utility of the 2D version was dem-
onstrated in a single-center study [27, 28]. We conducted a 
multicenter, multivendor prospective study to examine the 
3D version of GHNC for analyzing images obtained by dif-
ferent scanners under different exposure conditions using a 
determined sample. We also compared the GHNC results 
with conventional radiologists’ scores and with FVC val-
ues. We evaluated the feasibility of using GHNC for differ-
ent scanners.

Materials and methods

Patients

This research protocol was approved by each institution’s 
review board. Informed patient consent was not required. 
All IPF patients who underwent CT examination at each 
institution between January 2011 and April 2012 were 
potential candidates for this study. We enrolled 80 con-
secutive patients (20 patients each for four scanners) who 
underwent PFTs within 3  months of a CT examination. 

In this study, IPF was diagnosed based on the criteria 
developed by the American Thoracic Society [1]. Clini-
cians at each institution confirmed the diagnosis of IPF for 
each patient. The diagnosis was based on a review of the 
patient’s clinical history, occupational and environmental 
exposure, results of PFTs, thin-section CT images of the 
lungs, and, when available, transbronchial or surgical lung 
biopsy. The major exclusion criteria were patients with a 
history of thoracic surgery and patients with acute exacer-
bation, pneumothorax, or active respiratory infection. We 
also excluded patients who could not hold their breath. The 
inclusion and exclusion criteria were same regardless of the 
scanner used.

The PFTs were performed using three systems: 
CHESTAC-8800 (Chest M.I. Co., Tokyo, Japan), 
CHESTAC-33 (Chest M.I. Co.), and Fudac-77 (Fukuda 
Denshi, Tokyo, Japan). The forced vital capacity and 
forced expiratory volume in 1  s (FEV1) were obtained. 
Total lung capacity (TLC) and diffusing capacity were also 
measured in some patients using common standard meas-
urement techniques [29]. The results were expressed as the 
percentage of predicted performance using standard values 
[29].

CT images

Thin-section CT images were obtained by four types of 
scanners during inspiration with the patient positioned 
supine in the scanner, and the routine exposure condi-
tions of each institution were used. Table 1 lists the scan-
ners and exposure conditions employed. The four types 
of scanners were: (CT-1) Light Speed, a 16-row multide-
tector CT (MDCT) (General Electric Medical Systems, 
Milwaukee, WI, USA); (CT-2) Brilliance iCT, a 128-row 
MDCT (Philips Healthcare, Best, the Netherlands); (CT-3) 
Aquilion-16, a 16-row MDCT (Toshiba, Tokyo, Japan); and 
(CT-4) Aquilion-64, a 64-row MDCT (Toshiba). The volt-
age was 120 kVp for all scanners. The current and range 
of the CT dose index (CTDI) of each scanner were as fol-
lows: variable milliamps × seconds (mAs) below 220 mAs 
and 10.97–14.8 mGy for CT-1; 200 mAs and 9.0 mGy for 
CT-2; 250 mAs and 16.4 mGy for CT-3, and variable mAs 
below 300 mAs (12.6–19.6 mGy) for CT-4. The slice thick-
ness was 1.25 mm for CT-1, 1 mm for CT-2, and 0.5 mm 
for CT-3 and CT-4. For image reconstruction, filtered back-
projection was used for the CT-1, CT-3, and CT-4 scanners, 
and iterative reconstruction was used for the CT-2 scan-
ner. Each institution was requested to reconstruct images 
with the “soft” reconstruction kernel for GHNC analysis 
because in 2011 GHNC could not analyze the kernel for 
high-resolution CT (HRCT) (e.g., bone algorithm of the 
GE system) in which the distribution of pixel values within 
the local region changes [30].



18	 Jpn J Radiol (2016) 34:16–27

1 3

CAD analysis

All CAD analyses were performed by one author. Before 
the segmentation process, we corrected the CT values 
by the mean attenuation value (−1000) in the tracheal 
gas [30]. The lung was extracted from the 3D CT data-
set using the algorithm reported by Iwao et al. [26]. We 
extracted the lung using the optional threshold, adaptive 
density-based morphology, and minimal manual inter-
vention. We segmented the bronchial tree and pulmonary 
vessels with the failure-recovery algorithm. After extract-
ing the lung, each lesion was segmented using GHNC 
[25].

In brief, GHNC divides the pixels of the lung into five 
categories based on the predesigned samples using CT 
attenuation values and local histograms of them. The five 
categories were as follows: “normal,” “emphysema,” 
“ground glass opacity” (“GGO”), “consolidation,” and 
“fibrosis.” Fibrosis was also subdivided into “reticulation” 
and “honeycomb” (see Fig. 1 and the “Appendix”). For the 
analysis, we used 121 samples: 50 normal, 15 emphysema, 
15 GGO, 5 consolidation, 21 reticulation, and 15 honey-
comb samples. These samples were obtained from the CT 
datasets of 14 patients and seven normal individuals who 
were not patients included in this multicenter study. The 
volume of the diseased lung and the total CT lung vol-
ume (CTLV) were computed automatically by the GHNC 
system.

Scoring of HRCT lesions by radiologists

The CT images were reviewed separately by two radiolo-
gists who were blinded to the clinical information and the 
GHNC results. Both radiologists were board-certified diag-
nostic radiologists who were majoring in the chest. Each 
radiologist had 15 years of experience.

The lungs were divided into eight zones (“upper,” “mid-
dle,” “lower,” and “bottom” on both sides). Each zone was 
evaluated separately. The upper lung zone was the area of 
the lung at the aortic arch; the middle lung zone was at the 
level of the tracheal carina; the lower lung zone was the 
area of the lung between the middle and bottom zones, and 
the bottom lung zone was the area of the lung 1 cm below 
the dome of the diaphragm.

The observers evaluated the extent of all radiological 
abnormalities of emphysema, GGO, consolidation, and 
fibrosis (i.e., reticulation and honeycombing). The defini-
tion of each lesion was based on the definitions provided in 
previous studies [9, 31]. When abnormal findings were pre-
sent, the extent of lung involvement was evaluated visually 
and independently for each of the eight lung zones. The 
score was based on the percentage of the lung parenchyma 
that showed evidence of abnormality and was estimated to 
the nearest 5 % of the parenchyma. To calculate the score 
for the patient, we used the average of the scores for the 
eight zones. The radiologists evaluated the CT data once. 
We used the average of the two radiologists’ scores as the 
consensus result.

Statistical analysis

First, using Pearson’s correlation analysis, we compared 
the total extent of each lesion (based on the radiologists’ 
scores) and the volume (based on the GHNC results). 
Second, interobserver differences (i.e., between the two 
radiologists and between the radiologists and GHNC) 
were evaluated by weighted kappa analysis. The extent 
of each lesion was classified into 11 categories: from 0 to 
less than 5 %; 5 % or greater to less than 10 %; 10 % or 
greater to less than 20  %, and each subsequent 10  % in 
steps up to 100 %. Interobserver agreement was classified 
as slight (κ =  0.00–0.20), fair (κ =  0.21–0.40), moderate 

Table 1   Exposure conditions and selected samples for Gaussian histogram normalized correlation analysis

CTDI vol, volume computed tomography dose index, mAs milliamps × seconds

CT-1 CT-2 CT-3 CT-4

Light Speed Ultra 16 (General 
Electric Medical Systems)

Brilliance iCT (Philips Health-
care)

Acquilion 16 (Toshiba) Acquilion 64 (Toshiba)

Number of detector rows 0.625 × 16 0.625 × 128 0.5 × 16 0.5 × 64

Voltage (kVp) 120 120 120 120

Exposure conditions Variable mAs, <220 mA 200 mAs 250 mAs Variable mAs, <300 mAs

CTDI vol (mGy) 10.97–14.80 9.0 16.4 12.5–19.6

Reconstruction method Filtered backprojection Iterative reconstruction (iDOSE4 
algorithm, Philips Healthcare)

Filtered backprojection Filtered backprojection

Slice thickness 1.25 mm 1 mm 0.5 mm 0.5 mm

Reconstruction kernel Standard B FC-03 FC-03
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(κ  =  0.41–0.60), substantial (κ  =  0.61–0.80), or nearly 
perfect (κ  =  0.81–1.00). Third, the limits of agreement 
between the radiologists’ scores and the GHNC results 
were also analyzed by Bland–Altman analysis. Fourth, we 
evaluated the relationship between the extent of fibrosis on 
CT and the FVC percentage. To investigate the influence 
of the type of CT scanner used, multiple linear regression 
analysis was performed. All statistical analyses were per-
formed by SPSS v.20 software (SPSS Inc., Chicago, IL, 
USA). A p value of less than 0.05 was considered signifi-
cant in all statistical analyses.

Results

Table 2 lists the patients’ characteristics. The patients com-
prised 65 men and 15 women with a mean age ± standard 
deviation of 70.6 ± 6.3 years and a median age of 71 years 
(range 48–83  years). There was no significant difference 
between the scanners with regard to patients’ age, sex, and 
PFTs; however, there was a significant difference in smok-
ing history (p = 0.031).

The GHNC system successfully analyzed all CT images 
(Fig. 2). A period of 20–30 min was required to complete 
the analysis of a single patient: 10–15 min for the lung seg-
mentation process and 10–15 min for the GHNC segmenta-
tion process. The processing time increased in accordance 
with the number of images. In addition, the lung segmenta-
tion process required longer when manual correction was 
needed.

Table 3 shows the mean radiologists’ scores, the extent 
of each lesion based on GHNC, and the Pearson’s corre-
lation coefficients between the mean radiologists’ scores 
and the GHNC results. There was no significant difference 
between the scanners in the extent of each lesion evaluated 
by the radiologists. The GHNC results were significantly 
correlated with the mean radiologists’ scores (p  <  0.001) 
with a correlation coefficient of 0.895 for normal, 0.933 for 
emphysema, 0.751 for GGO, 0.388 for consolidation, and 
0.884 for fibrosis in the 80 patients. Consolidation in CT-3 
did not show any significant correlation.

Table 4 shows the results of a comparison of the scores 
of the two radiologists and a comparison of the consen-
sus results from the radiologists versus the GHNC results, 

Fig. 1   Scheme of the Gaussian histogram normalized correlation 
(GHNC) system. Samples of typical lesions are arranged to obtain 
histograms for the original images and the differential CT images 
(a differential image is an image with defined figure edges). We pre-
pared Gaussian histograms of all pixels in the original images and 

the differential CT images. The normalized correlations between the 
Gaussian histogram of each pixel and the histograms of samples were 
analyzed. All pixels were divided into lesions and later computed into 
color images (i.e., GHNC images). The algorithm for the GHNC is 
summarized in the “Appendix”



20	 Jpn J Radiol (2016) 34:16–27

1 3

performed using weighted kappa analysis. Across all lesion 
types (except for consolidation), kappa ranged from 0.51 to 
0.70 when the two radiologists’ scores were compared, and 
from 0.48 to 0.65 when the consensus results from the radi-
ologists were compared to the results of GHNC. Consoli-
dation was small (0.17 % of the mean) among the patients: 
64 of 80 patients had no consolidation based on the radi-
ologists’ consensus scores. Thus, the kappa values for con-
solidation when the consensus results from the radiologists 
were compared to the results of GHNC were not calculated 
because nearly all of the assessment results fell within the 
0–5 % category.

Figure 3 show Bland–Altman plots of mean radiologists’ 
score versus the difference between the GHNC result and 
the mean radiologists’ score. The mean difference between 
the GHNC result and the mean radiologists’ score and the 
limits of agreement between them (in parentheses) were 
as follows: −2.3 % (−16.2 to −11.6 %) for normal; 0.1 % 
(−5.1 to 5.2 %) for emphysema; 2.6 % (−6.2 to 11.4 %) 
for GGO; 0.4  % (−1.4 to 2.2  %) for consolidation; and 
−0.8 % (−11.1 to 9.6 %) for fibrosis (see Table 5). There 
was no significant difference between the results obtained 
with different scanners.

Figure  4 and Table  6 show the correlations of the per-
cent of predicted FVC (FVCpred %) with the GHNC result 
and the FVCpred  % with the mean radiologist’s score. 
The extent of each lesion (except for emphysema) and the 
FVCpred  % showed a good correlation. The correlation 
coefficients were −0.524 for fibrosis based on the mean 
radiologists’ scores (p  <  0.001) and −0.671 for fibrosis 
based on the GHNC results (p < 0.001).

Table  7 shows the results of using multiple lin-
ear regression analysis to explore the percent of FVC. 
We included CT scanner, patient age, sex, and smok-
ing history in the analysis. Due to the multicollinearity 

problem, we also included the extent of fibrosis among 
the lesions based on either the mean radiologists’ score 
or the GHNC result. Data obtained using scanners CT-1, 
CT-2, and CT-3 were each treated as independent cat-
egorical data, and data obtained using scanner CT-4 
were considered reference data. The extent of fibrosis 
(by percentage) based on the GHNC result was found to 
be a significant factor (p  <  0.001). The extent of fibro-
sis based on the mean radiologists’ score was margin-
ally significant (p = 0.050). The was no significant dif-
ference between the results obtained using different CT 
scanners.

Discussion

This multicenter study showed that the GHNC system 
successfully analyzed multivendor CT images that were 
obtained under different exposure conditions. Based on 
Pearson’s correlation analysis and kappa analysis, the 
GHNC result was strongly correlated with the mean radi-
ologists’ score. The mean difference between these two 
measures of the extent of fibrosis was less than 3 % in the 
Bland–Altman plots. There was no significant difference 
between the results obtained using the different scanners, 
indicating that it is feasible to use GHNC with different 
scanners. Furthermore, multiple linear regression analy-
sis showed that the extent of fibrosis on CT, based on the 
GHNC result, was significantly correlated with the FVC. 
Again, the choice of CT scanner did not significantly influ-
ence the results. The FVC is a popular biomarker that is 
used to measure the progression of IPF [5]. Thus, our 
results show the possibility of using GHNC results as a 
biomarker of disease severity and the effect of treatment in 
patients with IPF.

Table 2   Patient characteristics

The data presented are the number (n) or the mean ± the standard deviation. The scanners used were: CT-1, Light Speed Ultra 16 (General Elec-
tric Medical Systems); CT-2, Brilliance iCT (Philips Healthcare); CT-3, Acquilion 16 (Toshiba); CT-4, Acquilion 64 (Toshiba)

DLCOpred  % percent of predicted diffusion capacity of the lung for carbon monoxide, F female, FEV1pred  % percent of predicted forced 
expiratory volume in 1 s, FVCpred % percent of predicted forced vital capacity, M male, NS not significant TLC total lung capacity, VCpred % 
percent of predicted vital capacity

Total (n = 80) CT-1 (n = 20) CT-2 (n = 20) CT-3 (n = 20) CT-4 (n = 20) p

Age (y) 70.6 ± 6.3 69.6 ± 8.2 72.5 ± 4.6 69.1 ± 7.6 71.4 ± 4.3 NS

Sex (M/F) 65/15 14/6 17/3 16/4 18/2 NS

Smoking (pack-year, 
range)

36.1 0–177 36.0 0–152 46.20–177 29.4 0–90 22.9 0–80 0.031

VCpred % 78.5 ± 18.6 79.3 ± 22.7 84.5 ± 15.3 75.6 ± 20.4 74.5 ± 14.4 NS

FVCpred % 79.9 ± 19.7 79.8 ± 24.8 86.9 ± 15.9 77.1 ± 21.4 75.7 ± 14.8 NS

FEV1pred % 81.2 ± 18.7 81.9 ± 23.3 88.6 ± 13.0 76.9 ± 19.4 77.5 ± 16.6 NS

TLCpred % 74.9 ± 18.0 (n = 70) 80.3 ± 14.0 (n = 15) 79.0 ± 25.4 (n = 18) 73.9 ± 16.0 (n = 17) 68.0 ± 11.9 (n = 20) NS

DLCOpred % 75.3 ± 19.6 (n = 69) 81.7 ± 20.2 (n = 15) 75.2 ± 15.4 (n = 17) 77.4 ± 17.6 (n = 17) 68.7 ± 23.1 (n = 20) NS
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Fig. 2   The Gaussian histogram normalized correlation (GHNC) 
results for the four CT scanners. a, d, g, j Coronal reconstruction 
images. b, e, h, k Coronal GHNC images. c, f, i, l Volume-rendered 
three-dimensional (3D) images. a, b, c The CT-1 scanner. d, e, f The 

CT-2 scanner. g, h, i The CT-3 scanner. j, k, l The CT-4 scanner. Pink 
normal lung tissue, dark blue emphysema, light green ground glass 
opacity, yellow and light blue fibrosis, green the bronchi, light orange 
the blood vessels
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To the best of our knowledge, research into computer 
analysis of CT images of diffuse lung disease began in 
the 1990s [17]. The segmentation problem of diffuse lung 
disease is a common texture analysis problem. Previous 

studies have been characterized by viewpoints such as (i) 
2D or 3D images, (ii) the type of regions of interest used for 
assessment, (iii) the texture features used for analysis, and 
(iv) the statistical methods used to identify these features 

Table 3   Mean extent of each 
lesion, and the correlation 
coefficients between the mean 
radiologists’ scores and the 
results of computer analysis

The following scanners were used: CT-1, Light Speed Ultra 16 (General Electric Medical Systems); CT-2, 
Brilliance iCT (Philips Healthcare); CT-3, Acquilion 16 (Toshiba); CT-4, Acquilion 64 (Toshiba). Unless 
otherwise indicated, the data are statistically significant at p < 0.001

NS indicates statistical significance at p > 0.05

GGO ground glass opacity, GHNC Gaussian histogram normalized correlation

Total (n = 80) CT-1 (n = 20) CT-2 (n = 20) CT-3 (n = 20) CT-4 (n = 20)

Radiologist score (%)

 Normal 68.7 ± 14.5 71.8 ± 13.3 68.7 ± 11.8 69.7 ± 14.9 64.7 ± 17.7

 Emphysema 2.8 ± 6.9 1.8 ± 3.6 5.8 ± 10.1 2.5 ± 7.7 0.92 ± 2.4

 GGO 9.2 ± 6.0 9.0 ± 4.4 9.3 ± 6.9 9.5 ± 8.0 9.2 ± 4.8

 Consolidation 0.17 ± 0.56 0.09 ± 0.35 0.23 ± 0.70 0.06 ± 0.16 0.29 ± 0.78

 Fibrosis 19.1 ± 14.2 17.3 ± 10.4 15.9 ± 7.7 18.2 ± 14.2 24.8 ± 14.2

GHNC results (%)

 Normal 66.4 ± 15.5 69.0 ± 15.2 69.3 ± 11.5 63.5 ± 18.5 64.0 ± 16.2

 Emphysema 2.9 ± 5.8 1.2 ± 2.0 5.0 ± 7.8 3.5 ± 7.5 1.7 ± 2.5

 GGO 12.5 ± 5.5 9.4 ± 4.5 13.3 ± 8.4 12.3 ± 5.8 11.9 ± 6.3

 Consolidation 0.59 ± 0.93 0.33 ± 0.46 0.59 ± 0.80 0.78 ± 1.42 0.61 ± 0.78

 Fibrosis 18.2 ± 9.4 17.1 ± 9.4 15.6 ± 7.7 19.0 ± 9.2 21.4 ± 10.7

Pearson’s correlation coefficient

 Normal 0.895 0.898 0.784 0.945 0.959

 Emphysema 0.933 0.887 0.964 0.952 0.716

 GGO 0.751 0.741 0.689 0.879 0.741

 Consolidation 0.388 0.671 0.471 NS 0.775

 Fibrosis 0.884 0.898 0.821 0.844 0.932

Table 4   Comparison of the two radiologists’ scores and comparison of the consensus results from the radiologists with the computer-assisted 
diagnosis results, achieved using weighted kappa analysis

Data presented are weighted kappa values and 95 % confidence intervals. The scanners used were: CT-1, Light Speed Ultra 16 (General Electric 
Medical Systems); CT-2, Brilliance iCT (Philips Healthcare); CT-3, Acquilion 16 (Toshiba); CT-4, Acquilion 64 (Toshiba)

NA Value could not be estimated because all of the results of assessments were concentrated into one category: 0–5 %

CAD computer-assisted diagnosis, GGO ground glass opacity, GHNC Gaussian histogram normalized correlation

Total (n = 80) CT-1 (n = 20) CT-2 (n = 20) CT-3 (n = 20) CT-4 (n = 20)

Comparison of the scores of the two radiologists

 Normal 0.63 (0.58–0.68) 0.67 (0.58–0.76) 0.63 (0.53–0.73) 0.61 (0.51–0.72) 0.63 (0.53–0.72)

 Emphysema 0.7 (0.60–0.80) 0.29 (−0.09 to 0.68) 0.69 (0.58–0.81) 0.86 (0.74–0.99) 0.59 (0.26–0.91)

 GGO 0.51 (0.45–0.58) 0.44 (0.33–0.56) 0.51 (0.37–0.65) 0.59 (0.45–0.72) 0.5 (0.37–0.64)

 Consolidation 0.28 (−0.18 to 0.75) 0 0.66 (0.04–1.00) NA 0

 Fibrosis 0.55 (0.49–0.61) 0.57 (0.47–0.68) 0.53 (0.42–0.65) 0.56 (0.45–0.68) 0.52 (0.39–0.64)

Comparison of consensus results from radiologists and results from CAD

 Normal 0.65 (0.57–0.73) 0.58 (0.39–0.77) 0.54 (0.34–0.74) 0.59 (0.46–0.72) 0.82 (0.69–0.95)

 Emphysema 0.80 (0.64–0.96) 0.63 (0.30–0.96) 0.89 (0.75–1.00) 0.71 (0.26–1.00) 0.77 (0.35–1.00)

 GGO 0.48 (0.36–0.60) 0.46 (0.23–0.68) 0.43 (0.22–0.63) 0.45 (0.25–0.64) 0.59 (0.36–0.83)

 Consolidation NA NA NA NA NA

 Fibrosis 0.62 (0.52–0.72) 0.58 (0.39–0.77) 0.62 (0.36–0.87) 0.65 (0.4–0.89) 0.59 (0.44–0.73)
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[32]. In studies performed in the 1990s, the lungs were sep-
arated into small blocks, and each block was analyzed on 
limited 2D images [17]. Pixel-based analysis of 3D images 
such as GHNC has commonly been used in recent studies 
[16]. The texture features and statistical methods employed 
vary among the studies. First, an artificial neural network 
is applied to solve the segmentation problem. Uppaluri 

et al. [17] used the adaptive multiple feature method with 
22 independent texture features to classify the tissue pat-
tern. Rosas et al. [19] analyzed CT images with 25 texture 
features by using a smart vector machine. These artificial 
neural network methods involve relatively large computa-
tional costs. Thus, Zavaletta et al. [18] proposed a method 
that uses a histogram of CT attenuation values. They clus-
tered the histogram into K clusters, and defined the histo-
gram signature using the centroid and weight of the cluster. 
They established the canonical signature by using voxels of 
interest (VOIs), and expert radiologists selected VOIs that 
included 70  % or more typical lesions. They then calcu-
lated the similarity between the target voxels and the 809 
sample VOIs using the Earth Mover’s Distance [18]. Mal-
donado et  al. [10] analyzed the CT data of patients with 
IPF by using computer-aided lung informatics for pathol-
ogy evaluation and rating (CALIPER), based on Zavaletta’s 
method; they found that the results of CALIPER correlated 
well with the PFT results and with the patient’s prognosis.

In the current study, we used GHNC, which is a histo-
gram-based method. The differences between this method 
and Zavaletta’s method are that (i) GHNC estimates the 
similarity of the histogram using normalized correlation, 

Fig. 3   Bland–Altman scatter plots showing the correlation between 
the GHNC analysis result and the mean radiologists’ score based 
on the images from 80 patients. The vertical axis shows the differ-
ence between the GHNC result and the mean radiologists’ score 
(i.e., the GHNC result minus the mean radiologists’ score). The solid 
line shows the mean of this difference. The dotted lines indicate the 

mean  ±  (2  ×  standard deviation). The scanners used were: CT-1 
(unfilled circles), Light Speed Ultra 16 (General Electric Medical 
Systems); CT-2 (filled circles), Brilliance iCT (Philips Healthcare); 
CT-3 (unfilled triangles), Acquilion 16 (Toshiba); CT-4 (crosses), 
Acquilion 64 (Toshiba). GHNC Gaussian histogram normalized cor-
relation

Table 5   Mean difference between the GHNC results and the mean radiologists’ scores and the limits of agreement between them (in parenthe-
ses), listed for each scanner used and for each type of lesion

Data presented are the mean (limits of agreement). The scanners used were: CT-1, Light Speed Ultra 16 (General Electric Medical Systems); 
CT-2, Brilliance iCT (Philips Healthcare); CT-3, Acquilion 16 (Toshiba); CT-4, Acquilion 64 (Toshiba)

GGO ground glass opacity

Total (n = 80) CT-1 (n = 20) CT-2 (n = 20) CT-3 (n = 20) CT-4 (n = 20)

Normal −2.3 (−16.2 to 11.6) −2.7 (−16.1 to 10.6) 0.58 (−14.8 to 16.0) −6.2 (−19.5 to 6.9) −0.7 (−10.9 to 9.3)

Emphysema 0.1 (−5.1 to 5.2) −0.7 (−4.6 to 3.4) −0.8 (−7.6 to 6.0) 1.0 (−3.7 to 5.8) 0.8 (−2.9 to 4.5)

GGO 2.6 (−6.2 to 11.4) 3.4 (−4.1 to 11.0) 0.1 (−9.9 to 10.1) 3.8 (−4.3 to 11.9) 3.1 (−4.8 to 10.9)

Consolidation 0.4 (−1.4 to 2.2) 0.2 (−0.4 to 0.9) 0.4 (−1.2 to 1.9) 0.7 (−2.2 to 3.6) 0.3 (−0.7 to 1.4)

Fibrosis −0.78 (−11.1 to 9.6) −0.2 (−9.2 to 8.9) 0.3 (−9.4 to 8.9) 0.7 (−9.7 to 11.2) −3.4 (−14.7 to 8.0)

Fig. 4   Scatter plots showing the correlations of the percent of 
predicted forced vital capacity with the mean radiologists’ score 
(left) and with the GHNC result (right) for fibrosis in 80 patients 
(p < 0.001)
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and (ii) GHNC uses a histogram of the original images 
and the differential images. Usual interstitial pneumonia 
(UIP) pathologically appears as a patchwork pattern: severe 
fibrosis juxtaposed next to normal lung. Honeycomb lung 
includes air in the surrounding fibrosis [33]. Thus, UIP pat-
tern fibrosis yields larger standard deviations, higher pixel 
values on differential images, and has a broader histogram 
than seen for other lesions (i.e., normal, emphysema, GGO) 
(Fig.  1). Thus, GHNC can easily detect the similarity, in 
terms of fibrosis, between the samples and target pixels. 
We believe that this is one reason for the smaller number 

of samples (121 in total) in our study than in Zavaletta’s 
(809 in total). The tested GHNC system requires a rela-
tively long analysis time. We believe that this is primarily 
due to our computer’s performance (it was a built-to-order 
personal computer that utilized an Intel Core i7 CPU 950, 
3.07 GHz, and Microsoft Windows 7 software, 64 bit. Fur-
ther improvement of this system is necessary.

The present study has several limitations. First, we did 
not test all venders. The radiation exposure conditions varied 
depending on the scanner used, which may also be a limitation 
of our study. However, our results showed that GHNC could 
be used to analyze images obtained under various exposure 
conditions in a clinical setting. Vendor-independent feasibility 
is a clinically essential prerequisite for computer analysis.

Another limitation is that we used only “soft” reconstruc-
tion kernels in this study. In 2011, the feasibility of using 
GHNC for different kernels was not determined—especially 
for HRCT, in which the standard deviation of attenuation is 
larger than for an image with a soft kernel. Iwasawa et al. 
recently reported that GHNC can be used to analyze HRCT 
after altering images with an appropriate Gaussian filter 
(personal communication). Further study will be needed to 
test the feasibility of GHNC for multivendor HRCT.

In this study, we did not separate honeycombing and 
reticulation. A previous GHNC study [27] indicated that 
the kappa value between the radiologists’ scores and the 
GHNC results for honeycombing was poor. Watadani et al. 
[13] reported that the kappa value between expert radiolo-
gists’ evaluations of honeycombing was not high, and that 
recognition of honeycombing varied between expert radi-
ologists. Thus, we grouped honeycombing and reticulation 
together as fibrosis, and then assessed it.

Table 6   Results of Pearson’s correlation analysis between the per-
centage of forced vital capacity and the extent of fibrosis, based on 
computed tomography

GGO ground glass opacity

Correlation  
coefficient

p Multivariate 
analysis

Age −0.135 0.234 Yes

Smoking 0.308 0.005 Yes

Mean radiologists’ score

 Normal 0.476 <0.001 –

 Emphysema 0.217 0.053 –

 GGO −0.404 <0.001 –

 Consolidation −0.317 0.004 –

 Fibrosis −0.524 <0.001 Yes

GHNC extent

 Normal 0.599 <0.001 –

 Emphysema 0.169 0.135 –

 GGO −0.549 <0.001 –

 Consolidation −0.528 <0.001 –

 Fibrosis −0.671 <0.001 Yes

Table 7   Multiple linear regression analysis between the forced vital capacity and the extent of fibrosis based on either the mean radiologists’ 
score or the GHNC result

The scanners used were: CT-1, Light Speed Ultra 16 (General Electric Medical Systems); CT-2, Brilliance iCT (Philips Healthcare); CT-3, 
Acquilion 16 (Toshiba); CT-4, Acquilion 64 (Toshiba)

CT computed tomography, GHNC Gaussian histogram normalized correlation

p value Correlation coefficient 95 % Confidence interval of the correlation coefficient

Intercept 0 102.69 64.144 to 141.235

Fibrosis (GHNC result) <0.001 −2.124 −2.959 to −1.290

Fibrosis (mean radiologists’ score) 0.05 0.685 0–1.370

Male 0.108 8.084 −1.674 to 17.841

Age 0.991 −0.003 −0.55 to 0.544

Smoking 0.332 0.052 −0.055 to 0.159

CT scanner CT-1 0.577 −2.837 −12.923 to 7.249

CT scanner CT-2 0.49 −5.311 −20.58 to 9.957

CT scanner CT-3 0.871 −0.804 −10.635 to 9.027

CT scanner CT-4 Reference category
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The GHNC results were highly correlated with the 
expert radiologists’ scores. The Bland–Altman plot showed 
that GHNC miscategorized 2.3  % of normal lungs. One 
reason for this is misregistration of the normal peripheral 
bronchi and vessels in the lung as lesions (especially as 
fibrosis). The false-positive rate of GHNC was reported to 
be 1.3 % in a previous study [34] which used only 10 nor-
mal individuals. The false-positive rate should be analyzed 
more precisely in a larger population.

The Bland–Altman plot showed that 2.6  % of the 
lungs with GGO according to CAD were miscatego-
rized. The weighted kappa value was moderate. Artifacts 
with high attenuation values such as cardiac motion arti-
fact were also misregistered as GGO and fibrosis [21]. 
In addition, GHNC mis-segmented the normal lung 
as GGO in some patients with advanced IPF. This was 
probably due to higher attenuation values of the normal 
lung caused by the redistribution of pulmonary blood 
flow from the severely affected portions to the por-
tions that maintained relatively normal structures [35]. 
Another reason for the false GGO findings was an inher-
ent flaw related to the inability of GHNC to account for 
traction bronchiectasis. Most radiologists classify GGO 
with traction bronchiectasis as fibrosis, whereas GHNC 
would consider such a region to have GGO, based on the 
attenuation values.

In this study, there was a poor correlation between the 
radiologists’ scores and the GHNC results in identifying 
consolidation. We could not calculate the kappa value for 
consolidation because the volume of consolidation was 
small in most patients. Consolidation is a very important 
finding suggesting acute exacerbation or complication of 
the infection in patients with IPF. Consolidation is common 
in secondary UIP, such as in vasculitis. Consolidation is an 
uncommon finding in people with stable IPF. Further study 
will be needed to evaluate the feasibility of evaluating con-
solidation by GHNC.

In conclusion, the GHNC system analyzed 3D CT 
images obtained by different scanners. The results were in 
moderate to good agreement with the radiologists’ scores. 
The volume of fibrosis measured by GHNC was highly 
correlated with the FVC, which is a representative marker 
of IPF.

A previous study showed that the 2D version of GHNC 
could detect the effect of pirfenidone [28]. We believe 
that the 3D version of GHNC can be feasibly employed in 
research (e.g., clinical trials that focus on pulmonary fibro-
sis) and in the clinical setting of IPF.
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Appendix

The Gaussian histogram normalized correlation (GHNC) 
method classifies pixels in a target image into different cat-
egories. In the GHNC method, a set of Gaussian histograms 
of CT attenuation values of the original image and the dif-
ferential image are extracted from samples of each cat-
egory in advance. The normalized correlations between the 
Gaussian histograms in the surrounding local 50-pixel area 
of a pixel and those of the categories are then compared for 
classification into the predefined categories. To avoid the 
effects of random noise, pixel attenuation is assumed to 
have random noise with a Gaussian distribution. Gaussian 
convolution filtering is applied to the extracted histograms 
from the local area and the samples in the categories.

The Gaussian histogram of the predesigned sample is 
obtained from the following formula:

in which α is the Hounsfield units of each pixel and Nα is 
the number of pixels in the predesigned sample area Dα. 
The variable σ is the standard deviation of the Gaussian 
random noise.

The Gaussian histogram of the target area Dβ is given by

in which β and Nβ also denote the Hounsfield units and the 
number of pixels in the target area Dβ, respectively.

The normalized correlation between αg(x) and βg(x) is 
given by the formula

In our method, the normalized correlations are calcu-
lated in the local area of each target pixel for the original 
and differential images. The product of both correlations is 

(1)αg(x) =
1

Nα

∑

α∈Dα

1
√
2πσ

exp

{

(x − α)2

2σ 2

}

,

(2)βg(x) =
1

Nβ

∑

β∈Dβ

1
√
2πσ

exp

{

(x − β)2

2σ 2

}

,

(3)r(αg,βg) =

∫

αg(x)βg(x) dx
√

∫

αg(x)αg(x) dx

√

∫

βg(x)βg(x) dx

.
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then used as the similarity of the target and the predesigned 
sample pattern in each category to classify the target pixels 
into the predesigned categories.
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