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Abstract
Accurate estimation of solar radiation is crucial for harnessing this abundant natural resource effectively. Measuring solar 
radiation directly requires ground station networks, which are either unavailable or very limited in many regions of the world, 
including Vietnam, particularly in remote areas due to resource constraints. Therefore, this study was carried out with the 
objective to develop hybrid artificial intelligence (AI) models to predict solar radiations correctly using other meteorological 
data such as wind speed, relative humidity, maximum and minimum temperature and rainfall which can be measured at site 
easily. In this study, we have proposed three novel hybrid AI models, namely ANFIS-GA, ANFIS-BBO and ANFIS-SA, 
which combine the adaptive neuro-fuzzy inference system (ANFIS) technique with genetic algorithm (GA), biogeography 
base optimization (BBO) and simulated annealing (SA), respectively, for predicting daily solar radiation in Hoa Binh prov-
ince, Vietnam. The performance of these hybrid models was evaluated using statistical indicators, including correlation 
coefficient (R), root-mean-squared error (RMSE) and mean absolute error (MAE). The results demonstrate that all three 
optimized models outperform the single ANFIS model. Among them, the ANFIS-BBO model exhibits the highest predictive 
capability (RMSE = 3.141 MJ/m2, MAE = 2.439 MJ/m2, R = 0.874). Sensitivity analysis reveals that maximum temperature 
is the most influential factor for predicting daily solar radiation. The findings of this study have significant implications for 
predicting solar radiation using AI methods, particularly ANFIS-BBO, with minimal meteorological data in remote locations 
not only in Vietnam but also globally.
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Introduction

Solar radiation prediction is an important factor as its impact 
on living matter and feasible applications for many produc-
tive purposes such as renewable energy (Lee and Cheng 
2016; Mohanty et al. 2016), direct or indirect conversion 

of sunlight into electricity (Saberian et al. 2014; Okoye 
and Solyalı 2017; Lalwani et al. 2011) and heating systems 
for water (Kalogirou et al. 1999) or air (Karim and Haw-
lader 2004). Solar radiation on Earth’s surface plays a vital 
role in many fields, including meteorology [8,9], irrigation 
(Gao et al. 2013; Twersky and Fischbach 1978; Hernandez-
Ramirez et al. 2014), solar energy (Yeh and Lin 1996; Bilal 
et al. 2012; Cruz-Peragon et al. 2012; Bataineh and Dalalah 
2012; Lv et al. 2018) and drought monitoring (Zhang et al. 
2019). The solar energy exhibits a vastly lower environmen-
tal impact, in terms of pollution, compared to other types 
of energy such as fossil fuels (Chen et al. 2015; Handayani 
et al. 2019). Recently, increasing numbers of solar farms 
have been installed all over the world to harvest this type 
of renewable energy (Park et al. 2015; Shiva Kumar and 
Sudhakar 2015; Yang et al. 2017). Therefore, precise estima-
tion of solar radiation is one of the primary requirements for 
sustainable development, for every country around the globe 
(Bishoge et al. 2018).
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Daily solar radiation on the surface of Earth depends 
on spatial and temporal factors (Nomiyama et al. 2011; 
Voyant et al. 2012) such as local weather, local landscape, 
season, time of day and geographic location. Measuring 
solar radiation and related factors requires ground station 
networks, which are unavailable or very limited in many 
regions of the world, particularly in developing countries 
including Vietnam (Rao 1983; Polo et al. 2015b; Xue 2017). 
Traditional prediction models tried to analyze the correla-
tion between long-term measurement of solar radiation and 
several parameters, namely sunshine duration, wind speed, 
air temperature, precipitation, cloud conditions and relative 
humidity (Taşdemiroǧlu and Sever 1991; Gouda et al. 2019; 
Khorasanizadeh and Mohammadi 2013; Mghouchi et al. 
2016; Mohammadi et al. 2015; Mousavi et al. 2017; Paoli 
et al. 2010) and geographical parameters (latitude, longi-
tude and altitude) (Jain 1986; Lewis 1992; Türk Toğrul and 
Onat 1999; Chegaar and Chibani 2001; Chen et al. 2004). 
Various empirical equations for estimating solar radiation 
were proposed by researchers, namely Angström (1924), 
Angström–Prescott (PRESCOTT 1940), Bahel et al. (1987), 
Bristow and Campbell (1984), Allen (1997), Hargreaves 
et al. (1985) and Jin et al. (2005).

In recent decades, artificial intelligence (AI) techniques 
have been widely utilized for the prediction of solar radiation 
(Voyant et al. 2017), which are considered as more advanced 
approaches than traditional techniques in analyzing nonlin-
ear relationship between input variables and target vari-
ables (Yadav and Chandel 2014). Many researchers (Paoli 
et al. 2010; Zeng and Qiao 2013; Voyant et al. 2013; Güçlü 
et al. 2014; Belaid and Mellit 2016; Bou-Rabee et al. 2017) 
applied and compared artificial neural networks (ANN) with 
conventional models for forecasting daily solar radiation 
and stated that ANN model had better performance than the 
conventional models. Other most common AI techniques 
used for predicting solar radiation include support vector 
machine (SVM), regression tree (RT) and random forest 
(RF) (Voyant et al. 2017). Ağbulut et al. (2021) applied and 
compared various ẠI models, namely kernel and nearest-
neighbor (k-NN), ANN, SVM and deep learning (DL) for 
the prediction of daily global solar radiation of four prov-
inces of Turkey (Nevşehir, Tokat, Kırklareli and Karaman). 
Cornejo-Bueno et al. (2019) applied and compared different 
AI models, namely SVM, ANN, extreme learning machine 
(ELM) and Gaussian process (GPR) for the prediction of 
global solar radiation based on geostationary satellite data 
in the Toledo, Spain. Similarly, linear regression and GPR 
models were applied to predict the daily solar radiation 
using the weather data (wind speed, temperature, pressure 
and humidity parameters) obtained from the meteorologi-
cal department in Zonguldak province in Turkey (Hacioğlu 
2017). Various AI models, namely SVM, gradient boosted 
regression (GBR) and RF, were applied and compared for 

prediction of solar radiation obtained from seven weather 
stations located in Spain (Gala et al. 2016). In general, the 
AI models, especially hybrid AI models, are quite effective 
and accurate for solar radiation prediction (Gala et al. 2016).

In the present study, the main aim is to develop novel 
hybrid AI models, namely ANFIS-SA, ANFIS-BBO and 
ANFIS-GA which are the combination of adaptive neuro-
fuzzy inference system (ANFIS) and various optimization 
methods including simulated annealing (SA), biogeogra-
phy base optimization (BBO) and genetic algorithm (GA), 
respectively, to predict solar radiations correctly using mete-
orological data such as relative humidity, wind speed, maxi-
mum and minimum temperature, sunshine duration and pre-
cipitation which can be easily measured. We have selected 
Hoa Binh province, Vietnam, as a study area, where the 
facility to directly measure solar radiation is very limited in 
comparison to measurement of other meteorological param-
eters (Nguyen and Pryor 1996, 1997; Polo et al. 2015a, b). 
Validation of these hybrid models was carried out using sta-
tistical methods, namely root-mean-squared error (RMSE), 
correlation coefficient (R) and mean absolute error (MAE). 
MATLAB software was used for the model’s development.

Description of methods used

Adaptive neuro‑fuzzy inference system (ANFIS)

ANFIS was first introduced in the 1990s (Jang 1993). It is 
considered a universal estimator with the ability to approxi-
mate nonlinear functions (Jang 1997; Abraham 2005). In 
this method, the fuzzy inference system corresponds to 
IF–THEN rules (Takagi and Sugeno 1983, 1993). Type-2 
ANFIS architecture is illustrated in Fig. 1. Structurally, it 
is a feed-forward multilayer neural network consisting of 
five layers with one target (f) and two inputs (x, y). Circles 
and rectangles, respectively, denote fixed nodes and adap-
tive node functions. Description of the five layers is given 
in literatures (Mashaly and Alazba 2018; Bui et al. 2018; 
Dao et al. 2019a, b). 

ANFIS is well known as one of the effective AI models 
(Mukerji Aditya et al. 2009). However, it has a limitation in 
finding the optimal hyper-parameters for training the model 
(Bui et al. 2016). Therefore, optimization techniques includ-
ing GA, SA or BBO are good tools in solving this limitation 
and improving the performance of ANFIS (Tien Bui et al. 
2016; Pham and Prakash 2017; Jaafari et al. 2019).

Genetic algorithm (GA)

GA was first introduced by John Holland (Goldberg and 
Holland 1988; Holland 1992) and influenced by biological 
evolution in nature as described by Darwin’s law (McCall 
2005). It has been successfully utilized by researchers in 



1441Acta Geophysica (2024) 72:1439–1453 

1 3

a range of fields for optimizing complex problems (Cheng 
et al. 2017; Sohail 2017; Bui et al. 2018; Hong et al. 2018; 
Le et al. 2019). GA is considered to be a population, where 
each individual is called a chromosome, composed of dif-
ferent problem variables that function as genes in the algo-
rithm (Melanie 1999). GA procedure is created by randomly 
developing a chromosome population and then producing 
the next generation through several steps, such as (1) the size 
and initial population are randomly generated by defining 
upper and lower bounds, and each chromosome is defined 
as a binary string, (2) the best chromosomes (i.e. the best 
solutions) are chosen by computing the fitness function of 
each one, (3) combining a pair of chromosomes (parents) to 
produce a new chromosome (offspring or child) with the best 
genetic characteristics, (4) inserting new characteristics into 
the offspring population by randomly changing some of the 
genes inside the chromosomes, and (5) when the generation 
process is terminated, the chromosome with the highest fit-
ness value is decoded to get the optimal results. Recently, 
GA was adopted as an effective optimization algorithm for 
solving multi-dimension space problems (Cheng et al. 2017; 
Bui et al. 2018; Hong et al. 2018). The technique has been 
widely implemented in various hybrid optimization inves-
tigations; for instance, GA combined with response sur-
face methodology has been examined by Winiczenko et al. 
(2016) and Unni et al. (2019) as an optimization of ANN.

Simulated annealing (SA)

SA is a powerful optimization technique based on the simi-
larity between the annealing algorithm and search algorithm 
used in metallurgy (Metropolis et al. 1953). It simulates the 
cooling process by steadily decreasing the temperature of the 
system until it reaches a stable state to avoid damage due to 
freezing when cooling too quickly, or the time-consuming 
nature of the cooling if too slow. Search algorithms focus 
on promising solutions without ignoring better solutions.

In order to eliminate crystalline imperfections, solid 
metal is heated and then cooled slowly in the annealing 
process; thus, the free energy of the solid is optimized 
as a minimum (Laarhoven and Aarts 1987; Vidal 1993; 
Pham and Karaboga 2000; Salamon et al. 2002; Pétrowski 
and Taillard 2005). Consequently, in simulated annealing, 
temperature is parametrized in order to control the heat-
ing and cooling process. Initial heating is indispensable to 
prevent a local minimum. The principle of SA is illustrated 
in Fig. 2.

SA algorithm normally consists of successive jumps in 
the problem solving process, but can be divided into three 
basic steps as follows (Laarhoven and Aarts 1987; Vidal 
1993): (1) assign a solution with current temperature, (2) 
change the temperature by the specified rate to create a 
new solution, and (3) evaluate the system improvement.

Biogeography base optimization (BBO)

BBO, introduced by Simon et al. (Simon 2008), is an algo-
rithm based on the science of biogeography, which studies 
the distribution of living organisms (plants and animals) 
in both time and space. Its purpose is to explain behaviors 
of the shifting populations of species in various habitats 
(Christy and Raj 2014). In the BBO algorithm, a habitat 
H, which is an N-value integer vector, is first initialized 
based on the values of SIV. In order to reach the global 
minimum error, each individual in the population needs 
to be evaluated before optimizing the population using 
migration and mutation. Indeed, the flowchart of the BBO 
algorithm is presented in Fig. 3, consisting of five main 
steps (Simon 2008, 2013), such as (1) generation of ini-
tial population based on given population size, (2) evalua-
tion of the objective function and sorting of solutions, (3) 
the immigration and emigration rates of each candidate 

Fig. 1  Five-layer ANFIS archi-
tecture
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solution are computed, (4) the mutation rate of each can-
didate solution is computed based on the immigration and 
emigration rates, and (5) the objective function is evalu-
ated until the stop criteria are satisfied.

Validation criteria to assess models’ performance

In this study, three most common validation metrics: 
MAE, R and RMSE, were used to assess the effectiveness 
of the proposed AI models (Devore 2015; Ly et al. 2019; 
Pham et al. 2019). MAE measures the average magnitude 

of the differences between target values and the modeled 
predictions, without considering their direction or weights. 
RMSE is the square root of the median of squared dif-
ferences between target values and predictions (Nguyen 
et al. 2022a, b; Rehamnia et al. 2023). MAE and RMSE 
can only be used to compare the models if their errors are 
measured in the same units. Both methods are negatively 
oriented and indifferent to the direction of error. However, 
RMSE is more useful than MAE in the case of particularly 
undesirable errors, because it gives greater weight to larger 
errors. R is the proportion of variance of the dependent 

Fig. 2  Simulated annealing 
process
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variable explained by the regression model, calculated 
from the sum of squares terms. In general, lower RMSE 
and MAE show better performance of the models. R val-
ues range between 1 and − 1. R value “0” indicates very 
little correlation, − 1: negative correlation, whereas + 1: 

positive correlation. In addition, other metrics, namely 
standard deviation of relative error  (StDError) and mean 
relative error  (MeanError), were also used to validate and 
compare the models.

Fig. 3  Algorithm of the BBO 
method
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Data collection and preparation for modeling

In this study, we collected daily meteorological data over 
a period of 10 years, from January 01, 2004, to Decem-
ber 31, 2013. The data included solar radiation, relative 
humidity, wind speed and temperature and were obtained 
from the National Centers for Environmental Prediction 
(NCEP) (https:// globa lweat her. tamu. edu). Rainfall data 
were obtained from a rain gauge in Cao Phong district, Hoa 
Binh province, Vietnam (20.763° N, 105.312° E). The daily 
weather data from this site were calculated and determined 
using the Climate Forecast System Reanalysis (CFSR) (Fuka 
et al. 2014). In the model study, we considered input vari-
ables such as relative humidity, wind speed, temperature 
(maximum and minimum) and rainfall. The output vari-
able was solar radiation. Figure 4 presents histograms of 
these variables' data. We observed that the histograms of all 
variables are highly asymmetric, indicating that a Gauss-
ian distribution would not adequately represent the prob-
ability density of these variables. Particularly, in terms of 
rainfall, a high concentration of days with no rain at all was 

observed. Table 1 shows minimum, median, maximum val-
ues, coefficient of variation and quantiles such as Q10, Q25, 
Q75 and Q90 of variables used. The non-Gaussian form of 
the probability density distribution of the variable can be 
quantified by statistical analysis of the data (Table 1). The 
daily maximum temperature varied from 6.97 to 42.91 °C, 
with a median value of 27.82 °C and coefficient of vari-
ation (Cv) of 24.99%. Minimum temperature ranges from 
− 0.94 to 27.94 °C, with a median value of 19.18 °C and 
coefficient of variation of 28.96%. Wind speed varies from 
2.26 to 13.47 km/h, with a median value of 4.71 km/h and 
coefficient of variation of 25.41%. Relative humidity varies 
from 0.21 to 0.99, with a median value of 0.85 and coeffi-
cient of variation of 13.94%. The rainfall varies from 0 mm 
(no rainfall) to 94.12 mm, with a median value of 2.93 mm 
and coefficient of variation of 136.42%. The solar radiation 
varied from 1.03 to 30.38 MJ/m2, with a median value of 
16.40 MJ/m2 and coefficient of variation of 42.16%. 

In this study, the input data were prepared to train and 
validate AI models. Data were first randomly split into two 
sets: 70% for training and 30% for validating, as suggested 

Fig. 4  Histograms of data used 
in this study: a max. tempera-
ture (resolution of 2 °C), b min. 
temperature (resolution of 
2 °C), c wind speed (resolu-
tion of 0.4 km/h), d relative 
humidity (resolution of 0.05), 
e rainfall (resolution of 2 mm) 
and f solar radiation (resolution 
of 1 MJ/m2)

https://globalweather.tamu.edu
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by several researchers (Leema et al. 2016). For the model 
study, we have utilized a common method called Min–Max 
scaling to standardize the data. This process involves res-
caling the values of variables to a new range [− 1, 1] while 
preserving the relationships between the data points (Cao 
et al. 2016), which might help in improving the predictive 
capability of the machine learning (ML) models. Normaliza-
tion parameters such as min. and max. values of inputs are 
given in Table 2. Finally, these normalization parameters 
were used to scale the data in the testing part in order to pre-
vent initial statistical correlation before training. A reverse 
formula was also obtained in order to convert the normalized 
data back to the original.

Methodological flowchart

Methodology for predicting daily solar radiation can be 
divided into the following four main steps (Fig. 5), such 
as: (1) dataset preparation: the data were randomly divided 
into two sets: the 70% of data were utilized for building 
(training) the models, while the another 30% of data were 
utilized for validating the models. A normalization proce-
dure was then applied to scale the training and testing data 
into the [− 1; 1] range. (2) Building models: four prediction 
models including single ANFIS and three hybrid models: 
ANFIS-SA, ANFIS-BBO and ANFIS-GA, were built using 
the training dataset. ANFIS was optimized by SA, GA and 
BBO using population sizes of 25, 25 and 50, respectively. 
These values were the best as identified by trial-and-error 
method. Optimal iterations were obtained as 1000, 1000 and 
2663 for SA, GA and BBO, respectively. (3) Evaluation of 

models: Four prediction models were evaluated utilizing 
the testing dataset. In this step, statistical indicators such 
as MAE, RMSE and R, as well as other techniques (error 
analysis and linear fit), were used to quantify the effective-
ness of the trained models. A comparison of enhancement 
in the performance achieved by the proposed AI models was 
then presented, and (4) sensitivity analysis: the sensitivity 
of input variables such as precipitation, relative humidity, 
wind speed and minimum and maximum temperature on the 
prediction of solar radiation by the models was investigated.

Results and discussion

Evaluation of the performance of the models

Performance of the four AI models (ANFIS, hybrid ANFIS-
SA, ANFIS-BBO and ANFIS-GA) in predicting daily solar 
radiation was evaluated by regression analysis (Fig. 6) and 
cumulative density function analysis (Fig. 7). Figure 6b, d, 
f, h shows the output of ANFIS, ANFIS-SA, ANFIS-GA and 
ANFIS-BBO associated with the training and testing data-
sets. The relative errors between predicted and actual solar 
radiation for both training and testing datasets were plotted 
in histograms (Fig. 8). Results of prediction capability of 
models are presented in Table 3.   

Analysis of the models’ study results shows that for the 
training (learning) dataset, ANFIS-BBO model gave rela-
tively smallest value of RMSE (3.099) in comparison to 
ANFIS (4.448), ANFIS-SA (3.406) and ANFIS-GA (3.128). 
Similar results were obtained for MAE, R and also of  StDError. 

Table 1  Statistical analysis of 
meteorological data used in this 
study

Statistical 
estimation

Max. 
temperature 
(°C)

Min. 
temperature 
(°C)

Wind 
speed 
(km/h)

Relative humidity Rainfall (mm) Solar radiation 
(MJ/m2)

Min 6.97 − 0.94 2.26 0.21 0.00 1.03
Q10 16.84 10.13 3.44 0.67 0.07 5.57
Q25 22.66 14.11 3.95 0.77 0.76 10.38
Median 27.82 19.18 4.71 0.85 2.93 16.40
Q75 31.46 22.09 5.57 0.91 10.83 20.32
Q90 34.90 23.37 6.48 0.95 20.58 23.29
Max 42.91 27.94 13.47 0.99 94.12 30.38
Cv 24.99 28.96 25.41 13.94 136.42 42.16

Table 2  Normalization 
parameters obtained after 
scaling the training data

Training data Max. tem-
perature (°C)

Min. tem-
perature (°C)

Wind speed 
(km/h)

Relative 
humidity

Rainfall (mm) Solar radiation 
(MJ/m2)

Min 6.97 − 0.94 0.63 0.21 0.00 1.12
Max 42.91 27.59 3.74 0.98 80.32 30.38
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 MeanError produced by ANFIS-SA was the lowest (− 0.009), as 
compared to − 0.482, 0.281 and − 0.066 produced by ANFIS 
(alone), hybrid ANFIS-GA and ANFIS-BBO, respectively. 
Furthermore, ANFIS-GA yielded the smallest deviation 
in slope value in comparison with the diagonal line (slope 
angle = 21.759, 34.077, 38.020 and 37.424° for ANFIS, hybrid 
ANFIS-SA, ANFIS-GA and ANFIS-BBO, respectively), and 
the slope angle of ANFIS-BBO was only about 0.6° less.

For the testing part, the ANN-BBO model exhibited 
the best performance according to five statistical criteria: 
MAE, RMSE, R,  MeanError and  StDError. The statistical 
analysis values of ANFIS, hybrid ANFIS-SA, ANFIS-GA 
and ANFIS-BBO models are: RMSE = 4.432, 3.457, 3.188, 
3.141; MAE = 3.684, 2.767, 2.458, 2.439; R = 0.775, 0.846, 
0.873, 0.874;  meanError = − 0.303, 0.121, 0.436, 0.063; 
 StDError = 4.424, 3.456, 3.160 and 3.142, respectively. 
However, the slope of the linear regression for the ANFIS-
BBO model does not show the smallest change while com-
paring diagonal line as shown in Fig. 6 and Table 3. The 
slopes (m) of ANFIS, hybrid ANFIS-SA, ANFIS-GA and 
ANFIS-BBO models are: 0.395, 0.677, 0.791 and 0.774, 
respectively. Overall statistical analysis results suggest that 
ANFIS-BBO offered the best prediction capability and thus 

can be considered as most efficient model for daily solar 
radiation prediction.

Performance enhancement of ANFIS model by using 
optimization techniques

Performance of the ANFIS model was enhanced by using 
SA, GA and BBO optimization techniques. An increase of 
performance index denoted by I is as below:

where Vhybrid and VANFIS were the considered criteria (RMSE, 
MAE, R and  ErrorStD in this study) obtained using hybrid 
and ANFIS models, respectively. Table 4 indicates the val-
ues of index I regarding RMSE, MAE, R and  StDError. In 
addition, Fig. 9 and Table 4 show the evaluation of index 
I in increasing order. Performance of the hybrid models 
ANFIS-SA, ANFIS-GA and ANFIS-BBO for the train-
ing dataset is 23.429, 29.673 and 30.311%, respectively, 
for RMSE; 25.459, 33.964 and 34.487%, respectively, for 
MAE; 9.61, 12.776 and 12.943%, respectively, for R; and 
22.976, 29.543 and 29.915%, respectively, for  StDError. It 

(1)I =
|
|
Vhybrid

− VANFIS|
|

VANFIS
× 100,

Fig. 5  Methodology of predic-
tion of solar radiation
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shows that the values of I are relatively higher in all cases for 
BBO optimization. Similar results of performance index I 
for hybrid models (ANFIS-SA, GA and BBO) were obtained 
for the testing dataset: 22.012, 28.069 and 29.136%, respec-
tively, for RMSE; 24.876, 33.283 and 33.788%, respectively, 
for MAE; 9.127, 12.604 and 12.730%, respectively, for R; 
and 21.878, 28.579 and 28.985%, respectively, for  StDError. 

Therefore, it can be concluded that BBO is the best tech-
nique for improving the prediction capability of ANFIS 
model.

Sensitivity analysis of input parameters

This task was performed to evaluate the significance of 
input parameters over output variables in daily solar radia-
tion prediction. This analysis was done for all the AI mod-
els used in this study. For a given input variable, eleven 
levels of values were calculated as quantiles from zero to 
one with a step of 0.1, respectively, denoted by Min., Q10, 
Q20, Q30, Q40, Q50, Q60, Q70, Q80, Q90 and Max. The 
values of these levels for all input variables are presented 
in Table 5.

In this sensitivity analysis, each input varied from its 
lowest (Min.) to highest (Max.) level of values, while all 
others remained at their Q50 values. To quantify the influ-
ence of input variables, a parameter called level of sensi-
tivity of the considered input is introduced and calculated 
as below:

Yall

median
 was output solar radiation when all other inputs 

were at Q50. Yq
p  is the solar radiation response of AI mod-

els when applying the qth input at its pth level, and LSq
p
 is 

the corresponding level of sensitivity of input q (q = 1:5, 
p = 1:11). Figure 10 and Table 6 present the levels of sen-
sitivity of all input variables, calculated by using ANFIS, 
hybrid ANFIS-SA, ANFIS-GA and ANFIS-BBO models, 
respectively. 

Sensitivity analysis results show that the maximum tem-
perature was the most sensitive input, having a significant 
impact on the prediction of solar radiation using all four 
AI models. Indeed, as indicated in Table 6, the prediction 
result shows deviation value: 58.96, 165.47, 187.08 and 
163.72% using ANFIS, hybrid ANFIS-SA, ANFIS-GA and 
ANFIS-BBO, respectively, when varying the max. temper-
ature from its median to min. value. In the opposite direc-
tion, with an increase of the max. temperature from its 
median to max. value, we observed deviation value: 56.90, 
49.23, 79.72 and 69.48% using ANFIS, hybrid ANFIS-SA, 
ANFIS-GA and ANFIS-BBO, respectively. Based on the 
sensitivity analysis study, it is observed that a reduction 
of max. temperature from its median to min. value gen-
erated higher deviations in prediction results than from 
its median to max. value. This fact was confirmed with 
the histogram plotting of max. temperature (Fig. 4a). An 
asymmetric distribution was observed, with great stand-
ard deviation to the left of the peak than the right. Such 

(2)LS
q
p
=

|
|
|
Y
q
p − Yall

median

|
|
|

Yall

median

× 100.

Fig. 6  Regression analysis graphs between predicted and meas-
ured values of solar radiation SR (MJ/m2) during training process: a 
ANFIS, c ANFIS-SA, e ANFIS-GA, g ANFIS-BBO; and testing pro-
cess: b ANFIS, d ANFIS-SA, f ANFIS-GA, h ANFIS-BBO
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observation demonstrated the relevance of the AI mod-
els developed in this study—especially ANFIS-BBO—in 
analyzing significant statistical information of inputs. In 
addition, the sensitivity analysis results for max. tempera-
ture input are close to the results from three hybrid AI 
models, namely ANFIS-SA, ANFIS-GA and ANFIS-BBO 
(Fig. 10b, c, d). However, the same sensitivity level was 
not correctly determined when using ANFIS (Fig. 10a). It 
can be deduced that the ANFIS model, without combina-
tion with other models, was not able to provide good sensi-
tivity analysis results of input variables; this conclusion is 
supported by other AI models. The minimum temperature 
was the second most important sensitivity factor (Fig. 10b, 
c, d and Table 6). However, the levels of sensitivity of this 

Fig. 7  Cumulative density func-
tions of actual values of solar 
radiation and those predicted 
using ANFIS, ANFIS-SA, 
ANFIS-GA and ANFIS-BBO 
for the training data (a) and for 
the testing data (b)

Fig. 8  Probability density func-
tions of prediction errors using 
ANFIS, ANFIS-SA, ANFIS-GA 
and ANFIS-BBO for the train-
ing data (a) and for the testing 
data (b)

Table 3  Prediction capability of the models

Dataset Model RMSE (MJ/m2) MAE (MJ/m2) R MeanError 
(MJ/m2)

StDError (MJ/m2) Slope(m) Slope angle (°) Intercept n

Training ANFIS 4.448 3.729 0.778 − 0.482 4.422 0.399 21.759 9.666
ANFIS-SA 3.406 2.780 0.853 − 0.009 3.406 0.676 34.077 4.954
ANFIS-GA 3.128 2.462 0.877 0.281 3.116 0.782 38.020 3.054
ANFIS-BBO 3.099 2.443 0.878 − 0.066 3.099 0.765 37.424 3.655

Testing ANFIS 4.432 3.684 0.775 − 0.303 4.424 0.395 21.530 9.702
ANFIS-SA 3.457 2.767 0.846 0.121 3.456 0.677 34.110 4.888
ANFIS-GA 3.188 2.458 0.873 0.436 3.160 0.791 38.345 2.808
ANFIS-BBO 3.141 2.439 0.874 0.063 3.142 0.774 37.726 3.451

Table 4  Increase of performance index I (in %) using optimization 
techniques

Dataset Criterion ANFIS-SA ANFIS-GA ANFIS-BBO

Training RMSE 23.429 29.673 30.311
MAE 25.459 33.964 34.487
R 9.681 12.776 12.943
ErrorStD 22.976 29.543 29.915

Testing RMSE 22.012 28.069 29.136
MAE 24.876 33.283 33.788
R 9.127 12.604 12.730
ErrorStD 21.878 28.579 28.985
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Fig. 9  Increase of performance 
versus ANFIS alone using SA, 
GA and BBO techniques for 
the training data (a) and for the 
testing data (b)

Table 5  Values of 11 
levels of input variables 
in the normalized space 
(normalization parameters given 
in Table 2)

Input parameters Min Q10 Q20 Q30 Q40 Q50 Q60 Q70 Q80 Q90 Max

Max. temperature − 1.00 − 0.45 − 0.22 − 0.05 0.07 0.16 0.23 0.32 0.41 0.55 1.00
Min. temperature − 1.00 − 0.22 − 0.01 0.14 0.27 0.41 0.51 0.58 0.64 0.70 1.00
Wind speed − 1.00 − 0.79 − 0.73 − 0.67 − 0.62 − 0.56 − 0.51 − 0.45 − 0.37 − 0.25 1.00
Relative humidity − 1.00 0.20 0.39 0.50 0.58 0.66 0.73 0.79 0.84 0.91 1.00
Rainfall − 1.00 − 1.00 − 0.99 − 0.97 − 0.95 − 0.93 − 0.87 − 0.79 − 0.67 − 0.49 1.00

Fig. 10  Determination of sensitivity levels of input parameters using a ANFIS, b ANFIS-SA, c ANFIS-GA and d ANFIS-BBO
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input were much smaller than those of the max. tempera-
ture (about three times smaller). All other meteorological 
variables showed less sensitivity—negligible in compari-
son to temperature (Fig. 10; Table 6).

Conclusions

Solar radiation is an abundant natural source of energy in 
many parts of the world. Facilities of direct solar radiation 
measurement are available in many regions, especially in 
developing countries. In this study, we have developed 
and evaluated the performance of novel hybrid AI models 
(ANFIS-SA, ANFIS-GA and ANFIS-BBO) for correctly 
predicting daily solar radiation in Hoa Binh province, 
Vietnam, using easily measurable parameters: wind speed, 
relative humidity and maximum and minimum temperature 
and rainfall. These models combine the ANFIS technique 
with GA, BBO and SA to improve predictive capability. 
The results demonstrate that all three optimized models 
outperform the single ANFIS model, with the ANFIS-
BBO model (RMSE = 3.141 MJ/m2, MAE = 2.439 MJ/m2 
and R = 0.874) exhibiting the highest predictive capabil-
ity. Sensitivity analysis reveals that maximum tempera-
ture is the most influential factor for predicting daily solar 
radiation.

The findings of this study have significant implications 
for predicting solar radiation using AI methods in remote 
locations not only in Vietnam but also globally. These devel-
oped hybrid AI models can be used for correctly predict-
ing solar radiation with meteorological data even in remote 
places. However, as solar radiation depends on local spatial 
and temporal factors, more studies at different places are 
needed to confirm the best capability of solar radiation pre-
diction of these developed ANFIS hybrid models.

In the context of future research, it would be valuable 
to expand upon this work by including model comparisons 
with other existing machine learning (ML) models. This 
would provide further insights into the effectiveness of these 
ANFIS-based models and their potential for wider applica-
tion in predicting solar radiation.
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Table 6  Values of sensitivity levels (in %) calculated by using four AI models at different levels of input variables. Note that at Q50, all values of 
levels of sensitivity are zero by definition

Model Input Min Q10 Q20 Q30 Q40 Q60 Q70 Q80 Q90 Max

ANFIS Max. temperature 58.96 41.66 25.66 14.41 6.16 4.45 10.51 16.61 26.61 56.90
Min. temperature 40.72 2.53 0.89 7.91 4.02 2.72 4.97 6.75 8.46 17.01
Wind speed 5.17 2.72 1.97 1.29 0.64 0.63 1.39 2.30 3.69 18.56
Relative humidity 1.00 0.28 0.16 0.10 0.05 0.04 0.07 0.11 0.15 0.20
Rainfall 0.37 0.36 0.31 0.24 0.15 0.26 0.68 1.30 2.17 58.40

ANFIS-SA Max. temperature 165.47 90.36 51.89 29.14 12.46 9.00 21.25 33.60 53.82 49.23
Min. temperature 89.04 23.18 15.43 10.03 5.09 3.45 6.30 8.56 10.73 45.85
Wind speed 5.54 2.92 2.11 1.38 0.68 0.68 1.49 2.47 3.95 24.10
Relative humidity 3.72 0.36 0.21 0.13 0.06 0.05 0.10 0.14 0.19 0.26
Rainfall 0.67 0.65 0.56 0.43 0.26 0.47 1.21 2.33 3.89 9.79

ANFIS-GA Max. temperature 187.08 114.05 82.54 56.33 23.58 12.76 25.78 34.31 34.91 79.72
Min. temperature 107.71 34.92 20.08 11.99 5.82 3.94 7.30 10.08 12.85 28.11
Wind speed 18.96 9.31 6.56 4.19 2.02 1.91 4.10 6.54 9.91 37.26
Relative humidity 14.68 4.92 2.97 1.81 0.84 0.72 1.40 2.01 2.77 3.87
Rainfall 0.07 0.07 0.07 0.06 0.04 0.11 0.39 1.04 2.33 1.22

ANFIS-BBO Max. temperature 163.72 100.40 73.98 49.23 22.59 15.08 30.53 38.54 40.57 69.48
Min. temperature 76.88 34.05 21.61 13.38 6.41 3.75 6.39 8.15 9.51 9.89
Wind speed 5.32 3.32 2.50 1.69 0.86 0.90 2.04 3.47 5.77 30.24
Relative humidity 14.46 5.83 4.79 3.46 1.84 1.95 4.15 6.44 9.85 15.92
Rainfall 0.83 0.80 0.68 0.52 0.32 0.54 1.33 2.39 3.66 10.47
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