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Abstract
Uncertainty in groundwater modeling presents a significant challenge, originating from various sources. This groundbreaking 
study aims to quantitatively assess uncertainties arising from spatial discretization and complexity dynamics. The research 
focuses on the Najafabad Aquifer in Esfahan, Iran, as a compelling case study. Five distinct conceptual models were devel-
oped, with parameter counts of 16 (model 1), 20 (model 2), 22 (model 3), and 26 (model 4 and 5), and subjected to a con-
sistent spatial discretization of 500 m. Additionally, two alternative models with spatial discretizations of 250 m (model 1a) 
and 1000 m (model 1 b) were introduced based on the least complex model with 16 parameters. The study comprehensively 
examines groundwater uncertainty by manipulating spatial discretization while considering complexity dynamics. Model 
Muse facilitates simulation, and UCODE is utilized for calibration using observed hydraulic head data. Uncertainties are 
explored using Bayesian model-averaging (BMA) and model selection criteria. Comparing probabilities of the initial five 
models reveals increasing uncertainty with a greater number of parameters (KIC in model 1: 99.25%, model 2: 0.41%, model 
3: 0.34%, model 4 and 5: 0%). Investigation of seven alternative models highlights the dominant influence of coarser spatial 
discretization on groundwater modeling uncertainty. Remarkably, despite the lowest complexity in model 1 with probability 
of 99.25%, the model with coarse spatial discretization (model 1b) exhibits the zero probability (KIC in model 1a: 93.42%, 
model 1: 6.53%, model 1b: 0%, model 2: 0.03%, model 3: 0.02%, model 4 and 5: 0%.). Thus, considering optimal param-
eter count and spatial discretization size is crucial in conceptual model development. This study pushes the boundaries of 
understanding the intricate relationship between spatial discretization, complexity, and groundwater modeling uncertainty. 
Findings hold significant implications for improving model accuracy and decision-making in hydrogeological studies.

Keywords Spatial discretization · Groundwater modeling · Complexity analysis · Uncertainty

Introduction

Groundwater modeling stands as an essential in compre-
hending and managing water resources, furnishing indis-
pensable insights for ensuring sustainable water provision 
and environmental preservation (Taylor and Peach 2023; 
Mahzabin et al. 2023; Navarro-Farfán et al. 2024). Despite 

its pivotal role, groundwater models grapple with challenges 
rooted in inherent uncertainties stemming from inadequate 
understanding of the underlying system, natural variations 
in subsurface conditions, and field intricacies (Meyer et al. 
2007; Samani et al. 2018a and b; Miro et al. 2021; Taşan 
et al. 2023; Enemark et al. 2024).

In recent years, there has been a growing recognition 
of the necessity to address two principal sources of uncer-
tainty: spatial discretization and model complexity. Spatial 
discretization entails dividing the groundwater system into 
discrete cells or elements, thereby influencing the resolu-
tion and representation of flow and transport processes. Con-
versely, model complexity pertains to the number and type 
of parameters incorporated into the model, delineating the 
level of detail and realism in representing the hydrogeologi-
cal system.
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Spatial models across diverse disciplines, encompassing 
ecology, meteorology, and hydrology, mandate the appli-
cation of spatial discretization techniques (Pogson et al. 
2012; Raazia and Dar 2021; Higdon et al. 2022; Samani and 
Kardan, 2022; Choubin et al. 2023; Sun et al. 2024). Simi-
larly, groundwater flow simulations predicated on MOD-
FLOW necessitate the solution of partial differential equa-
tions through the finite difference method. In this method, 
the continuous region is discretized into cells, which may 
adopt square or rectangular configurations. The selection of 
an optimal grid size assumes paramount importance, as it 
hinges upon a comprehensive understanding of the concep-
tual aquifer model. Opting for finer cell sizes within the grid 
increases computational complexity, while coarser cell sizes 
introduce uncertainties in the conceptual model (Khan et al., 
2018; Chen et al., 2020). The spatial resolution profoundly 
influences the fidelity of the model's representation of real-
ity and its capacity to seamlessly integrate with other spatial 
data, thereby minimizing uncertainties. By judiciously deter-
mining the optimal spatial resolution, researchers can bolster 
the model's ability to accurately encapsulate real-world pro-
cesses and mitigate uncertainty in the analyses and predic-
tions made (Li et al., 2019; Liu et al., 2021). The selection 
of an appropriate grid size strikes a delicate balance between 
computational efficiency and model accuracy, ensuring 
dependable outcomes in the realm of groundwater mod-
eling. Understanding the ramifications of spatial resolution 
in groundwater modeling is pivotal for curtailing uncertain-
ties and ameliorating the overall reliability of model results. 
This knowledge underpins effective integration with other 
spatial data, empowering robust decision-making processes 
in water resources management, environmental planning, 
and related domains.

Numerous studies have delved into the influence of spa-
tial discretization on model performance, proffering valuable 
insights into the intricacies of surface water-groundwater 
interactions and hydrological fluxes (Stampfl et al. 2007; 
Wang et al. 2012; Pogson and Smith 2015; Bomers et al. 
2019). In one notable investigation by Refsdgaard (1997), 
four models with varying element sizes (500, 1000, 2000, 
and 4000 m) were developed to simulate the Karup catch-
ment in Denmark (440 km). Calibration and validation were 
executed for the first model with a 500 m element size, while 
the subsequent models were generated without calibration. 
The results elucidated that model with element sizes larger 
than 1000 m evinced subpar simulation of surface water and 
groundwater interaction, particularly in reproducing runoff. 
However, the author underscored the potential for signifi-
cant recalibration to bolster the performance of models with 
coarser element sizes.

Vàzquez et al. (2002) embarked on a study in the Gete 
catchment in Belgium (586  km2), where a model with a 
600 m grid cell size was initially calibrated. Subsequently, 

two additional models were formulated, featuring grid cell 
sizes of 300 m (finer grid) and 1200 m (coarser grid), predi-
cated on the same parameter set. Findings delineated that 
the model with the coarser grid cell size (1200 m) faltered 
to adequately simulate hydraulic heads sans the calibration 
process, while the model with the finer grid (300 m) gar-
nered superior results via a simple trial-and-error calibra-
tion process. These findings underscored the imperative of 
recalibration when manipulating the grid resolution to attain 
optimal parameter values and enhance model performance.

Downer and Ogden (2004) directed their focus towards 
the Hortonian Godwin Creek Experimental catchment 
(21.2  km2) and the non-Hortonian Muddy Brook catchment 
(3.64  km2) in the USA. By formulating a series of 2D vadose 
zone models, they augmented the vertical cell size for each 
catchment and employed an automated calibration process 
leveraging the shuffled complex evolution method. The 
calibrated models were subsequently juxtaposed in terms 
of infiltration, runoff, and evapotranspiration fluxes. Results 
elucidated that smaller vertical cell sizes engendered more 
accurate simulations of hydrological fluxes in the unsatu-
rated zone vis-à-vis larger cell sizes.

In the context of the Wüstebach catchment in Germany 
(0.27  km2), Sciuto and Diekkrüger (2010) generated two 
models with grid cell sizes of 25 and 100 m in the river zone. 
Their scrutiny honed in on discharge and the spatial pat-
tern of soil moisture. The study unraveled that a coarse grid 
size engendered elevated discharge and diminished actual 
evapotranspiration due to the smoothing effect on the soil 
surface, thereby compromising the representation of topo-
graphic information.

Wildemeersch et al. (2014) crafted four models with 
constant element sizes of 250, 500, 750, and 1000 m for a 
synthetic catchment inspired by the Condroz region of Bel-
gium. The objective was to assess the effects of element 
size on the simulation of discharge, hydraulic heads, and 
prediction uncertainty. Findings indicated that augmenting 
the element size predominantly impacted the simulation of 
discharge, primarily attributable to constraints in capturing 
surface water-groundwater interactions and runoff processes. 
Additionally, coarsening spatial discretization exacerbated 
the uncertainty associated with discharge predictions.

In the Ajabshir Aquifer (Iran), Samani et al. (2018a) 
devised six conceptual models with varying degrees of com-
plexity (6, 10, 10, 13, 13, and 15 parameters). These models 
underwent comparison employing Bayesian model averag-
ing, model selection criteria, and multicriteria decision-mak-
ing (MCDM) methods to ascertain model probabilities and 
weights. Among the employed methodologies, the simplest 
model consistently garnered the highest model probability 
predicated on the AIC, AICc, and BIC approaches. Con-
versely, the KIC and MCDM methods favored a model with 
average complexity (10 parameters) as the best and least 
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uncertain model. The study underscored the impact of over-
complexity on uncertainty in groundwater modeling, align-
ing with analogous observations posited in other references 
on model complexity (Haitjema 2011; Simmons and Hunt 
2012; Engelhardt et al. 2014).

The extant body of research has given invaluable insights 
into the influence of groundwater model complexity and 
spatial discretization on model performance and uncer-
tainty. However, a conspicuous gap persists in contemplat-
ing conceptual groundwater uncertainty via the manipula-
tion of spatial discretization scales. This study endeavors 
to bridge this gap by intertwining conceptual groundwater 
uncertainty with disparate spatial discretization scales while 
encompassing model complexity. This innovative approach 
is actualized through the comparative analysis of model 
probabilities leveraging Bayesian model-averaging (BMA) 
and model selection criteria. To realize this objective, the 
Najafabad Aquifer in Esfahan, Iran, is embraced as a case 
study predicated on comprehensive hydrogeological studies 
and modeling. Initially, five conceptual models with varying 
degrees of complexity are concocted and juxtaposed. The 
efficacy of these alternative models is gauged predicated on 
the model probability computed via BMA employing model 
selection criteria. Subsequently, the least uncertain model 
ascertained by BMA is culled, and two additional models 
are derived from it by employing finer (250 m) and coarser 
(1000 m) grid cell sizes. An automatic calibration process is 
subsequently executed to refine the performance of these two 
models. The study further scrutinizes groundwater uncer-
tainty for the seven alternative models leveraging BMA. The 
procedural delineation of the conceptual models is illustrated 
in Fig. 1. The findings of this study harbor profound impli-
cations for modelers, furnishing invaluable insights into 

delineating the optimal scale for spatial discretization and 
the pertinent level of complexity for their models. By engen-
dering a holistic understanding of the influence of these 
factors on model performance and uncertainties, modelers 
can refine the accuracy and reliability of their groundwater 
models.

This innovative paradigm of interweaving conceptual 
groundwater uncertainty with spatial discretization and 
model complexity heralds a seminal advancement, proffer-
ing a novel contribution to the field. The utilization of BMA 
and model selection criteria imparts rigor to the analysis, 
furnishing a robust framework for evaluating model prob-
abilities. The selection of the Najafabad Aquifer as the case 
study site augments the pertinence and applicability of the 
findings to real-world hydrogeological studies. These unique 
facets of the study render it a priceless and timely augmen-
tation to the extant literature, tackling a pivotal research 
domain that hitherto remains largely unexplored.

Description of the study area

Location

The study area of this research is the Najafabad Plain, which 
spans an extensive area of 1075  km2. Situated within the 
Gavkhoni catchment in Esfahan, Iran, the Najafabad Plain 
is depicted in Fig. 2. The climatic conditions in this region 
align with the Emberger climate classification system 
(Emberger 1969), classifying it as an arid zone. The aver-
age annual precipitation in the study area is approximately 
153 mm, accompanied by an average temperature of around 
15 °C. Evaporation rates in the region are relatively high, 
with an average of about 2262 mm per year. These climate 
characteristics contribute to the unique hydrogeological con-
ditions of the Najafabad Plain, making it an intriguing and 
pertinent site for groundwater modeling and analysis.

Geological settings

The study area exhibits a wide range of geological facies, 
predominantly composed of limestone, sandstones, shales, 
and conglomerates. The geological structure of the plain 
follows a northwest-southeast direction, gradually accumu-
lating alluvial sediments and forming the Najafabad allu-
vial aquifer. In the northeastern region of the Najafabad 
aquifer, Quaternary sediments consist of gravel deposits 
with shale and Cretaceous sandstones, intercalated with 
layers of limestone and ammonite. Moving towards the 
northwest, in addition to shale and Cretaceous sandstones, 
layered sandstones containing conglomerates and yellow 
dolomitic sandstones are present. The southwestern part of 
the area displays layered limestone shale alongside Triassic 

Fig. 1  Methodological framework of the proposed groundwater mod-
els
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and Jurassic conglomerates. In the southern region, Creta-
ceous rocks are well-developed, with a maximum thickness 
of 50 m, characterized by layers of red shale. Overall, the 
thickness of alluvial deposits increases gradually from the 
periphery towards the center of the plain. Geophysical data 
and deep well observations indicate that the alluvial deposits 
can reach a thickness of approximately 200 m. Analysis of 
exploration wells penetrating the bedrock in the Najafabad 
area reveals that the underlying material primarily consists 
of shale and schist from the second geological period, which 
belongs to the category of ductile rocks. Despite being sub-
jected to faulting, these ductile rocks generally exhibit low 
permeability, rendering water transfer challenging even in 
the presence of faults (Holder and Philip, 2001; Singhal and 
Gupta 2010).

Hydrogeological setting

The Najafabad Aquifer, characterized as an unconfined aqui-
fer, primarily consists of alluvial deposits that have been 
transported by the Zayandehrood River originating from 
the southern highlands and flowing towards the northeast of 
the aquifer, as well as the Morghab River entering from the 
northwest and running towards the Zayandehrood River. The 
topography of the area exhibits variations, with the highest 
elevation reaching approximately 1885 m in the northwest, 
while the lowest elevation of around 1575 m is found in the 
north and northeast regions near the Zayandehrood River 
(Fig. 2).

Regarding aquifer thickness, the maximum thickness is 
observed in the northeast, south, and central parts of the 
aquifer along the Zayandehrood River, reaching up to 200 m. 
Conversely, the northwestern part of the aquifer exhibits the 
lowest thickness, measuring approximately 15 m.

Analysis of average water level measurements in observa-
tion wells during the 2021 period (Fig. 3) indicates that the 
predominant groundwater flow direction is from the north-
west and west towards the eastern portion of the aquifer.

Groundwater depth within the aquifer, based on measure-
ments during 2021, ranges from 6 to 90 m. It is worth not-
ing that the lowest depth of the groundwater level remains 
above the maximum depth of evaporation. As a result, the 
evaporation package was not included in the groundwater 
flow model for this aquifer.

The water gradient in the aquifer ranges from 0.003 to 
0.04 and exhibits a decreasing trend from the northwest to 
the southeast. The lowest water gradient is observed at the 
outlet of the Zayandehrood River.

Horizontal hydraulic conductivity, estimated from 
pumping test data, varies across the Najafabad Aquifer. 
The highest hydraulic conductivity of approximately 10 m/
day is observed in the western part of the aquifer, gradually 
decreasing from northwest to south and east. The lowest 
hydraulic conductivity measures around 1 m/day. On aver-
age, the hydraulic conductivity in the Najafabad Aquifer is 
approximately 4 m/day.

Fig. 2  Location of the study 
area

Fig. 3  Potentiometric surface map and flow lines during the 2021 
period (unit: m) and GHB inflow and outflow boundaries
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Water extraction from the aquifer occurs through 9,696 
deep and shallow wells. In 2021, pumping wells discharged 
approximately 130 million cubic meters of water from the 
Najafabad Aquifer. It is noteworthy that a portion of this water 
returns to the aquifer as agricultural runoff.

Material and method

A variety of methods exist for selecting the most reliable 
model with an optimal number of parameters, such as the cal-
culation of model probability (Hill and Tiedman, 2006). In this 
study, Bayesian statistics are employed to determine the model 
probability and select the most suitable model that exhibits a 
strong agreement between observed data and simulated results, 
while simultaneously achieving an optimal balance of param-
eter complexity.

By utilizing Bayesian statistics, the posterior model prob-
ability is computed using model selection criteria, enabling 
the identification of the model that provides the best fit to the 
observed data. This approach considers both the accuracy of 
the model's predictions and the complexity of its parameters, 
ensuring that the selected model strikes an optimal balance 
between fitting the data well and avoiding excessive com-
plexity. Through this methodology, the study aims to iden-
tify the model that not only provides an accurate representa-
tion of the observed system but also exhibits a parsimonious 
parameterization.

Model selection criteria

In the process of model selection, various statistical criteria are 
employed, including the Akaike information criterion (AIC, 
Akaike 1974), corrected Akaike information criterion (AICc, 
Hurvich and Tsai 1989), Bayesian information criterion (BIC, 
Rissanen 1978), and Kashyap information criterion (KIC, 
Kashyap 1982). These criteria are rooted in statistical theory 
and provide a framework for evaluating and comparing alter-
native models based on their ability to fit the data and optimize 
model complexity. Let's consider a set of K alternative models, 
denoted as Mk, each characterized by Nk unknown parameters 
and denoted as θk, where k ranges from 1 to K. The model 
selection criteria can be defined as follows:

(1)AICk = −2 ln
[
L
(
�̂�k|D

)]
+ 2Nk,

(2)AICck = −2 ln
[
L
(
�̂�k|D

)]
+ 2Nk

2Nk

(
Nk + 1

)

N − Nk − 1
,

(3)BICk = −2 ln
[
L
(
�̂�k|D

)]
+ Nk ln (N),

In the proposed methodology, the maximum likelihood 
estimate (θ k̂) of the model parameters (θk) is obtained. The 
negative log-likelihood (NLL) function (−2ln[L(θ ̂k |D)]) is uti-
lized to evaluate the goodness of fit between the model and the 
observed data (D). The prior probability (p(θk)) of the model 
parameters is considered, and Fk = Fk/N is the normalized log-
likelihood. Here, N represents the total number of observa-
tions, and Nk denotes the number of parameters in the model. 
Based on these considerations, the KIC can be expressed as 
follows:

The Fisher information matrix (Fk) plays a crucial role in 
the calculation of model selection criteria. The initial term, 
−2ln[L(θ ̂k│D)], shared by all criteria, quantifies the agree-
ment between the predicted outcomes and the observed data. 
A smaller value of this term signifies a better fit between the 
model and the data. N represents the total number of observed 
data points, allowing for a comparison of the number of param-
eters against the number of observations. Ideally, the preferred 
model is one that incorporates more observational data while 
minimizing the number of parameters. Nk denotes measures of 
model complexity, enabling the penalization of models with 
excessive parameters that fail to enhance the model's fit (Sam-
ani et al. 2018a). The Fisher term within the KIC approach 
may lead to the selection of different models compared to the 
BIC method in certain cases (Ye et al. 2008a,b, 2010).

Model probability

In the context of models with varying degrees of complexity, 
Bayesian statistics offers a comprehensive methodology. This 
approach entails the calculation of the posterior probability of 
each model by considering the prior model probability and the 
marginal likelihood. Neuman (2003) proposed an application 
of Bayes' theorem to determine the posterior probability p(Mk 
|D), expressed as:

(4)
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where p(Mk) is the prior probability of model Mk. The mar-
ginal likelihood function, p(D|Mk), is defined as:

p(θk|Mk) is the prior probability density of θk under model 
Mk, and p(D|θk,Mk) is the joint likelihood of Mk and θk. The 
marginal likelihood, also called integrated likelihood or 
Bayesian evidence, measures overall model fit.

Calculating model probability based on model 
selection criteria

p(D|Mk) and p(Mk|D) can be calculated as (Ye et al. 2004):

where ΔICk = ICk − ICmin and ICmin =  mink{ICk}, IC being 
AIC, AICc, KIC or BIC.

Numerical model developments

Model construction

In this study, a total of seven three-dimensional finite-differ-
ence numerical models were constructed using MODFLOW 
with Model Muse serving as the graphical user interface, as 
outlined by Harbaugh (2005). It should be mentioned that 
employing MODFLOW in groundwater modeling comes 
with several constraints and challenges. Some of these 
include:

Numerical Approximation Methods: MODFLOW 
employs finite-difference numerical methods to approximate 
groundwater flow equations. While effective, these methods 
may encounter challenges in accurately representing com-
plex hydrogeological settings, such as highly heterogeneous 
aquifer properties or irregular boundaries.

Computational Efficiency: Depending on the size and 
complexity of the groundwater system being modeled, 
MODFLOW simulations can be computationally intensive 
and time-consuming. Large-scale models with fine spa-
tial discretization may require significant computational 
resources, limiting the feasibility of detailed simulations in 
certain scenarios.

Handling Complex Hydrogeological Settings: MOD-
FLOW may face challenges in accurately representing com-
plex hydrogeological settings, such as interconnected surface 
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water-groundwater systems or fractured rock aquifers. Sim-
plifications or assumptions may need to be made, potentially 
impacting the accuracy of model predictions.

Compatibility with Integrated Modeling Frameworks: 
Integrating MODFLOW with other models, such as sur-
face water models or contaminant transport models, can be 
challenging due to differences in numerical formulations, 
spatial discretization schemes, and input/output formats. 
Ensuring seamless integration often requires careful cali-
bration and validation efforts.

Parameterization and Calibration: Proper parameteri-
zation and calibration of MODFLOW models are essen-
tial for obtaining reliable simulation results. However, 
selecting appropriate parameter values and calibrating the 
model to observed data can be challenging, particularly in 
data-scarce environments or when dealing with uncertain 
hydrogeological parameters.

Model Validation: Validating MODFLOW models 
against independent data sources is crucial for assess-
ing model reliability and accuracy. However, validating 
groundwater flow models can be challenging due to limited 
access to groundwater level measurements or other rel-
evant data, leading to uncertainties in model predictions.

Model Interpretation: Interpreting MODFLOW simu-
lation results requires a deep understanding of ground-
water flow processes and the limitations of the modeling 
approach. Misinterpretation of model outputs can lead 
to erroneous conclusions and potentially inappropriate 
management decisions regarding groundwater resources 
(Gogineni and Chintalacheruvu 2023, 2024; Roy and 
Chintalacheruvu 2024; Thornton et al. 2022).

The modeling domain encompassed an area of 
1075  km2, which corresponds to the Najafabad Aquifer. 
Considering the unique characteristics of the study area, 
five distinct conceptual models were developed by incor-
porating alternative geological interpretations, recharge 
estimations, and boundary condition implementations. 
These models aimed to capture the diverse hydrogeologi-
cal conditions present within the Najafabad Aquifer. To 
discretize the aquifer domain, a grid resolution of 127 
rows, 86 columns, and one layer was employed, resulting 
in a total of 10,922 active cells. The grid cell size was set 
to 500 m in both the x and y directions, ensuring an appro-
priate representation of the spatial dimensions. Moreover, 
two additional models were derived from the first model, 
utilizing finer (250 m) and coarser (1000 m) grid cell sizes, 
as detailed in Table 1.

For the simulation of water level conditions, a steady-
state situation was adopted to represent the year 2021, 
during which the groundwater system was in a state of 
equilibrium. All relevant observation and pumping wells, 
boundary conditions, and recharge inputs were incorpo-
rated into the model using suitable software packages. 
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These components were carefully integrated to accurately 
reflect the hydrological characteristics of the Najafabad 
Aquifer and enable comprehensive analysis of its water 
level dynamics.

Numerical model boundaries

In order to establish the initial groundwater head distribu-
tion for the numerical models, the average groundwater lev-
els observed in 40 wells during 2021 were utilized. These 
observed values were interpolated using the Fitted Surface 
interpolation method. Since the Najafabad Aquifer is uncon-
fined, the highest level of the model was set as the surface 
topography, while the lowest level represented the bedrock 
elevation, determined using geophysical studies and explora-
tion well logs.

For the simulation of pumping wells, the well package in 
MODFLOW was employed. A total of 9,696 pumping wells 
were included in the models. In some conceptual models 
(model numbers 1 and 3), the well package was also used 
to define river-related data, such as recharge and discharge 
values. The decision to use the well package instead of the 
river package was due to inadequate information regarding 
river properties, such as bed depth, surface water, and sedi-
ment thickness. Additionally, in model number 5, the well 
package was utilized to replace the output flow boundaries 
by specifying discharge well values.

Based on water table contours and flow lines derived from 
averaging groundwater levels in 2021, it was observed that 
most parts of the aquifer experienced inflow in the north-
west, west, and east, while the southeast exhibited outflow. A 
no-flow boundary condition was implemented in the north-
eastern parts of the aquifer. General head boundary (GHB) 
packages were employed to represent the inflow and outflow 
boundaries, facilitating the characterization of groundwater 
boundaries. The GHB package simulated the movement of 

water based on the difference between the cell's head value 
and the specified general head boundary value, as well as the 
conductance parameter determining the ease of water flow. 
To ensure that the computed groundwater heads aligned with 
the actual conditions, linear interpolation was performed on 
node values within each segment of the grid cells. Conduct-
ance in GHB boundary cells was estimated using hydraulic 
conductivity values in the boundary area. In model number 
5, well packages were used instead of GHB to represent the 
output boundary.

Recharge rates in the Najafabad Aquifer, resulting from 
rainfall and agricultural return water, were simulated using 
the recharge package. The volume of recharge varied across 
different parts of the aquifer due to variations in soil prop-
erties, geology, land use, rainfall intensity, and ground sur-
face slope. Rain infiltration volume was calculated using 
the Thornthwaite water balance method, while agricultural 
return water was estimated using the Blaney–Criddle method 
based on agricultural wells and irrigation patterns. Due to 
the uncertainty associated with this parameter, recharge 
parameters for different zones were determined during the 
calibration process. In the seven alternative conceptual 
models, recharge was introduced with 15 zones and cor-
responding parameters. In models number 2, 4, and 5, the 
Zayandehrood River was defined using the recharge package, 
and four recharge parameters were assigned to represent the 
river (Fig. 4).

Hydraulic conductivity parameter

To estimate the hydraulic conductivity parameter for the 
numerical models, a combination of pumping tests, explo-
ration well logs, and standard hydraulic conductivity tables 
was utilized. For models number 1 and 2, the hydraulic con-
ductivity parameter was determined through interpolation 

Table 1  The introduction of seven alternative conceptual models

Model number 1 1a 1b 2 3 4 5

Scale of spatial 
discretization

500 m 250 m 1000 m 500 m 500 m 500 m 500 m

Hydraulic con-
ductivity

Interpolation
(1Parameter)

Interpolation
(1Parameter)

Interpolation
(1Parameter)

Interpolation
(1Parameter)

Zoning out
(7 parameters)

Zoning out
(7 Parameters)

Zoning out
(7 Parameters)

Recharge Zoning out
15 Parameters

Zoning out
15 Parameters

Zoning out
15 Parameters

Zoning out
15 Parameters

Zoning out
15 Parameters

Zoning out
15 Parameters

Zoning out
15 Parameters

River Well Well Well Recharge Packege
(4Parameters)

Well Recharge Packege
(4 Parameters)

Recharge Packege
(4 Parameters)

General head 
boundaries

GHB GHB GHB GHB GHB GHB The Well Package 
is defined as the 
output boundary

Number of 
parameters

16 16 16 20 22 26 26
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techniques, resulting in the definition of a single parameter 
for the entire model domain (see Fig. 5).

In contrast, models number 3, 4, and 5 employed a zon-
ing method to simulate hydraulic conductivity parameters. 
These models were divided into seven distinct zones, each 
assigned its own hydraulic conductivity parameter (as 
illustrated in Fig. 6). This zoning approach was adopted 
due to the presence of uncertain information regarding 
hydraulic conductivity values across the study area.

During the calibration process, the hydraulic conduc-
tivity parameters for the different zones were calculated 
and adjusted to improve the model's performance and 
accuracy. This calibration phase allowed for the refine-
ment of the hydraulic conductivity estimates, consider-
ing the available data and the observed behavior of the 
aquifer system.

Conceptual models with different spatial 
discretization

To comprehensively investigate the influence of spatial dis-
cretization and complexity on uncertainty in groundwater 
flow modeling, this study further expanded upon the initial 
model (referred to as model number one) by developing two 
additional models. These new models, denoted as model 1a 
and model 1b, were designed to explore the effects of finer 
(250 m) and coarser (1000 m) grid cell sizes, respectively 
(as presented in Table 1).

The primary objective of incorporating these two addi-
tional models was to incorporate conceptual uncertainties 
into the analysis, while simultaneously considering the 
impact of model complexity. This was achieved by evaluat-
ing the model probability using the Bayesian model aver-
aging method, a robust statistical approach. By comparing 
the model probabilities obtained from model 1a, model 1b, 
and the original model, a comprehensive assessment of the 
interplay between conceptual uncertainties, model complex-
ity, and spatial discretization was made possible. Through 
this meticulous examination, a more nuanced understanding 
of the relationship between these factors and their impact 
on uncertainty in groundwater flow modeling was achieved. 
By leveraging the Bayesian model averaging method, this 
study offered valuable insights into the relative merits and 

Fig. 4  Recharge zonation defined for modeling software (model num-
ber 3, 4, and 5)

Fig. 5  Hydraulic conductivity interpolation for modeling software 
(model number 1, 1a, 1b, and 2)

Fig. 6  Hydraulic conductivity zones defined for modeling software
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performance of different spatial discretization and complex-
ity configurations, ultimately advancing the understanding 
and practice of groundwater flow modeling.

Model calibration

The calibration process of the models involved a combi-
nation of trial and error methods and advanced automatic 
parameter estimation techniques to achieve the best pos-
sible match between the simulated hydraulic heads and 
observed data. To facilitate the automatic calibration, the 
UCODE software (Poeter et al., 2006) was utilized, offer-
ing efficient and robust optimization algorithms. In the case 
of the seven alternative models, the automatic calibration 
procedure involved the estimation of hydraulic conductiv-
ity and recharge parameters. The hydraulic conductivity 
and recharge packages were automatically calculated for 
these models, while the data pertaining to the General Head 
Boundary (GHB) boundaries, pumping wells located at the 
output boundary, and the river were manually calibrated.

For models numbered 1, 1a, 1b, and 2, a single parameter 
was assigned for hydraulic conductivity. In these models, 
the hydraulic conductivity data were incorporated through 
interpolation techniques. The process began by defining an 
initial zone encompassing the entire model domain, where 
the hydraulic conductivity parameter was set to a value of 
one. Subsequently, a multiplier coefficient was established 
for this zone, and hydraulic conductivity data were input as 
discrete points. These data were then interpolated across the 
entire model domain, resulting in a comprehensive represen-
tation of hydraulic conductivity distribution.

For models numbered 3, 4, and 5, the hydraulic con-
ductivity parameter was divided into seven distinct zones. 
Each zone was assigned an individual parameter, which 
was subsequently optimized during the calibration process. 
Similarly, the recharge parameter was divided into 15 zones 
across all seven alternative models, and calibration efforts 
were focused on optimizing the parameters for each respec-
tive zone.

Through the integration of manual calibration for spe-
cific boundary conditions and river-related elements, along 
with automatic calibration for hydraulic conductivity and 
recharge, the models underwent a rigorous and compre-
hensive calibration process. This approach allowed for the 
refinement and optimization of model parameters, ultimately 
enhancing the accuracy and reliability of the groundwater 
flow simulations.

Model assumption

During the modeling process, several assumptions were 
made to facilitate the simulation of groundwater flow 
dynamics:

Steady-State Conditions: A steady-state situation was 
adopted to represent the year 2021, during which the 
groundwater system was assumed to be in equilibrium. This 
assumption allowed for the simulation of long-term ground-
water flow patterns within the aquifer.

Recharge Estimations: Recharge rates in the Najafabad 
Aquifer, resulting from rainfall and agricultural return water, 
were simulated using the recharge package. These recharge 
rates were estimated based on soil properties, land use, 
rainfall intensity, and irrigation patterns, with uncertainties 
accounted for during the calibration process.

Model Calibration: The calibration process involved 
adjusting model parameters, including hydraulic conduc-
tivity and recharge rates, to achieve the best match between 
simulated and observed groundwater levels. This process 
utilized both manual calibration for specific boundary con-
ditions and automatic calibration techniques for parameter 
estimation.

Results and discussion

Calibration results

Following the calibration process, an evaluation of the per-
formance of the seven alternative models was conducted, 
employing a set of criteria outlined by ESI (2007) to assess 
the goodness of fit. Two primary objectives were consid-
ered: the mean absolute residual (MAR) and the ratio of 
the residual standard deviation to the range of groundwater 
heads. According to the established criteria, both of these 
metrics should be below 10% for all models to indicate a 
satisfactory performance.

In the case of the Najafabad Aquifer, the range of ground-
water heads, representing the difference between the maxi-
mum and minimum groundwater levels, was determined to 
be 326 m. Table 2 provides a summary of the statistical 
measures pertaining to the calibration results obtained from 
the seven alternative models. Notably, both the MAR and the 
ratio of the residual standard deviation to the range of heads 
fell within the range of 1% to 2% for all models (Table 2).

Given that the statistical results achieved in the calibra-
tion process meet and even surpass the specified calibration 
targets, it can be concluded that the calibration results of all 
seven alternative models are deemed acceptable. The per-
formance evaluation demonstrates that the models success-
fully capture the observed data, exhibiting a high level of 
accuracy and reliability in simulating the groundwater flow 
dynamics within the Najafabad Aquifer.
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Model validation

To ensure the reliability of the calibrated models, a rigorous 
model validation process was conducted to verify the accu-
racy of the obtained results. In this stage, the performance 
of the developed models was assessed by comparing the 
simulated average water level measurements in the observa-
tion wells during the year 2022, considering the system to be 
in a steady state, with the corresponding observed data. By 
subjecting the models to this validation procedure using new 
sets of observation data, certain parameters such as pump-
ing rates and recharge rates were adjusted to address any 
minor discrepancies between the observed and calculated 
water levels.

To evaluate the accuracy of the model validation, the 
root-mean-square error (RMSE) was employed as a sta-
tistical measure, as suggested by Duan et al. (2007) and 
Diks and Vrugt (2010). Table 2 presents a comparison of 
the RMSE values obtained during the calibration and vali-
dation processes. The model validation results indicate a 
relatively weaker performance compared to the calibration 
results, implying a slightly reduced accuracy in reproducing 
the observed water levels. However, it is important to note 
that despite this discrepancy, the validation results remain 
within an acceptable range.

Overall, the model verification process reinforces the con-
fidence in the calibrated models, as they demonstrate satis-
factory performance during the validation stage. While the 
validation results may exhibit a slightly weaker performance 
compared to calibration, the models still provide reliable 
predictions and successfully capture the essential dynamics 
of the groundwater system in the Najafabad Aquifer.

Input data uncertainty

Addressing input data uncertainty in hydrogeological mod-
eling is crucial due to its significant role alongside other 
sources of uncertainty, such as conceptual model uncer-
tainty, complexity uncertainty arising from excessive param-
eterization, parameter uncertainty, and scenario uncertainty. 

Here are the potential impacts and strategies for addressing 
input data uncertainty:

Potential impacts

Model reliability Input data uncertainty can directly impact 
the reliability of hydrological models. Inaccurate or unreli-
able input data may lead to biased model outputs, reducing 
the overall confidence in model predictions.

Decision making Uncertain input data can result in subop-
timal decision-making processes, as model outputs may not 
accurately represent the true state of the hydrological sys-
tem. This can lead to ineffective or inappropriate manage-
ment strategies for water resources.

Model calibration and validation Input data uncertainty can 
pose challenges during model calibration and validation 
processes. Inaccurate input data may result in poor model 
performance and hinder the ability to accurately match 
observed data.

Uncertainty propagation Uncertainty in input data can 
propagate through the modeling process, amplifying uncer-
tainty in model predictions. This can make it difficult to 
identify the sources of uncertainty and assess their impacts 
on model outcomes.

Strategies for addressing input data uncertainty

Data quality assessment Conduct thorough assessments of 
the quality and reliability of input data sources. This involves 
evaluating data collection methods, instrumentation accu-
racy, spatial and temporal resolution, and data consistency.

Data validation and  verification Implement procedures to 
validate and verify input data against independent sources 
or field measurements. This helps identify inconsistencies, 
errors, or outliers in the data.

Table 2  Statistical values for 
calibration and validation for 
seven alternative conceptual 
models

Model number 1 1a 1b 2 3 4 5

SSR (m2) 14.587 10.118 16.713 16.169 15.235 19.587 14.544
RMSE calibration 0.757 0.673 0.933 0.777 0.815 0.943 0.830
Residual mean (m) –0.001 –0.033 –0.078 0.036 –0.047 –0.062 0.044
Abs. Res Mean (m) 0.622 0.588 0.777 0.658 0.724 0.837 0.644
Res. Std. Dev (m) 0.757 0.672 0.930 0.777 0.814 0.941 0.829
Abs. Res Mean divided by Range 0.002 0.002 0.002 0.002 0.002 0.003 0.002
Std. Dev divided by range 0.002 0.002 0.003 0.002 0.002 0.003 0.003
RMSE validation 0.812 0.732 0.997 0.854 0.943 0.958 0.911
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Data uncertainty quantification Quantify the uncertainty 
associated with input data using statistical methods or 
uncertainty analysis techniques. This provides insights into 
the range and magnitude of potential errors in the data.

Data assimilation techniques Incorporate data assimilation 
techniques to integrate observational data into the modeling 
process dynamically. This allows for continuous updating 
and refinement of model inputs based on new information, 
reducing input data uncertainty over time.

Sensitivity analysis Perform sensitivity analyses to assess 
the sensitivity of model outputs to variations in input data. 
Identifying influential input parameters helps prioritize data 
collection efforts and focus resources on improving the 
accuracy of critical input variables.

Data fusion and  integration Integrate diverse sources of 
information, including remote sensing data, geospatial data, 
and citizen science data, to enhance the reliability and com-
pleteness of input datasets. Data fusion techniques combine 
multiple data sources to mitigate individual data limitations 
and improve overall data quality.

Uncertainty propagation analysis Conduct uncertainty 
propagation analyses to assess how input data uncertainty 
propagates through the modeling process and impacts 
model predictions. Understanding the cascading effects of 
input data uncertainty on model outputs helps quantify over-
all model uncertainty and identify critical sources of uncer-
tainty that require mitigation.

Effect of complexity on groundwater modeling 
uncertainty

To quantitatively assess the uncertainty arising from vari-
ations in model complexity, a series of alternative concep-
tual models were constructed, each characterized by a dis-
tinct degree of complexity. The initial model, denoted as 
model number 1, represented the simplest configuration and 

comprised a total of 16 parameters. Subsequently, additional 
parameters were incrementally introduced to the alternative 
models, leading to an escalation in their degrees of com-
plexity. Model number 2 encompassed 20 parameters, while 
models number 3 featured 22 parameters. The complexity 
further increased in models number 4 and 5, which consisted 
of 26 parameters.

By systematically varying the number of parameters 
within the alternative conceptual models, the study aimed to 
investigate the influence of model complexity on the result-
ing uncertainties. This approach allowed for a comprehen-
sive exploration of the potential sources of variability and 
offered insights into the impacts of parameterization choices 
on the overall model outcomes. The diverse range of mod-
els, each characterized by a distinct number of parameters, 
provided a valuable framework for evaluating the associated 
uncertainties and shedding light on the intricate interplay 
between model complexity and its corresponding uncer-
tainty levels.

Examining complexity according to model probability

The determination of model probabilities for the various 
alternative models is a crucial step in assessing their relative 
merits and uncertainties. Equation 10 is employed for calcu-
lating these probabilities, with one of the factors influencing 
this equation being the prior model probability, denoted as 
p(Mk). These probabilities can either be uniformly assigned 
across all models or estimated based on the modeler's exper-
tise and understanding of the study area. Previous studies 
(Pohlmann et al. 2007; Singh et al. 2010; Ye et al. 2010; 
Samani et al. 2018a, 2018b) have highlighted the signifi-
cance of prior probabilities in model selection.

In our investigation, all alternative models were assigned 
an equal prior model probability of 1/5. These probabilities 
were utilized to compute the posterior model probability 
using different model selection criteria, including AIC, 
AICc, BIC, and KIC. The results obtained from these cal-
culations are presented in Table 3. Notably, all the methods 
consistently assigned the highest model probability to the 

Table 3  Prior model 
probability and posterior model 
probabilities for five conceptual 
models evaluated with the AIC, 
AICc, BIC and KIC methods, 
and model ranking

Model P-Model 1 P-Model 2 P-Model 3 P-Model 4 P-Model 5

Prior model probability 20% 20% 20% 20% 20%
PAIC 99.49% 0.50% 0.01% 0.00% 0.00%
AIC ranking 1 2 3 0 0
PAICc 100.00% 0.00% 0.00% 0.00% 0.00%
AICc ranking 1 0 0 0 0
PBIC 99.98% 0.02% 0.00% 0.00% 0.00%
BIC ranking 1 2 0 0 0
PKIC 99.25% 0.41% 0.34% 0.00% 0.00%
KIC ranking 1 2 3 0 0
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simplest model, namely model number 1. It is important 
to emphasize that there was no distribution of model prob-
abilities observed among the alternative models. Instead, all 
the selection criteria unanimously favored model number 1 
as the most favorable option, exhibiting the highest prob-
ability and lowest uncertainty (99.25% probability of model 
1 by KIC method (Table 3)). Intriguingly, the AIC, AICc, 
BIC, and KIC methods collectively indicated that models 
2, 3, 4, and 5 suffered from inappropriate conceptual model 
definitions.

In this study, an unbiased approach was adopted by ini-
tially developing five conceptual models without any prede-
fined assumptions regarding the accuracy of their underlying 
structures. Subsequently, the model probability comparisons 
effectively rejected the certainty of conceptual models 2 to 
5. Our case study serves as a compelling demonstration of 
the pitfalls associated with erroneous conceptualization and 
excessive parameterization, leading to misleading interpre-
tations and diminished model probabilities. By embracing 
an objective evaluation process, we have highlighted the 
critical importance of robust conceptual model definition to 
enhance the reliability and credibility of groundwater mod-
eling outcomes.

Assessing the effect of spatial discretization on the model 
uncertainty

In order to investigate the relationship between spatial dis-
cretization and complexity, two additional models were 
developed based on model number one, which was identi-
fied as the least uncertain model. These two models, labeled 
as model 1a and model 1b, employed a finer grid cell size 
of 250 m and a coarser grid cell size of 1000 m, respec-
tively. Both models retained the same level of complexity, 
characterized by 16 parameters. The recalibration of these 
models was carried out using automatic parameter estima-
tion techniques to minimize the disparity between simulated 
and observed hydraulic heads.

Model probabilities were calculated for the seven alterna-
tive models, with each model assigned an equal prior prob-
ability of 1/7. These probabilities were subsequently used to 
compute the posterior model probability employing differ-
ent model selection criteria, including AIC, AICc, BIC, and 
KIC. The outcomes of this analysis are presented in Table 4.

The results reveal that model 1a obtained the highest 
probability and emerged as the model with the least uncer-
tainty (93.42% probability of model 1a by KIC method 
Table 4). This finding suggests that an increase in grid cell 
size, specifically to 1000 m, introduces greater uncertainty 
into the conceptual model. Interestingly, model 1b, despite 
having the least complexity, exhibits an even lower prob-
ability (5.85E-10, KIC method) compared to the more com-
plex models, such as models 4 and 5 (with probabilities of 
1E-4 and 3.46E-05, KIC method, respectively). Hence, it 
is evident that in order to develop a conceptual model with 
minimal uncertainty, careful consideration must be given 
not only to the selection of optimal parameters but also to 
the scale of spatial discretization, taking into account the 
available data.

These findings align with the conclusions reported by 
Wildemeersch et al. (2014), as their research also indicated 
that coarsening spatial discretization leads to increased 
uncertainty in discharge predictions. In addition, the results 
of Vàzquez et al. (2002) validate the lower uncertainty asso-
ciated with coarser spatial discretization. However, several 
factors could contribute to variations in results between this 
study and others:

Study Area and Hydrogeological Conditions: Differences 
in hydrogeological settings, such as aquifer geometry, lithol-
ogy, hydraulic properties, and groundwater recharge rates, 
can lead to variations in model behavior and uncertainty. 
Studies conducted in geologically diverse regions with dis-
tinct hydrological characteristics may yield different results 
compared to those conducted in areas with similar hydro-
geological conditions to the Najafabad Aquifer.

Table 4  Prior model probability and posterior model probabilities for seven conceptual models evaluated with the AIC, AICc, BIC and KIC 
methods, and model ranking

Model P-Model 1a P-Model 1 P-Model 1b P-Model 2 P-Model 3 P-Model 4 P-Model 5

Prior model probability 14.29% 14.29% 14.29% 14.29% 14.29% 14.29% 14.29%
PAIC 97.76% 2.23% 0.00% 0.01% 0.00% 0.00% 0.00%
AIC ranking 1 2 0 0 0 0 0
PAICc 97.74% 2.25% 0.00% 0.00% 0.00% 0.00% 0.00%
AICc ranking 1 2 0 0 0 0 0
PBIC 97.74% 2.26% 0.00% 0.00% 0.00% 0.00% 0.00%
BIC ranking 1 2 0 0 0 0 0
PKIC 93.42% 6.53% 0.00% 0.03% 0.02% 0.00% 0.00%
KIC ranking 1 2 0 3 4 0 0



Acta Geophysica 

Modeling Approaches and Assumptions: Variations in 
modeling approaches, including model conceptualization, 
parameterization, boundary conditions, and calibration 
methods, can influence model performance and uncertainty. 
Studies employing different modeling techniques or making 
different assumptions about groundwater flow processes may 
produce contrasting results.

Temporal and Spatial Scale: Differences in the temporal 
and spatial scales of the study area and modeling domain 
can affect the representation of hydrological processes and 
uncertainty. Studies conducted at larger spatial scales or over 
longer time periods may capture additional complexities and 
sources of uncertainty not accounted for in smaller-scale or 
shorter-term investigations.

Data Availability and Quality: Variations in the availabil-
ity and quality of data used for model calibration and vali-
dation, such as groundwater level measurements, hydraulic 
conductivity values, and recharge estimates, can influence 
model reliability and uncertainty. Studies utilizing more 
extensive and accurate datasets may yield different results 
compared to those with limited or lower-quality data.

Model Complexity and Parameterization: Differences in 
model complexity and parameterization schemes, such as 
the number of parameters included in the models and the 
representation of subsurface heterogeneity, can affect model 
uncertainty. Studies employing more complex models with a 
higher degree of parameterization may exhibit greater uncer-
tainty compared to simpler models with fewer parameters.

The present study further supports the notion that spa-
tial discretization plays a crucial role in determining the 
uncertainty of groundwater flow models and underscores 
the importance of judiciously selecting the appropriate spa-
tial scale to enhance model reliability and accuracy. In total, 
by recognizing uncertainty in groundwater modeling, stake-
holders can make more informed decisions to sustainably 
manage and protect valuable groundwater resources.

Acknowledgement of limitations

In this section, we acknowledge the limitations of our study, 
recognizing potential sources of uncertainty and assump-
tions that may have influenced the results. While our 
research endeavors to provide valuable insights into ground-
water flow modeling uncertainty, it is essential to acknowl-
edge the inherent constraints and uncertainties inherent in 
such studies.

One significant limitation lies in the simplifications and 
assumptions made during the modeling process. Despite 
our efforts to incorporate diverse hydrogeological condi-
tions and alternative conceptual models, certain simplifica-
tions were necessary due to data limitations or modeling 
constraints. These simplifications may have influenced the 

model outcomes and should be considered when interpret-
ing the results.

Furthermore, uncertainties associated with input data, 
such as hydraulic conductivity values, recharge rates, and 
boundary conditions, may have affected the accuracy of our 
simulations. While we employed various techniques to esti-
mate these parameters and validate our models, uncertainties 
in data sources and measurement errors may still introduce 
uncertainties into the modeling outcomes.

Additionally, our study focused primarily on assessing 
uncertainty arising from spatial discretization and com-
plexity dynamics. However, other sources of uncertainty, 
such as parameter estimation methods, model boundary 
conditions, and scenario uncertainty, were not extensively 
explored in this research. Future studies could address 
these additional sources of uncertainty to provide a more 
comprehensive understanding of groundwater flow mod-
eling uncertainty.

Despite these limitations, our study contributes valuable 
insights into the interplay between spatial discretization, 
complexity, and groundwater modeling uncertainty. By 
acknowledging these limitations, we aim to provide readers 
with a nuanced understanding of the study's findings and 
their implications for groundwater modeling practice and 
research.

Future research

In light of the findings presented in this study, several 
avenues for future research in groundwater flow modeling 
emerge, offering opportunities to further enhance our under-
standing and improve modeling practices.

One promising direction for future research involves 
exploring additional sources of uncertainty beyond those 
investigated in this study. Specifically, investigating differ-
ent parameter estimation methods could provide valuable 
insights into their impact on model uncertainty and ulti-
mately improve model accuracy. Evaluating the effectiveness 
of various parameter estimation techniques, such as inverse 
modeling approaches or machine learning algorithms, in 
capturing the complex dynamics of groundwater systems 
could lead to more robust and reliable modeling results.

Furthermore, extending the application of the approach 
developed in this study to different aquifer systems presents 
an intriguing opportunity. By applying the proposed meth-
odology to diverse hydrogeological settings with varying 
geological and hydrological characteristics, researchers can 
assess the generalizability and robustness of the findings. 
This broader application can help validate the effectiveness 
of the methodology across different contexts and contribute 
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to the development of more universally applicable modeling 
frameworks.

Additionally, future research efforts could focus on 
integrating advanced modeling techniques with emerging 
technologies to improve predictive capabilities and address 
existing challenges in groundwater flow modeling. Lever-
aging advancements in remote sensing, data assimilation 
techniques, and computational modeling tools offers the 
potential to enhance model accuracy, reduce uncertainty, 
and better inform water resources management decisions.

Overall, exploring these avenues for future research holds 
the promise of advancing our understanding of groundwa-
ter flow processes, refining modeling methodologies, and 
ultimately contributing to more effective and sustainable 
management of groundwater resources.

Conclusion

This study aimed to rigorously evaluate the uncertainty 
of conceptual groundwater flow models in the Najafabad 
Aquifer, focusing on both complexity and spatial discre-
tization dynamics. By employing Bayesian model-aver-
aging (BMA) and rigorous model selection criteria, we 
discerned significant insights into the relationship between 
model complexity, spatial discretization, and groundwater 
modeling uncertainty.

Key findings of this study include:
1 The simplicity of groundwater flow models, charac-

terized by fewer parameters, correlates with higher model 
accuracy and reduced uncertainty. Specifically, model 1, 
with the least complexity, consistently exhibited the high-
est probability across various model selection criteria, 
emphasizing the importance of parsimonious model design 
in capturing groundwater behavior accurately.

2 Spatial discretization plays a pivotal role in modulat-
ing uncertainty in groundwater modeling. Our investiga-
tion revealed that coarser spatial discretization, despite 
maintaining model simplicity, significantly reduced uncer-
tainty compared to finer discretization schemes. Notably, 
model 1a, with a spatial discretization of 250 m, demon-
strated lower uncertainty compared to the original model 
but still exhibited higher uncertainty compared to model 
1b with a spatial discretization of 1000 m.

In summary, our findings underscore the critical importance 
of considering both model complexity and spatial discretization 
in groundwater modeling endeavors. Simplified models with 
optimal parameter counts, in conjunction with appropriately 
chosen spatial discretization scales, offer a robust framework for 
accurate groundwater predictions and informed decision-making 
in hydrogeological studies.

Future research efforts should focus on refining method-
ologies for assessing uncertainty in groundwater modeling, 

particularly in the context of spatial discretization. Inves-
tigating alternative model selection criteria and exploring 
advanced Bayesian techniques could further enhance our 
understanding of uncertainty dynamics in groundwater sys-
tems. Additionally, incorporating temporal variability in 
groundwater models could provide a more comprehensive 
assessment of uncertainty under changing environmental 
conditions. Addressing these research gaps will contribute 
to advancing the reliability and applicability of groundwater 
modeling approaches in hydrogeological studies.
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are/ Model Mate/
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