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Abstract
Using high-rate (1 Hz) global positioning system (GPS) data, coseismic displacement estimates are obtained for the 2023 
Mw 7.8 Pazarcik and Elbistan Mw 7.5 Türkiye earthquakes. The estimated largest displacements caused by the Mw 7.8 
event are observed at station ante with an eastward component displacement of 31cm and at station mly1 with a southward 
component displacement of 39cm. The displacements caused by the Mw 7.8 Pazarcik event show left-lateral displacements 
along the nodal plane, which is consistent with the focal mechanism. The largest displacements caused by the Mw 7.5 event 
are a westward component displacement of 450 cm and a northward component displacement of 97cm at the station ekz1 
which is only 6 km from the epicenter of the event. Based on high-rate GPS time series, the surface wave propagation of the 
Mw 7.8 Elbistan earthquake is preliminarily estimated at an overall speed of approximately 2.9 km/s, with a slightly higher 
speed of 3.1 km/s along the northeast direction and 3.0 km/s along the east direction. High-rate GPS measurements show 
a prominent advantage of temporal resolution for earthquake sequences with short intervals, and preliminary displacement 
estimates could be made with only a few hours of observations. The displacement estimation provides constraints for the 
inversion of the rupture process and seismic source mechanisms.
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Introduction

The 2023 February 6 Mw 7.8 Pazarcik Türkiye earthquake 
caused severe damage to a large area, followed by the Mw 
7.5 Elbistan earthquake within 10 hours and with a distance 

of less than 100 km. The interferometric synthetic aperture 
radar measurements provide rupture distribution of the 
earthquake sequence (Reitman et al. 2023). However, the 
spatiotemporal closeness makes it difficult to distinguish 
the coseismic deformation caused by each event. Daily GPS 
observations with a sampling interval of 30 seconds provide 
effective constraints for velocity, deformation, slip distribu-
tion and other kinematic information of crustal movements 
(Abdrakhmatov et al. 1996; Li et al. 2012; Jiang et al. 2014; 
Goudarzi et al. 2016; Zhan 2021; Li et al. 2022, Wu et al. 
2022), but they are limited in rapid coseismic displacement 
estimations due to temporal resolution. High-rate GPS meas-
urements show a prominent advantage in temporal resolu-
tion for earthquake sequences with short intervals (Ge et al. 
2000; Larson et al. 2003; Elósegui et al. 2006; Larson 2009; 
Avallone et al. 2012; Clotaire Michel et al. 2017; Guo et al. 
2021; Li et al. 2023). High-rate GPS data are used for rapid 
determination of earthquake magnitude, centroid moment 
tensor determination and rupture evolution to provide 
earthquake or tsunami early warning and disaster preven-
tion (Blewitt et al. 2006; Melgar et al. 2012; Goldberg et al. 
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2018). In this article, preliminary coseismic displacement 
estimates for the Mw 7.8 and Mw 7.5 events are obtained 
using high-rate (1 Hz) GPS data provided by Türkiye Ulusal 
Sabit GNSS Ağı (tusaga-aktif.gov.tr) and the international 
GNSS service (IGS) through the Crustal Dynamics Data 
Information System (CDDIS) (Noll 2010). Further inversion 
of the rupture process and source mechanism can be made 
based on the displacement estimates (Yokota et al 2009; Yue 
et al. 2011; Xu et al. 2021; Zhijie Jia et al. 2022). Sub-daily 
process of slow slip events can also be inverted from high-
rate GPS observations (Itoh Yuji et al. 2022). The GPS time 
series with complete records are used to estimate the propa-
gation speed of the surface wave radiated by the earthquake. 
For stations closest to the epicenters of the two events which 
stopped recording data shortly after the events and reacti-
vated later, observations before and after each event are used 
to estimate coseismic displacements. Together with continu-
ous coseismic observations, the results provide preliminary 
constraints for ground deformation field and rupture process 
inversion. The GPS stations used in this article are shown 
in Figure 1. Also shown are the active faults in the vicin-
ity (Seyitoğlu et al. 2022), the focal mechanism from the 
Global Centroid-Moment-Tensor (CMT) Project (Ekström 
et al. 2012) and the tectonic setting in the inset map.

The African and Arabian plates move northward and 
converge with the Eurasian plate, which causes the west-
ward motion of the Anatolian block (Dan McKenzie 1972; 
Barka 1997). The Anatolian block rotates counter-clockwise 
while escaping from the collision between the Eurasian plate 
and the Arabian plate and the motion occurs mainly on the 
North Anatolian Fault and East Anatolian Fault (Barka 
1997; Bulut et al. 2012). Along the North Anatolian Fault, 
the right-lateral strike-slip accommodates most of the west-
ward motion of the Anatolian block, while the left-lateral 
strike-slip motion mainly occurs along the East Anatolian 
Fault. Seismicity in this area is usually related to the tectonic 
movements of the three first-order plates (the Eurasian plate, 
the African plate and the Arabian plate) and the smaller 
tectonic block (the Anatolian block).

The earthquake sequence including 4 Mw≥6.0 earth-
quakes (Fig. 1) occurred on the boundary between the Ara-
bian plate and the Anatolian block. The Anatolian block 
moves southwestward relative to the Arabian plate with left-
lateral strike-slip motion mainly occurring along the East 
Anatolian fault (denoted as EAF in Fig. 1) (Emre 2018). In 
this article, we describe the method used to process high-
rate GPS data in the region. Position time series of near-field 
sites are plotted with indications of coseismic movements to 
verify the results. Then, the time series of all sites recording 
distinguishable coseismic movements are used to estimate 
the propagation speed of the surface waves. To preliminarily 
estimate coseismic displacements at each site, linear fitting 
is then used to analyze the position time series of the sites. 
An eastward component displacement of 31cm at site ante 
and a southward component displacement of 39cm at site 
mly1 are estimated to be the largest displacements caused 
by the Mw 7.8 event. The displacements show left-lateral 
movement along the nodal plane, which is consistent with 
the focal mechanism. A westward component displacement 
of 450cm and a northward component displacement of 97cm 
at the site ekz1 are the largest displacements caused by the 
Mw 7.5 event. Using high-rate GPS position time series, 
the surface wave propagation speed caused by the Mw 7.8 
Elbistan earthquake is preliminarily estimated at an overall 
speed of approximately 2.9 km/s.

Data processing

The TRACK module of GAMIT/GLOBK software is used 
to process the high-rate GPS data (Herring et al. 2003). Data 
from 46 local GPS stations and 6 IGS stations are processed 
(Fig. 1 and Appendix Tab. 1). The high-rate GPS data are 
concatenated to one-hour sessions of GPS time 00, 01, 02, 
03, and 10, 11, 12, 13, and 14 on February 6. List of obser-
vations of the first 4 sessions is shown in appendix Table 1, 
IGS stations are labeled with asterisks. Firstly, the IGS sites 

Fig. 1   Distribution of GPS stations (stations annotated in the inset 
map are IGS stations) and sketch of tectonic setting in the area (inset 
map). Yellow squares denote GPS stations. The focal mechanism of 
the Mw 7.8 earthquake is denoted with the red beachball. Three other 
earthquakes include Mw 6.7, Mw 7.5, and Mw 6.0 on February 6, 
2023 are denoted with red asterisks. White rectangles denote profiles 
for surface wave speed analysis. NAF is the abbreviation for North 
Anatolian Fault and EAF is for East Anatolian Fault. Plate boundary 
is plotted with grey solid lines. Block boundary is plotted with grey 
dashed lines. The relative motions of major tectonic structures are 
qualitatively denoted with blue arrows in the inset map



2979Acta Geophysica (2024) 72:2977–2984	

1 3

sofi and ista are used to estimate the far field effects of the 
Mw 7.8 earthquake. To analyze the long-term movements 
of those IGS stations, we reference to results provided by 
Nevada Geodetic Laboratory. Daily GPS data are routinely 
processed at Nevada Geodetic Laboratory (Blewitt G. et al. 
2018). According to their analysis, those IGS stations are 
moving at a long-term speed of less than 50 mm/yr, which 
makes it appropriate to assume the stations are relatively 
static in a few hours if they are not affected by seismic 
waves. We processed data from the station sofi with station 
ista as reference station and vice versa, through which we 
confirmed sofi with minor effects of the events and chose 
it as the reference station. The GPS data of other stations 
before seismic wave propagated to the station sofi is used in 
kinematic mode processing. Secondly, we use IGS final pre-
cise ephemeris of GPS constellation. Linear combinations 
of observations are used to eliminate first-order ionospheric 

delay. The ionex files from Center for Orbit Determina-
tion in Europe (CODE) are used to estimate second order 
ionospheric delay. GPT3 model and VMF mapping func-
tions are used for atmospheric delay estimation (re3data.org 
- Registry of Research Data Repositories. http://​doi.​org/​10.​
17616/​R3RD2H). Local coordinates of stations with contin-
uous observations covering the Mw 7.8 event are obtained. 
The time series of 4 stations are shown in Fig. 2.

The accuracy of horizontal components of local coordi-
nates of the stations is better than 2cm, which is appropriate 
to estimate displacements larger than several centimeters. 
The vertical components are less distinguishable for coseis-
mic estimates, so only horizontal components are analyzed 
in this article.

Using least squares linear fitting, coseismic displacements 
are estimated as the difference between interceptions of fit-
ting lines after and before the event. The estimated largest 

Fig. 2   Time series of the stations adn2(upper left), ante(upper right), 
mly1(lower left), nico(lower right) at GPS time 01on February 
6,2023. In each panel, the positions of east (top) and north (bottom) 
components are shown with black dots for each second with grey 
error bars. X axis denotes GPS time, while Y axis denotes station 

position in centimeters. The X axis starts at the GPS time of the Mw 
7.8 earthquake origin. Horizontal red dashed lines are least square fit-
ting of time series before and after the event. Vertical red dashed lines 
denote the fitting time

http://doi.org/10.17616/R3RD2H
http://doi.org/10.17616/R3RD2H
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displacements occurred are at station ante with an eastward 
component displacement of 31 cm and at station mly1 with 
a southward component displacement of 39cm.

High‑rate GPS time series analysis

As shown in Fig. 1, the focal mechanism for the Mw 7.8 
event from GCMT gives one rupture nodal plane with a 
strike azimuth of 54° and a dip of 70° and the other with a 
strike azimuth of 320° and a dip of 80°. The focal mecha-
nism for the Mw 7.5 event gives one rupture nodal plane 
with a strike azimuth of 261° and a dip of 42° and the other 
with a strike azimuth of 358° and a dip of 84°. To estimate 
the propagation speed of the surface wave radiated by the 
Mw 7.8 earthquake, three profiles are made along two nodal 
planes and eastward of the hypocenter as shown in Fig. 1. To 
simplify the processing, the middle time between the largest 
and smallest positions is defined as the average arrival time. 
Then each arrival time of the surface wave to the stations is 
obtained. The X axis is defined as the time measured in sec-
onds after the event and the Y axis as the epicentral distance 
in kilometers, the time series are plotted in Fig. 3.

The overall estimation of surface wave propagation 
caused by the Mw 7.8 earthquake is at a speed of 2.983 km/s, 
while a speed of 3.135 Km/s at profile 1 in the NE direction, 
a speed of 3.101 km/s at profile 2 in the NW direction, and a 
speed of 3.055 km/s at profile 3 in the east direction.

Coseismic displacement estimates

Coseismic displacements at stations with continuous obser-
vations are estimated using time series that covers the Mw 
7.8 event. However, 4 sites (kls1, ekz1, akle, and vir2) near 
the epicenter stopped recording data shortly after the event, 
possibly because of the severe shaking from the earthquake. 
The sites kls1 and vir2 stopped observation tens of seconds 
after the origin time and resumed observation at the nest 
hour, while the sites ekz1 and akle stopped and resumed 
observation at one hour later. Data of one whole hour at GPS 
time 00 and 03 are processed and linearly fitted to the origin 
time of the Mw 7.8 event. Differences of the intercepts of the 
fitting lines at the origin time of the event are the displace-
ment estimates accordingly.

To get consistent reference frames for the 4 stations, the 
Cartesian coordinates for the stations in ITRF 2014 are 
obtained for the two separated one-hour sessions. In order 
to use least squares linear fitting for the two sessions in the 
same reference frame, we concatenate the Cartesian coordi-
nates of these two sessions of each station. Then the formu-
las 1, 2, and 3 are used to obtain local coordinates for each 
station, which leads to the north, east, and up component 

coordinates relative to the first epoch local position at 0 
o’clock of each station (Gerdan 1999). Thus the displace-
ments of these stations in the consistent local coordinate sys-
tem can be estimated using linear least squares estimation. 
To attest to the method, two stations (ante and mly1) with 
continuous observations through the Mw 7.8 earthquake are 
also processed. The estimations are shown in Fig. 4.

X0, Y0 and Z0 are initial reference positions of local 
coordinates in the Cartesian coordinate system. B and L are 
geodetic latitude and longitude, and f  is flattening of the 
ellipsoid.

The horizontal displacements of the two stations (ante 
and mly1) with continuous observations through the event 
are also estimated using this method and compared with 
linear fitting of continuous observations. Then the coseismic 
displacement distribution of all relevant stations is shown 
in Fig. 5.

The inferred displacements of these two stations (ante 
and mly1) show good consistency with direct estimates 
considering the centimeter level accuracy of the kinematic 
positioning. The north and east component differences at sta-
tion ante are − 3.8cm and 2.4cm, which is close to the posi-
tioning accuracy and less than 15% of total displacements. 
Furthermore, it should be noted that the method doesn’t take 
other earthquakes into consideration, especially the Mw 6.7 
earthquake (Fig. 1) which occurred close to the station ante 
and at the time shortly after the Mw 7.8 earthquake.

It can be seen from Fig. 5 that the stations in the north-
west of the rupture moved southwest while the stations in 
the southeast moved northeast. The displacements decrease 
while the epicentral distances increase. The displacements 
caused by the event show left-lateral movement along the 
nodal plane, which is consistent with the GCMT focal mech-
anism. The estimated largest displacements occurred are at 
station ante with an eastward displacement of 31 cm and at 
station mly1 with a southward displacement of 39 cm.

Using the same method, coseismic displacements of 
the stations caused by the Mw 7.5 earthquake are shown 
in Fig. 6. The largest component displacements caused 
by the Mw 7.5 event are a westward displacement of 450 
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cm and a northward component displacement of 97 cm at 
the station ekz1 which is only 6km from the epicenter of 
the event. The coseismic displacements to the east of the 

epicenter are mostly southward, while displacements to the 
west of the epicenter are mostly northward. The distribution 

Fig. 3   Time series after the Mw 7.8 event. Upper-left panel for all 
stations. Upper-right panel is for profile 1 in Fig. 1. Lower-left panel 
is for profile 2. Lower-right panel is for profile 3. Red lines denote 
north component of time series while green lines denote east com-
ponent. Blue dots denote average arrival times of stations. Yellow 

dashed lines are linear fitting to blue dots. X axis denotes seconds 
after the event. Y axis on the left denotes epicentral distances of the 
stations in kilometers, while Y axis on the right denotes position 
change with minimum tick interval indicating 10 centimeters
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of coseismic displacements is consistent with GCMT focal 
mechanism.

Discussions

The kinematic mode processing of high-rate GPS data pro-
vides an efficient method for coseismic displacement esti-
mation, because only a short time of observations (several 
hours) is needed and it has a high temporal resolution to 
distinguish displacements caused by different earthquakes 
which occurred sequentially with a short interval. For the 
stations nearest to the epicenter which are severely affected 
by the earthquake, coseismic displacements could still be 
estimated with timely redeployed observations. It is critical 
that the reference station is static during the observation.

The background movement of the reference station is 
at a rather low speed to affect the position estimates dur-
ing a few hours. Our method makes it possible to estimate 

coseismic displacements shortly after an event with a promi-
nent advantage of distinguishing seismic effects caused by 
each earthquake in one sequence which happened with short 
time intervals.

The linear fitting of time series could be made more plau-
sible to estimate the start time of seismic waves of each 
station. With higher accuracy and higher sampling rate, it 
would effectively improve the estimation of surface wave 
propagation speed. The distribution of GPS stations at dif-
ferent epicentral distances would also contribute to better 
estimation. It should also be noted that post-seismic effects 
are ignored in this article because of short duration.

Using high-rate GPS observations, preliminary estimates 
of coseismic displacements and corresponding surface wave 
forms could be recorded with only a few hours of obser-
vations. The estimated largest displacements caused by the 
Mw 7.8 Pazarcik earthquake are observed at station ante 
with an eastward component displacement of 31 cm and at 
station mly1 with a southward component displacement of 

Fig. 4   Horizontal coseismic displacement estimates of ante, ekz1, 
mly1, and vir2. Horizontal red dashed lines are least squares fitting of 
time series before and after the event. Vertical red dashed lines denote 

the fitting time. Vertical yellow lines denote the origin time of the 
Mw 7.8 earthquake
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39 cm. The Mw 7.8 Pazarcik earthquake shows left-lateral 
movement along the nodal plane, which is consistent with 
the focal mechanism. The largest displacements caused by 
the Mw 7.5 Elbistan earthquake are a westward component 
displacement of 450 cm and a northward component dis-
placement of 97 cm at the station ekz1 which is about 6 km 
from the epicenter of the event. Based on high-rate GPS 
time series, the surface wave propagation of the Mw 7.8 

Elbistan earthquake is preliminarily estimated at an overall 
speed of approximately 2.9 km/s. High-rate GPS observa-
tions show prominent advantage of temporal resolution for 
earthquake sequences with short intervals. The displacement 
estimation provides constraints for inversion of the rupture 
process and seismic source mechanism. Daily observations 
provide another way of estimation of coseismic displace-
ments. Comparisons between these two methods are relevant 
to observation time and models, which is beyond the scope 
of this article. As a prominent advantage of high-rate GPS 
observations for coseismic displacements are the rapid esti-
mations and further applications for geophysical purposes.

With shorter observation time, the coseismic displace-
ment estimations of different earthquakes could be avail-
able for higher temporal resolution, while other geodetic 
observations with longer interval could only provide the 
comprehensive displacements of earthquakes. The linear 
fitting of position time series of high-rate GPS observations 
is meaningful only for sites with displacements large enough 
to be distinguished from noise, so more accurate observa-
tions will prompt coseismic displacement estimations. And 
other earthquakes such as the Mw 6.7 event would be distin-
guished from position time series with closest sites within 
tens of kilometers. Additionally, spatially uniform distrib-
uted sites will provide more information on surface wave 
propagation speed, especially sites at different epicentral 
distances will provide constraints for different locations.
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Fig. 5   Coseismic displacements of the stations caused by the Mw 7.8 
event. Red arrows denote direct estimates of displacements from con-
tinuous high-rate GPS observation cover the Mw 7.8 event, blue ones 
denote estimates from 2 separate one-hour observations before and 
after the event

Fig. 6   Coseismic displacements of the stations caused by the Mw 
7.5 event. Red arrows denote direct estimates of displacements from 
continuous high-rate GPS observations cover the Mw 7.5 event, the 
blue one at the station ekz1 denote estimates from 2 separate one-hour 
observations before and after the event. The displacement of station 
ekz1 is plotted with the blue scale which is different from the red 
ones. The displacement at station ekz1 is over 4 meters
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