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Abstract
Tortuosity is a significant parameter in porous materials analysis. Not only, when it comes to rocks or soils but also cellular 
materials, alloys or cells, the multiple definitions exist for tortuosity and several purposes. Geometrical tortuosity describes 
the pore network paths; on the other hand thermal, diffusional, electrical and hydraulic tortuosity refers to the transport pro-
cesses in the pore network. Computed X-ray tomography (CT) is the best solution in tortuosity estimation, thanks to the 3D 
images. In particular, computed X-ray tomography, together with mercury porosimetry (MICP), pulse- and pressure-decay 
permeability methods (PDP), as well as electrical parameter measurements (EPM), links and expands the information about 
the tortuosity into the greater meaning. The geological material was composed of tight, low-porosity and low-permeability 
gas-saturated rocks cored from the present depth of deposition below 3000 m, containing different lithologies, as sandstones, 
mudstones, limestones, and dolomites. The research presents the novel approach in the identification and analysis of the main 
pore channels based on 3D CT images. Algorithm of the central axis identifies and analyzes the whole main flow path and 
calculates tortuosity. High correlation was observed between the tortuosity and Swanson parameter from mercury porosimetry 
data. Moreover, the high correlation was detected between the tortuosity and saturation exponent from electrical parameter 
measurement in analyzed tight low-porosity and low-permeability deposits. Multilinear regression (MLR) allows estimating 
absolute permeability taking CT, MICP and EPM parameters into consideration. Combination of these parameters in one 
equation with high determination coefficient gives credence in estimating preliminary absolute permeability (PDP) based 
on the data which is executed as standard core analysis (MICP and EPM) and data from the non-invasive method (CT).

Keywords  Computed X-ray tomography (CT) · Tight rocks · Pore space · Tortuosity · Mercury porosimetry (MICP) · 
Permeability (PDP) · Electrical parameters (EPM)

Introduction

Multidisciplinary laboratory measurements on geological mate-
rial give the challenging possibility to discover and combine 
information from different resolutions and physical background. 
It is extremely important to look closely at the rock by reading 
petrophysical properties and creating a full image as a one body. 
Hence, several methods are combined together to check how 

pore system can behave in low-porous and low-permeable gas-
bearing formations. Computed X-ray tomography (CT) is safe 
and high-resolution laboratory technique for 3D pore network 
examination (Ketcham and Carlson 2001; Cnudde and Boone 
2013; Cubit et al. 2009; Adeleye and Akanji 2022). Moreover, 
it is a matter of scale: do we want to look at the rock in low 
or high resolution and thus look at the rock in centimeters or 
nanometers (Cnudde et al. 2011; Liu et al. 2018)? In both cases, 
some of the information is missing. The first example does not 
concentrate on the small pores and in case of tight formation it 
is not acceptable because we lose a huge amount of useful data. 
The advantage of this resolution is that rock examination is on 
the core or core plus. The second example looks deeply into the 
small pores, but we read the information from the small piece 
of rock; often the rock is the size of a crumb.

Tortuosity of the pore ganglia is one of the crucial geo-
metric parameters of pore structure and can be evaluated 
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based on CT (Backeberg et al. 2017; Mohan et al. 2023). 
There are several methods in tortuosity estimation (Ribeiro 
et al. 2022; Mahmood et al. 2023), but only CT gives the 
chance to conduct the measurement in 3D. Moreover, 
tortuosity influences electrical parameters (EPM), such 
as formation factor, saturation exponent, and intrusion 
parameters from mercury porosimetry (MICP).

The article presents a new method in tortuosity calcula-
tions from the 3D CT images. An attempt was also made 
to determine the relationship between tortuosity and elec-
trical parameters. Moreover, absolute permeability was 
evaluated based on the multilinear regression analysis 
and mentioned parameters. Tortuosity has an enormous 
impact on rock ability to fluid flow, so the idea of con-
necting the tortuosity with absolute permeability is sig-
nificant (Javadpour 2009; Berg 2014; Kaczmarek et al. 
2017). Permeability is a challenging parameter, in both 
measurement and results interpretation (Soulaine et al. 
2016; Ghanizadeh et al. 2017). Many researches were 
devoted to the permeability determination, often through 
the pore network modeling, as well as advanced statisti-
cal methods (Mostaghimi et al. 2013; Krakowska 2019; 
Al Balushi and Taleghani 2022). Certainly, the tortuosity 
parameter enriches and adds credibility to the obtained 
results.

Methods and materials

The subject of the analysis were tight, low-porosity and low-
permeability rocks cored from the present depth of deposi-
tion below 3000 m, containing different lithologies, such 
as sandstones, mudstones, limestones and dolomites. The 
most important link in the research material is connected 
with the low values of porosity and permeability, meeting 
the condition of tight, gas-bearing reservoirs. We can expect 
simplified pore network, revealed in not tortuous pore paths. 
An example image of the pore space is shown in Fig. 1. CT 
images were processed using Feldkamp (1984) back-pro-
jection algorithm. Colors refer to the size of the pores. The 
pore sizes are given in voxels and thus a pixel in 3D with the 
size of 0.5 × 0.5 × 0.5 µm. Lots of small objects are visible in 
the 3D CT image, from red (pores below 99 voxels) to green 
(pores below 99,999 voxels). Often in tight formations, only 
few objects are present from the highest volume class (blue 
color). It is quite typical in tight formations that single exten-
sive pore networks (dark and light blue) can occur in the 
whole pore system and simple pore networks (red, orange, 
yellow, and green) predominate.

Tortuosity analysis needs to connect data from different 
laboratory methods. First and most precious 3D imaging 
method is computed X-ray tomography (CT). CT allows to 
estimate porosity, pore channel size, and the most important 

Fig. 1   Exemplary 3D image of 
pore space of tight, low-poros-
ity, and low-permeability car-
bonates. Colors refer to the pore 
sizes in voxels (pixel in 3D with 
the size of 0.5 × 0.5 × 0.5 µm) 
detected in the pore space: 
red—832 pores, orange—706, 
yellow—366, green—175, light 
blue—18, and dark blue—1
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from the research point—tortuosity. Often tortuosity is 
determined from the capillary pressure data or petrographic 
image analysis. CT definitely gives better insight into all 
pore channels and overview on pore system in 3D (Rab-
bani et al. 2016; Krakowska-Madejska 2022; Moosavi et al. 
2023). High-resolution CT was performed on the crumb-size 
sample for the research purposes in the form of the nano-
CT. The most popular are the micro-CT (microresolution) 
and medical CT scanning (macroresolution) (Dohnalik and 
Ziemianin 2020; Drabik et al. 2021).

Mercury injection capillary pressure data (MICP) answers 
the question about the potential pore connectivity by mer-
cury injection with the high pressure into the pore space. It 
appeared that tortuosity can be associated the MICP data, 
specifically with effective porosity, percentage of pores with 
diameters above 0.1 µm, percentage of pores with diameters 
above 1 µm, and Swanson parameter (Swanson 1981; Tho-
meer 1983; Mao et al. 2013). Swanson parameter is directly 
related to rock permeability and indirectly to tortuosity, 
because it refers to main point in the injection saturation of 
mercury, which controls the fluid flow.

Pressure- and pulse-decay methods (PDP) in permeability 
estimation are crucial in tight rock analysis (Handwerger 
et al. 2011). PDP delivers absolute permeability for low-
porous and low-permeable formations. The last important 
laboratory analysis is connected with the electrical param-
eters measurement (EPM). It is carried out on core plugs 
and determined the electrical resistivity of formation, forma-
tion factor, cementation exponent and saturation exponent. 
This mentioned electrical parameters are directly linked 
with tortuosity. The more tortuous is the pore network, the 
worse environment for current flow. Scheme of laboratory 
measurements on geological materials, as well as equip-
ment description, is presented in Fig. 2. CT, MICP and PDP 

pressure-decay measurements were performed on crushed 
material, while EPM and pulse-decay method on core plugs. 
MICP was the last measurement because crushed material 
became contaminated.

Tortuosity is a significant parameter in the fluid dynam-
ics. The more pore space is complex, the greater the diffi-
culty of fluid flow. That is why tortuosity cannot be omitted 
in the tight reservoirs analysis, in which all difficulties count 
in hydrocarbon exploitation. The geometrical tortuosity is 
the ratio of the actual flow path or simply saying actual 
length of pore channel and straight-line distance between 
the beginning and the end of the pore channel (Thovert et al. 
1993; Lindquist et al. 1996; Ghanbarian et al. 2013; Sobieski 
et al. 2018).

The novelty in the presented approach is connected with 
the identification and analysis of the main pore channels. 
Skeleton is retrieved from the pore space; hence, the pore 
space is divided into the branches (pore channel) and the 
junctions (branches connection point). Most algorithms 
divide the main pore channel info set of branches. Algo-
rithm of the central axis, which is implemented in the poR-
OSE software (Madejski et al. 2018), does not divide the 
main pore channel into smaller sections but identifies and 
analyzes the whole main flow path. poROSE software is 
dedicated for 3D images analysis, especially from CT or 
3D FIB SEM (focused ion beam scanning electron micros-
copy) and is delivered by AGH University of Krakow in the 
licensing form. Figure 3 shows main pore channel marked 
in red and branches marked in green. Often branches are 
complex, well-built and create flow paths, but sometimes 
are the dead ends. The algorithm works for 21-neigbourhood 
connectivity.

The definition of geodesic tortuosity was described by 
Hormann et al. (2016), which is defined by the shortest 

Fig. 2   List of laboratory 
measurements on geological 
materials. Symbols of methods: 
CT—computed X-ray tomogra-
phy, MICP—mercury injection 
capillary pressure (mercury 
porosimetry), PDP—pulse-/
pressure-decay methods for 
absolute permeability, and 
EPM—electrical parameters 
laboratory measurement
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path between two pores that does not intersect the skel-
eton. Dijkstra's algorithm is most often used for this case 
(Roque and Costa 2020; Pheng et al. 2023), while start and 
end points are defined by centroid coordinates.

The main advantage in the presented approach is iden-
tification of main pore channels, without taking into con-
sideration blind pores. The main pore channel is, among 
other things, identified by searching for the thickest and 
longest pore channel, by inscribing a 3D sphere into the 
path. After main pore channel detection, the algorithm 
calculates tortuosity, as presented in Fig. 4. Thousands of 
main channels can be found in the pore system depending 
on the number of separate pore networks. It is the effect 
of the pore space complexity.

Multilinear regression (MLR) was implemented in the 
research to estimate absolute permeability based on vari-
ables (parameters) from CT, MICP, PDP and EPM data. 
MLR allows finding the relationship between several 

independent variables and one dependent, in this case 
absolute permeability (Freund et al. 2006):

where K is the dependent variable (absolute permeability); 
b0, b1, b2, b3, …, bn—regression coefficients; X1, X2, X3, …, 
Xn—independent variables; and n—number of independent 
variables.

The data were divided into the calibration, validation and 
testing data sets. Results from MLR can be treated as gener-
alized estimation for tight, low-porosity and low-permeabil-
ity rocks. Calculation was carried out in Statistica software 
(TIBCO 2017).

Results and discussion

Images from computed X-ray tomography were transferred 
into skeleton, which consists of branches (pore channels) 
and junctions (pore connection point). Basic statistics for 
parameters from the CT skeleton analysis, performed in 
the poROSE software, are depicted in Table 1 and Fig. 5. 
Research material varies in the branches number (pore chan-
nels), analyzing mean and standard deviation value, what 
points to diversity in poorly developed pore space. However, 
this number is still relatively low. On average, five junctions 
create pore network and three branches merge into the pore 
junction.

Coordination number parameter describes how many 
branches connect and end in one junction (Wayne 2008).

Figure 5 shows variety in average number of junctions 
in the single pore network and consistency in coordination 
number. Both average number of junctions and coordina-
tion number have similar median value and indicates poorly 
developed pore system.

(1)K = b0 + b1X1 + b2X2 + b3X3 +⋯ + b
n
X
n
,

Fig. 3   Products of skeleton 
analysis on 3D CT images, 
sketch of main pore channel and 
pore space components

Fig. 4   Sketch of the tortuosity definition based on 3D CT images. 
Symbols: τ—tortuosity of the main pore channel, La—actual flow 
path (actual length of pore channel), L—straight-line distance 
between the beginning and the end of the pore channel
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Table 2 and Figs. 6, 7, 8 present basic statistics for param-
eters from the CT, MICP, PDP and EPM for the analyzed 
rock samples. Tortuosity is around 1.3 (median similar to 
the average value) for the all analyzed samples. It indicates 
a poorly developed pore space in the all research mate-
rial. Moreover, average pore diameter from CT is not high, 
because is around 2 µm. Effective porosity from MICP is 
quite low, around 3% what is consistent with the informa-
tion about the percentage of pores with diameters higher 
than 0.1 µm (important threshold for gas flow regarding gas 
molecule size) and 1 µm (important threshold for oil flow 
regarding oil drop size). Swanson parameter is defined as the 
maximum value of mercury saturation per pressure. Swan-
son parameter was determined for the pore system, not for 
crack system and is characteristic for the low-porous and 
low-permeable rocks. Absolute permeability is typical as for 
the tight formations and corresponds with the other param-
eters from the MICP and CT data. Thus, electrical param-
eters, such as rock formation resistivity, formation factor, 
cementation exponent and saturation exponent, also assume 

Table 1   Basic statistics for 
parameters from the CT 
skeleton analysis

Ave average value, CN coordination number

Parameter N Mean Median Min Max Lower quartile Upper quartile Standard 
deviation

Branches Count 62 2988 1129 23 24,428 353 2999 4831
Ave. Junction Sample 62 5 3 1 28 2 6 5
Ave. CN Sample 62 3 3 2 3 3 3 0

Fig. 5   Box plots for the average number of junctions and the aver-
age coordination number in the samples from CT. Description: center 
line—median, box edges—quartiles, and whiskers—percentiles

Table 2   Basic statistics for 
parameters from the CT, MICP, 
PDP and EPM

Symbols: τ—tortuosity from CT, d CT—pore diameters from CT, Vol—volume of pore space from CT, 
Φ  MICP—effective porosity from MICP, Pores > 0.1  µm—percentage of pores with diameters above 
0.1 µm from MICP, Pores > 1 µm—percentage of pores with diameters above 1 µm from MICP, S—Swan-
son parameter from MICP, K—absolute permeability from pulse- or pressure-decay measurement, Rt—
electrical resistivity of formation, F—formation factor, m—cementation exponent, n—saturation exponent, 
N—number of values, *—geometric mean for absolute permeability

Parameter Unit N Mean Median Min Max Standard deviation

τ Unitless 26 1.365 1.375 1.215 1.487 0.074
d CT µm 62 2.491 2.197 1.092 4.614 0.892
Vol µm3 62 57 30 8 382 61
Φ MICP frac 51 0.036 0.032 0.002 0.147 0.033
Pores > 0.1 µm % 43 76 81 34 100 21
Pores > 1 µm % 43 58 61 17 100 29
S Unitless 25 3.764E−06 3.536E−06 1.350E−07 1.214E−05 3.279E−06
K mD 60 1.463E−02

4.114E−04*
5.180E−05 8.000E−06 2.760E−01 4.987E−02

Rt ohm 49 278 28 7 3279 670
F Unitless 49 5244 693 109 81,977 16,248
m Unitless 39 1.665 1.670 1.200 1.980 0.173
n Unitless 29 3.228 2.310 1.670 6.200 1.559
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values reflecting tight rocks. Formation electrical resistiv-
ity varies diametrically. Average value and median are not 
consistent, while standard deviation is quite high. Similarly, 
formation factor behaves, with one difference; the spread in 
values is even greater than that in the rock resistivity.

Distribution of pore tortuosity is presented in Fig. 6. 
Mostly, the tortuosity is in the range of 1.14–1.19. All values 
of tortuosity can be validated by analyzing 3D CT images. 
In this case, great portion of analyzed pore channels have 
simplified structure, which is connected with the poorly 

developed pore space and process of deposit sedimentation 
and consolidation.

Lala (2020) presented micromechanical theory approach 
to create a novel formula and to estimate the tortuosity in the 
model from precise experimental measurements. Tortuosity 
varies from 1.25 to 1.77 for the samples with porosity in the 
range of 29–44%. Zakirov and Khramchenkov (2020) found 
a meaningful effect of pore-level heterogeneity on perme-
ability and tortuosity by investigating fluid flow using lat-
tice Boltzmann simulations. They established the tortuosity 
in the range of 1.18–1.36 for different types of simulated 
porous media (nearly round grains). Moreover, Fu et al. 
(2021), using 3D CT images of Fontainebleau sandstone, 
described tortuosity between 1.28 for 24.5% porosity and 
1.91 for 8.61% porosity.

Figure 7 collectively shows box plots for the logarithm 
of rock electrical resistivity Rt, formation factor F and abso-
lute permeability K, described by center line as median, box 
edges as quartiles and whiskers as minimum and maximum 
values. Meanwhile, Fig. 8 presents box plots for the tortuos-
ity τ and cementation factor m in the same box manner. It is 
worth mentioning that cementation factor has low values as 
expected. Tight formations can be characterized by cementa-
tion factor even greater than 2 (around 2.2).

Tortuosity corresponds with the amount of pores above 
1 µm in diameter from MICP data (Fig. 9). There is vis-
ible positive relation between the tortuosity and percent-
ages of pores above 1 µm, and this relationship indicates 
that the more pores with diameters greater than 1 µm we 
observe in the tight rock sample, the more tortuous the pore 
channels can be expected. The points with the outstanding 

Fig. 6   Tortuosity distribution for all samples

Fig. 7   Box plots for the logarithm of rock electrical resistivity Rt, for-
mation factor F, absolute permeability K. Description: center line—
median, box edges—quartiles, whiskers—minimum and maximum 
value

Fig. 8   Box plots for the tortuosity τ and cementation factor m (unit-
less) Description: center line—median, box edges—quartiles, whisk-
ers—minimum and maximum value
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data (below the correlation line) represent limestones and 
dolomites.

Moreover, high correlation is determined between the 
tortuosity and Swanson parameter (Fig. 10). Tortuosity and 
Swanson parameter are connected with rock ability to fluid 
flow. Swanson parameter controls the fluid flow because it is 
main point in the injection saturation of mercury and is esti-
mated in the point at the MICP data curve in which pressure 

rises rapidly and the mercury fills ever narrower pore chan-
nels. Figure 10 shows interesting relationship for low-porous 
and low-permeable rocks. The tortuosity increases with an 
increase in the Swanson parameter. Swanson parameter is 
higher when amount of mercury is higher for the lower pres-
sure, which indicates that in low-porous and low-permeable 
rocks tortuosity plays a key role. Tortuosity in tight rocks 
refers to the development of pore network. It is more compli-
cated in conventional deposits. Here, in case of low-porosity 
and low-permeability rocks it is an indicator of the more 
extensive pore network, if the pore network of tight rocks 
can be qualified as extensive at all. This relation depicts 
challenging relationship and can be used as an initial esti-
mation of tortuosity from MICP data in tight rocks. The 
two outstanding points are dolomites and represent the same 
dolomites as in Fig. 9.

Research was also concentrated on analysis of the con-
nection between the tortuosity from CT and electrical 
parameters from laboratory measurements on core plugs. 
Both tortuosity and electrical parameters are associated 
with “flow”. The high correlation is observed between the 
tortuosity and saturation exponent in analyzed tight depos-
its (Fig. 11). Saturation exponent matches dependency on 
hydrocarbons in the pore system, simply saying it reflects 
the effect on the resistivity of the sample desaturation pro-
cess. High values of saturation exponent refer to the oil-wet 
pore system. Sometimes, the saturation exponent is analyzed 
qualitatively as a measure of the efficiency for the electrical 
flow ability within the brine filling a partially saturated rock 

Fig. 9   Relation between the tortuosity from CT and percentage of 
pores with dimeter above 1 µm in diameter from MICP

Fig. 10   Relation between the tortuosity from CT and Swanson 
parameter from MICP

Fig. 11   Relation between the tortuosity from CT on the crushed 
material and saturation exponent from electrical measurements on 
core plugs



3218	 Acta Geophysica (2024) 72:3211–3221

(Han et al. 2021). Tortuosity and saturation exponent in a 
sense correspond to each other in the way that high tortuos-
ity leads to complicated flow path and high formation factor; 
on the other hand, high values of saturation exponent are 
characteristic for uniform hydrocarbon-wet system described 
by high values of rock resistivity.

Multilinear regression was conducted to estimate abso-
lute permeability taking all parameters into consideration. 
Absolute permeability from PDP methods was used as a ref-
erence. Depending on the data set size, one dependent vari-
able—absolute permeability from pulse- or pressure-decay 
methods was considered in terms of several independent var-
iables from CT, MICP and EPM. Four different models were 
obtained including effective porosity from MICP, logarithm 
of formation factor from EPM, logarithm of rock electrical 
resistivity from EPM, cementation factor from EPM, satura-
tion exponent from EPM and tortuosity from CT (Table 3). 
Summary results are collected in Table 3 including param-
eter used in MLR analysis and determination coefficient for 
the fit with absolute permeability from PDP. The more weak 
relation was obtained using effective porosity, logarithm of 
rock electrical resistivity and tortuosity (R2 = 0.51), while 
the most strong for the saturation exponent and tortuosity 
(R2 = 0.77). Moreover, one relationship is worth discussing, 
namely that consisting of effective porosity, logarithm of 
formation factor and tortuosity (R2 = 0.72) and presented in 
Eq. 1 (Table 3) (1). Usually mercury porosimetry as well as 
electrical parameters measurement is carried out on every 
crushed material or/and core plug as routine or special 
core analysis (SCAL). Tortuosity is estimated based on CT 
measurement and is not a standard laboratory measurement. 
Combination of these parameters in one equation with quite 
high determination coefficient gives credence in estimating 
preliminary absolute permeability based on the data which 
is executed as standard (MICP and EPM) and data from the 
non-invasive method (CT).

(2)
logK = −22.1295 +

(

19.5795 ∗ �eff

)

+ (0.1541 ∗ logF) + (14.6972 ∗ �).

The best solution was obtained for Eq. 4 (Table 3), based 
on tortuosity and saturation exponent (2). Absolute perme-
ability can be easily estimated using these two parameters. 
Detail results of MLR analysis for the best solution are pre-
sented in Table 4 including standardized partial regression 
coefficient and partial regression coefficient.

Figure 12 illustrates the comparison between the loga-
rithm of absolute permeability form PDP (logK) and esti-
mated absolute permeability based on MLR (logK MLR). 
Relationship is good taking into consideration heterogene-
ous material as tight low-porosity and low-permeability 
rocks and different lithologies. One point is outstanding 
(low value of logK and logMLR) and is connected with the 
lithology (dolomite).

Al-Anazi and Gates (2010) presented the result of per-
meability estimation from well logs using core clustering 
and BPNN (a nonparametric, nonlinear statistical models 

(3)logK = −4.18069 + (−0.00712 ∗ �) + (−0.03334 ∗ n).

Table 3   Results for MLR analysis based on rock electrical parameters 
and tortuosity from CT

Symbols: R2 MLR—determination coefficient of MLR, b*—
standardized partial regression coefficients, F—formation fac-
tor, τ—tortuosity, n—saturation factor, m—cementation factor, 
Rt—electrical resistivity of formation

Equation number Petrophysical parameter, b* R2 MLR

Equation 1 Φ MICP, 0.388; logF, 0.089; τ, 0.789 0.72
Equation 2 Φ MICP, 0.321; m, 0.630; τ, 0.251 0.56
Equation 3 Φ MICP, 0.319; logRt, 0.020; τ, 0,746 0.51
Equation 4 n, 0.730; τ, 0.430 0.77

Table 4   Results of MLR analysis for the best solution—Eq. 4 (2)

Parameter Standardized partial regression 
coefficient
b*

Partial 
regression 
coefficient
b

Intercept − 4.181
τ − 0.429 − 0.007
n − 0.727 − 0.033

Fig. 12   Logarithm of absolute permeability from PDP (logK) versus 
logarithm of absolute permeability from MLR, Eq. 4 (2)
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for both regression and classification purposes), GRNN (a 
single-pass nonlinear learning algorithm in a neural network 
architecture for continuous variables estimation) and SVM 
(support vector machines) methods. They obtained cor-
relation coefficient for permeability prediction as follows: 
BPNN—0.71, for GRNN—0.73 and for SVM—0.74. It is 
worth mentioning that it is quite high correlation taking into 
consideration comparison between the core and well logs 
results. Performed calculations on core samples allowed 
receiving correlation coefficient equal to 0.88 using only 
MLR analysis and only core data.

Gholami et al. (2014) showed applications of artificial 
intelligence methods in prediction of permeability in hydro-
carbon reservoirs. Two methods were used to predict per-
meability in this case: RVR (relevance vector regression) 
and SVR (support vector regression). They compared the 
result of permeability estimation with the core permeabil-
ity and obtained determination coefficient of about 0.9 for 
both methods. Tight, low-porosity and low-permeability 
gas-saturated rocks, cored from the present depth of depo-
sition below 3000 m, are unique and quite difficult geologi-
cal material; hence, the prediction in permeability in the 
presented MLR case is lower than in mentioned paper.

Presented formulas have a limitation and can be tested 
on tight, gas-bearing formations. Moreover, the equations 
were calibrated, validated and tested on data from four dif-
ferent lithologies; hence, it can have a positive or negative 
influence.

Conclusions

The research presents the novel approach in the identifica-
tion and analysis of the main pore channels based on 3D CT 
images. Algorithm of the central axis, which was imple-
mented in the research, identifies and analyzes the whole 
main flow path and calculates tortuosity. The main flow path 
plays a key role in hydrocarbons and water exploitation.

Tight, low-porosity and low-permeability gas-saturated 
rocks are extremely difficult geological material because 
the variability of petrophysical parameters in the borehole 
geological profile is significant. 3D CT images, together 
with mercury porosimetry data, pulse- and pressure-decay 
permeability data, as well as electrical parameters, can 
give detailed information about the specific parameter 
distribution.

Calculated geometrical tortuosity is around 1.3 for the 
all analyzed core samples. It indicates a poorly developed 
pore space in the all research material. Mostly, the detected 
tortuosity is in the range of 1.14–1.19.

High correlation was observed between the tortuosity and 
Swanson parameter from mercury porosimetry data. Tor-
tuosity and Swanson parameters are connected with rock 

ability to fluid flow. Moreover, the high correlation was 
detected between the tortuosity and saturation exponent 
from electrical parameter measurement in analyzed tight 
low-porosity and low-permeability deposits.

Multilinear regression allows estimating absolute per-
meability taking CT, MICP and EPM parameters into con-
sideration. Four different models were obtained including 
effective porosity from MICP, logarithm of formation fac-
tor from EPM, logarithm of rock electrical resistivity from 
EPM, cementation factor from EPM, saturation exponent 
from EPM and tortuosity from CT. Combination of these 
parameters in one Eq. 4 (2), using tortuosity from CT and 
saturation exponent from EPM, with high determination 
coefficient gives credence in estimating preliminary abso-
lute permeability based on the data which is executed as 
standard core analysis (MICP and EPM) and data from the 
non-invasive method (CT).
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