
Vol.:(0123456789)1 3

Acta Geophysica (2024) 72:1561–1573 
https://doi.org/10.1007/s11600-023-01145-x

RESEARCH ARTICLE - APPLIED GEOPHYSICS

A residual perfectly matched layer for wave propagation in elastic 
media

Yuqin Luo1 · Tao Wang1 · Yongdong Li1 · Ji Cai1 · Ying Wang1 · Guangyou Fang1

Received: 16 January 2023 / Accepted: 23 June 2023 / Published online: 15 August 2023 
© The Author(s) under exclusive licence to Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2023

Abstract
Absorbing boundary conditions are often utilized to eliminate spurious reflections that arise at the model’s truncation 
boundaries. The perfectly matched layer (PML) is widely considered to be very efficient artificial boundary condition. A new 
alternative implementation of the PML is presented. We call this method residual perfectly matched layer (RPML) because it 
is based on residual calculation between the original equations and the PML formulations. This new approach has the same 
form as the original governing equations, and the auxiliary differential equation has only one partial derivative with respect 
to time, which is the simplest compared to other PMLs. Therefore, the RPML shows great advantages of implementation 
simplicity and computational efficiency over the standard complex stretched coordinate PML. At the same time, the absorp-
tion performance is improved by adopting the complex frequency shifted stretching function; the stability of the boundary 
is enhanced by applying the double damping profile.

Keywords  Absorbing conditions · Perfectly matched layer · Seismic wave propagation · Residual calculation

Introduction

To simulate wave propagations in an unbounded domain, 
absorbing boundary conditions are applied to truncate the 
computational domain. Numerous techniques have been 
developed in the last 40 years: for example, paraxial condi-
tions (Clayton and Engquist 1977; Enguist and Majda 1977; 
Higdon 1991), sponge zones (Cerjan et al. 1985; Sochacki 
et al. 1987). Bérenger introduced the perfectly matched layer 
(PML) that has a zero reflection coefficient before discre-
tization and the PML has been widely used in the finite-
difference, finite-element, and spectral-element methods 
(Bérenger 1994; Chew and Weedon 1994; Gedney 1996) 
for seismic wave simulations. The original model has been 
simplified and reformulated in terms of a split field with 
complex coordinate stretching (e.g., Chew and Weedon 

1994; Collino and Monk 1998) and interpreted as an artifi-
cial anisotropic medium (Sacks et al. 1995; Gedney 1996). 
The original PML was also extended to second-order wave 
equation (Komatitsch and Tromp 2003; Festa and Vilotte 
2005; Assi and Cobbold 2016; Ma et al. 2019; Zhuang 
2020), seismic wave modeling in elastic media (Chew and 
Liu 1996; Hastings et al. 1996), anisotropic media (Collino 
and Tsogka 2001) and poroelastic media (Liu and Green-
halgh 2019).

The classic method splits each variable into two variables, 
requires high cost for memory storage, and is computation-
ally inefficient. Effective techniques that do not require 
splitting of the field have been developed involving convo-
lution terms (Komatitsch and Martin 2007), integral terms 
(Drossaert and Giannopoulos 2007), auxiliary differential 
equations (Martin and Komatitsch 2010) or variable changes 
(Cummer 2003; Chen 2011, 2012; Liu and Greenhalgh 
2019; Luo and Liu 2020, 2022). Unfortunately, the PML 
with complex coordinate stretching can generate large spuri-
ous reflections for near-grazing incident waves. The complex 
frequency shifted PML (CFS-PML) (Kuzuoglu and Mittra 
1996) is more efficient in such circumstance (Festa et al. 
2005; Drossaert and Giannopoulos 2007; Komatitsch and 
Martin 2007; Cui et al. 2021). Despite the general success of 
the PML in most applications, there are still instabilities in 
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long simulations (Bérenger 1994; Festa et al. 2005; Koma-
titsch and Martin 2007; Martin et al. 2008). Mezafajardo and 
Papageorgiou (2008) introduced attenuation factors operat-
ing simultaneously in multiple orthogonal directions; the 
result is called the multiaxial PML (M-PML).

In this paper, we introduce a new approach that results 
in an alternative implementation of non-split PML called 
residual PML (RPML). In order to avoid convolution, we 
deduce the residual between the original equations and PML 
formulations. The new variable of RPML is obtained by 
subtracting the residual from original variable. The main 
idea of PML is to transform the equations with complex 
coordinate stretching or complex frequency shift to make 
the wave decay in magnitude. Fortunately, RPML comes in 
two different forms (RPML-I and RPML-II), and the rest of 
the PMLs have been found to fall into these two categories.

The RPML-II changes variables directly and substitutes 
RPML variables for original variables, such as nearly PML 
(NPML). However, the RPML ordinary differential equations 
are simpler than those of NPML and auxiliary differential 
equation PML (ADE-PML), and are easy to be generalized 
to high-order schemes in time. Furthermore, two mutually 
perpendicular damping profiles are used for RPML to develop 
its stability and the result is referred to as multiaxial RPML 
(M-RPML). However, waves impinging the RPML interface 
at a near-grazing angle generate spurious reflections and the 
addition of damping profiles heightens those false reflec-
tions, just like other PMLs with complex coordinate stretch-
ing. Therefore, a frequency-dependent term is introduced to 
M-RPML and the result is named complex frequency shifted-
MRPML (MC-RPML). The resulting method is implemented 
to simulate seismic wave propagation so as to study and verify 
the performance of MC-RPML.

Methods

Governing equations

Assuming the external force is zero, the elastodynamics 
problem can be described by Cauchy's equation and gener-
alized Hooke's law:

where E is the strain tensor, τ is the stress tensor, u is the 
displacement field, ρ is the mass density, and C is the elastic 
coefficient tensor matrix. Equation 1 is transformed into a 
first-order velocity stress equation with a velocity variable:

(1)��2
t
� = ∇ ⋅ � , � = � ∶ �,

(2)
��tv = ∇ ⋅ �

�t� = � ∶ ∇v.

To derive a new equation under the RPML, Eq. 2 is trans-
formed into the frequency domain:

where ṽ is the velocity component in the frequency domain, 
and �̃ is the stress tensor in the frequency domain. The form 
of complex coordinate stretching (CCS) is (x direction):

Using Eq. 5, the first-order velocity and stress equations 
in stretched coordinate space can be written as:

The parameters describing the media are λ, the lamé 
modulus; μ, the shear modulus; ρ, the density.

By transforming Eq. (6) from the frequency domain into 
the time domain, the new wave equations based on PML 
can be obtained. In this process, how to compute convo-
lution terms or avoid convolution operations is the focus 
of PML research, we can divide them into two catego-
ries: split method (SPML) and non-split methods (CPML, 
ADEPML, RIPML and NPML).

For RPML, The residual ε can be defined as the differ-
ence between the original equations and PML equations 
(Eq. 7), or as the difference between the PML wavefield 
and original wavefield (Eq. 8). Therefore, the RPML for-
mulations can be written as follows:

and

We define Eq. (7) as RPML-I and formula 8 as RPML-
II. Transforming RPML-I and RPML-II from the fre-
quency domain into the time domain result in the follow-
ing equations:

(3)
i��ṽ = ∇ ⋅ 𝝉

i�𝝉 = � ∶ ∇ṽ,

(4)x̃(x) = x −
i

𝜔

x

∫
0

𝛼(s)ds,

(5)𝜕x̃ =
1

sx
𝜕x, sx = 1 +

𝛼x

i𝜔
.

(6)

i𝜔ṽx =
1

𝜌

(

1

sx
𝜕x𝜏xx +

1

sz
𝜕z𝜏zx

)

i𝜔ṽz =
1

𝜌

(

1

sz
𝜕z𝜏zz +

1

sx
𝜕x𝜏zx

)

i𝜔𝜏xx = (𝜆 + 2𝜇)
1

sx
𝜕xṽx + 𝜆

1

sz
𝜕zṽz

i𝜔𝜏zz = (𝜆 + 2𝜇)
1

sz
𝜕zṽz + 𝜆

1

sx
𝜕xṽx

i𝜔𝜏zx = 𝜇

(

1

sx
𝜕xṽz +

1
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𝜕zṽx

)

.

(7)
i𝜔𝜌ṽ = ∇ ⋅ 𝜏 − 𝜺̃

i𝜔𝝉̃ = � ∶ (∇ṽ 𝜺̃),

(8)
i𝜔𝜌ṽ = ∇ ⋅ (�̃−�̃)

i𝜔�̃ = � ∶ ∇(ṽ−�̃).
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and

There are various techniques available that can be used to 
solve residuals ε. We can illustrate the relationship between 
different PMLs in the process of solving residuals.

RPML‑I

For RPML-I, Eqs. (6 and 7) are equivalent, then we obtain:

Taking the first equation as an example, and using Eq. (5) 
we get:

Transforming into the time domain, we get the auxiliary 
differential equations of the residuals.

One can notice that Eq. (14) has the same form as the 
ADE-PML formulation. The ideas of the auxiliary memory 
variables were developed for Maxwell’s equations by Ged-
ney and Zhao (2010). The difference between RPML-I and 
ADE-PML is that RPML-I assumes the result and deduces 
the residuals.

RPML‑II (method 1)

For RPML-II, We use four methods to solve the residuals. 
Using Eq. (8), one gets:

(9)
�t�v = ∇ ⋅ �−�

�t� = � ∶ (∇v−�),

(10)
�t�v = ∇ ⋅ (�−�)

�t� = � ∶ ∇(v−�).

(11)
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ṽ
x
− 𝜀̃x

x

)

+ 𝜆
(

𝜕
z
ṽ
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(12)
sx
(

𝜕x𝜏xx − 𝜀̃x
xx

)

= 𝜕x𝜏xx

sz
(

𝜕z𝜏zx − 𝜀̃z
zx

)

= 𝜕z𝜏zx,

(13)𝛼x𝜕x𝜏xx = i𝜔𝜀̃x
xx
+ 𝛼x𝜀̃

x
xx
;𝛼z𝜕z𝜏zx = i𝜔𝜀̃z

zx
+ 𝛼z𝜀̃

z
zx
.

(14)

�m�m� = �t�
m + �m�

m

�m ∶ �x
xx
, �m

zx
, �z

zz
, �m

x
, �m

z

� ∶ �xx, �zx, �zz, vx, vz

m ∶ x, z.

Making use of Eqs. (5 and 15) we get:

where Eq. (17) is more complicated than Eq. (13), we sim-
plify the equation as follows:

This approximate treatment was applied by Cummer 
(Cummer 2003; Bérenger 2004; Hu and Cummer 2006; 
Hu et al. 2007; Chen 2012; Liu and Greenhalgh 2019) to 
derive NPML. Finally, we can get the residual equation of 
RPML-II:

We can also compute the residuals directly from the solu-
tion of other PMLs (RI-PML/Method 2, ADE-PML/Method 
3 and NPML/Method 4), and find the difference between 
R-PML and others. In other words, it is to find the residual 
between the other PML equations and the original equation.

RPML‑II (method 2)

In this part, we solve Eq. (8) using recursive integration as 
recursive integration PML (RIPML) (Drossaert and Gianno-
poulos 2007; Giannopoulos 2011). The basic principle of the 
RIPML is to rewrite the velocity-stress Eq. (6) by introduc-
ing two new auxiliary tensors, we denote the components as:

(15)
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ṽ
z

(𝜆 + 2𝜇)𝜕
z

(

ṽ
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ṽ
z
+

1

s
z

𝜕
z
ṽ
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After transforming Eq. (6) back in the time domain, the 
velocity-stress equations then become as follows:

where M is the M̃ in time domain.
Equation 20 is rewritten to solve the stress-rate tensors 

M by direct integration. Inserting the stretching functions 
given by Eq. (5), and transforming them from the frequency 
domain into the time domain.

Comparing Eqs. (8 and 21), the residual formulations are 
as follows:

Making use of Eq. (23), the Eq. (22) then becomes as 
follows:

If the approximate treatment shown in Eq. (18) is adopted, 
we can obtain an equation equivalent to Eq. (19).

Next, we derive the iterative formula of RI-PML and 
RPML.

(21)
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,
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(25)∫
t

0

�m(� − �m)dt = �m�
m.

For RI-PML, the easiest method to approximate time 
integral uses the trapezoidal integration rule. Inserting this 
approximation into Eq. (22) and setting the tensor values at 
the initial time step to zero result in the result for component 
Mx

x
 is as follows:

where △t is the time-step size. Rewriting Eq. (26), one gets:

For R-PML, Eq. (25) is treated in the same way:

and

RPML‑II (method 3)

In this part, the connections between ADE-PML and RPML 
are established. And the ADE-PML (Komatitsch and Martin 
2007) has the same form as the CPML formulation (Martin 
and Komatitsch 2010). Making use of Eq. (6), the term �xvx 
is transformed into:

Let us denote the auxiliary memory variable:

Written in the time domain this equation becomes:

and the whole system of equations with ADE-PML is:
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The partial differential equation in the ADE-PML sys-
tem is in exactly the same form as the RPML-I system. The 
discretization of the differential Eq. (32) is solved by the 
method of variable decomposition.

with

Using Eqs. (10, 30 and 33), the residual formulation is 
as follows:

Using Eq. (36), the RPML-II equation for component �x
x
 

is:

and

Taking the approximate treatment shown in Eq. (18), we 
can get the residual equation of RPML-II same as Eq. (19):

RPML‑II (method 4)

The residuals are solved by variables transformation and the 
connections between NPML and RPML-II are built. Rewrit-
ing Eq. (6), one gets:

This method has some differences from other PML for-
mulations that do not appear to be of practical importance. 
Theoretically, this technique is exactly the same as other 
PMLs for all incident angles only when the conductivity 
is spatially variant so-called nearly PML (Cummer 2003). 
However, Bérenger (2004) has proved that the NPML is a 
PML. Even for spatially varying NPML conductivity pro-
files, the waves reflected from the NPML and the standard 
PML are identical.

(34)
(

Qvx
x

)n
= bx

(

Qvx
x

)n−1
+ ax

(

�x
)n+1∕2

,

(35)b
x
= e

−�
x
Δt
;a

x
= b

x
− 1.

(36)𝜕x𝜀̃
x
x
=

𝛼x

i𝜔 + 𝛼x
𝜕xṽx= − Q̃vx

x
.

(37)i𝜔𝜕x𝜀̃
x
x
+ 𝛼x𝜕x𝜀̃

x
x
= 𝛼x𝜕xṽx,

(38)�t�x�
x
x
+ �x�x�

x
x
= �x�xvx.

(39)�t�
m = �m(� − �m).

(40)

i𝜔ṽx =
1

𝜌

(

𝜕x
𝜏xx

sx
+ 𝜕z

𝜏zx

sz

)

i𝜔ṽz =
1

𝜌

(

𝜕z
𝜏zz

sz
+ 𝜕x

𝜏zx

sx

)

i𝜔𝜏xx = (𝜆 + 2𝜇)𝜕x
ṽx

sx
+ 𝜆𝜕z

ṽz

sz

i𝜔𝜏zz = (𝜆 + 2𝜇)𝜕z
ṽz

sz
+ 𝜆𝜕x

ṽx

sx

i𝜔𝜏zx = 𝜇

(

𝜕x
ṽz

sx
+ 𝜕z

ṽx

sz

)

.

The NPML denote vx the new variable associated with 
vx , i.e.:

Combining Eqs. (5 and 41) yields:

and written in the time domain:

Comparing Eq. (8) with Eq. (40), the RPML-II formula-
tion (taking vx as an example) is:

and we get:

and for all variables:

Equations  (19, 39 and 46) are the same. It can also 
be obtained by calculating the time partial derivative of 
Eq. (25).

These differential equations correspond respectively to 
RI-PML, ADE-PML and NPML. The residual equations 
obtained by RI-PML (Eq. 24) and ADE-PML (Eq. 38) are 
the same form if we take the partial derivative with respect 
to time of Eq. (25). Because the residuals ε are the differ-
ences between the PML formulations and the original for-
mulation. ADE-PML and RI-PML are essentially the same, 
the difference between them lies in the different ways of 
obtaining discrete schemes.

The convolutional PML (CPML) can be seen as a particu-
lar case of the ADE-PML at the second order in time (Martin 

(41)
1

sx
ṽx = ṽ

x

x
.

(42)
(

1 +
𝛼x

i𝜔

)

ṽ
x

x
=ṽx,

(43)�tv
x

x
+�xv

x

x
=�tvx.

(44)i𝜔(ṽx − 𝜀̃x
x
)+𝛼x(ṽx − 𝜀̃x

x
) =i𝜔ṽx,

(45)�t�
x
x
=�x

(

vx − �x
x

)

,

(46)�t�
m = �m(� − �m).

Fig. 1   Diagram of relationships between different PMLs. ① Solving 
the residuals ε; ② approximate treatment; ③ The residual ε is defined 
as the difference between the PML wavefield and original wavefield; 
④ The residual ε is defined as the difference between the original 
equations and PML equations; ⑤ CPML is as a particular case of 
ADE-PML; ⑥ Relation of equivalence; ⑦ Different ways of obtaining 
discrete schemes



1566	 Acta Geophysica (2024) 72:1561–1573

1 3

and Komatitsch 2010), and ADE-PML and RPML-I are 
equivalent. With regard to NPML, the distinction between 
NPML and other PMLs is the treatment with Eq. (40) called 
approximate treatment. These Eqs. (24, 25, 38, 39) are 
exactly the same when the PML conductivity is spatially 
invariant (Fig. 1).

Theoretically, the RPML-II is equivalent to the PML 
which is used to solve the residuals. And the NPML has a 
great absorbing performance as other PMLs (Cummer 2003; 
Hu and Cummer 2006; Bérenger 2004; Chen and Zhao 2011; 
Chen 2012). Therefore, we adopt the simplest form of RPML-
II to simulate the wave propagations.

As shown in Eqs. (10 and 40), the NPML and RPML-II do 
not modify the original form of the governing equations in any 
linear media. We can copy the difference equations for PML 
region from the regular medium. Only simple ordinary differ-
ential equations need to be added to complete the NPML and 
RPML-II field equations. The implementations of the NPML 
and RPML-II in complex media are very straightforward.

Of course, RPML-I also has this advantage because we first 
defined the governing equation form of RPML-I to solve the 
residuals by backward extrapolation. However, ADE-PML 
does not, because in more complex wave equations, the form 
of ADE-PML may change.

The form of RPML-II is simplest compared to the other 
PMLs. There is only one first-order partial derivative with 
respect to time in the auxiliary differential equation. In con-
sequence, the RPML-II can be generalized to high-order 
schemes in time like ADE-PML.

The complex frequency shifted‑RPML (CFS‑RPML‑II) 
technique

The RPML is obtained using complex frequency shifted trans-
formation, and the main idea of the CFS-RPML-II technique 
consists of making a choice for Sx more general by introducing 
two other real variables such that:

where βx is the scaling factor and ηx is the frequency shifted 
factor. Rewriting Eq. (17) as:

Converting back to the time domain, one obtains:

(47)sx = �x +
�x

�x + i�
,

(48)
(

(𝜂x + i𝜔)𝛽x + 𝛼x
)

(ṽx − 𝜀̃x
x
) = (𝜂x + i𝜔)ṽx,

(49)
i𝜔(𝛽x − 1)ṽx + (𝜂x𝛽x + 𝛼x − 𝜂x)ṽx = i𝜔𝛽x𝜀̃

x
x
+ (𝛼x + 𝜂x𝛽x)𝜀̃

x
x
.

(50)
(�x − 1)�tvx + (�x�x + �x − �x)vx = �x�t�

x
x
+ (�x + �x�x)�

x
x
.

The residual equation is more complicated than Eq. (28). 
The auxiliary differential equations of CFS-ADE-PML and 
CFS-RIPML are as follows:

Although the form of RPML is simplest compared to 
the other PMLs based on complex coordinate stretching, 
the form of CFS-ADE-PML is simpler than others based 
on complex frequency shifted transformation. The Eq. (50) 
is difficult to be generalized to high-order schemes in time 
like NPML Eq. (43). In order to make the CFS-RPML-
II simpler, the residual equation is solved with special 
method.

Redefining Eq. (8) and written in the time domain:

We take method 4 to solve the residuals (taking vx as 
an example):

Converting back to the time domain, one obtains:

The form of CFS-RPML-II Eq. (57) is the same as that 
of RPML-II Eq. (19) and is the simplest compared to Eqs. 
(50, 51 and 52). Using the same method for the remaining 
variables, we obtain the transformation equation:

(51)
CFS − RIPML:∫

t

0
(�x�x + �x)Mx

xdt
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t
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x ,
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1
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(
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1

�z

(

vz − �z
z

)

)

�t�zz = (� + 2�)�z

(

1

�z

(

vz − �z
z

)

)

+ ��z

(

1

�x

(

vx − �x
x

)

)

�t�zx = �

(

�z

(

1

�x

(

vz − �x
z

)

)

+ �z

(

1

�z

(

vx − �z
x

)

))

.

(54)ṽx=
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x
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,

(55)
�x�xṽx + i��xṽx + �x�x�̃

x
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x
x
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The auxiliary differential equation of MC-NPML is 
given by Luo and Liu (2019), and we compare the auxil-
iary equations under the two transformations:

As shown in Eq. (59), RPML has and only has one-time 
partial derivative term, but no space partial derivative term. 
The discrete format is simple and easy to be extended to high-
order precision simulation in time, and the form of the original 
equations has not changed. It is very easy to be programmed 
and implemented, which can be extended to the simulation of 
more complex media.

Multiaxial complex frequency shifted‑RPML 
(MCFS‑RPML‑II)

As Fig. 2 shows, the main idea of multiaxial C-RPML-II con-
sists of introducing an additional attenuation profile in the 
direction perpendicular to the primary direction.

(58)

�t�
m +

(

�m

�m
+�m

)

�m=
�m

�m
�

�m ∶ �x
xx
, �m

zx
, �z

zz
, �m

x
, �m

z

� ∶ �xx, �zx, �zz, vx, vz

m ∶ x, z.

(59)

C − RPML ∶ �t�
x + AR�

x=BRvx

C − APML ∶ �tQ
vx
x
+ AAQ

vx
x
= −BA�xvx

C − NPML ∶ �tv
x

x
+ ANv

x

x
=BNvx + DN�tvx

C − RIPML ∶ ∫
t

0

ARIM
x
x
dt = ∫

t

0

BRIvxdt + �xvx − DRIM
x
x

AR = �x∕�x+�xBR =
�x

�x
;AA = �x∕�x+�x,BA = �x∕�

2
x

AN =
(

�x�x+�x
)

∕�x,BN = �x∕�x,DN = 1∕�x

ARI = (�x�x + �x),BRI = �x�x,DRI = �x.

In domain 3, the damping profiles at the right and top over-
lap. Therefore, it is only necessary to treat regions 1 and 2 
when introducing a new profile:

As shown in Eq. (60), the primary direction in domain 
2 is the z direction. The value of αx is no longer zero and 
is proportional to the original damping function, and the 
proportional coefficient P(x/z) is the stability factor. The 
multiaxial RPML-II (M-RPML-II) is derived below:

For CFS-RPML-II, the processing is different from that 
of RPML. The transformation function is as follows:

Substituting Eq. (62) into Eq. (55), we obtain:

The above is the derivation process and transforma-
tion equation for M-RPML-II and MCFS-RPML-II. The 
damping factor, scaling factor and frequency shifted factor 
equations are as follows:

where L is the thickness of the RPML, and l is the distance 
between the calculated point and the inner boundary of the 
PML area. Where αb is a basic function; it must be increased 
progressively from the inner boundary to the outer boundary. 
We can choose exponential functions (Groby and Tsogka 
2006), trigonometric functions, or other functions that sat-
isfy this condition. The gradient value of α at each part of 
the boundary is mainly controlled by αe (Luo and Liu 2018, 
2022). The value of the stability factor should be less than 1, 
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Fig. 2   Schematic of RPML layers
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and it changes depending on the complexity of the medium. 
It should not be too large or it will lead to an increase in the 
number of false reflections.

In region 2, the damping factor increases exponentially 
in the primary direction, but the value is 0 in the direc-
tion perpendicular to the primary direction. In region 3, 
the damping profiles at right and top overlap; thus, there 
are two mutually perpendicular damping profiles. The 
M-RPML is shown in domain 1. The primary direction in 
this domain is the x direction. The value of αz is no longer 
zero and is proportional to the original damping function.

Numerical tests

Model 1

The time step used is 0.5 ms, and the source-time function 
is a Ricker wavelet with a center frequency of 25 Hz. We 
consider two models to study the propagations of waves at 
grazing incidence and the stability of PML. The grid spacing 
is 5 m, and the size of the first model is 2600 × 1100 m. The 
source is applied at (1300, 55) m, 10 cells away from the 
PML-interior interface. The PML-interior interface refers 
to the interface between the calculated physical region and 
absorption boundary, where the wave field will decay rapidly 
after entering the interface.

Snapshots in Fig. 3 of the vx component correspond to 
various RPML-II. When seismic waves travel close to the 

boundary, they tend to move parallel to it. The seismic waves 
cannot be absorbed at grazing incidence along the edges 
of the model and generate dissipative wave. The energy 
accumulation sends spurious energy back into the physical 
domain, sharply enhancing false reflections and making the 
system unstable.

When we introduce the stability factors P(x/z) and P(z/x), 
the accumulated cluster energy inside the upper RPML-II 
layers is weakened, and the higher the stability factors, the 
weaker the residual energy in the boundary. However, it 
also enhances the occurrence of false reflections. The larger 
the factor value, the stronger the energy of false reflections. 
When η and β introduced, the energy in boundary and the 
false reflections backing into the main domain are weakened.

In Fig. 3b, e, f, and d, there are some anomalous energies 
between source position and wavefront, which are caused 
by the introduction of a dual attenuation profile. When we 
introduce an attenuation profile parallel to the boundary, it 
can absorb the energy propagated parallel to the boundary 
and improve the stability. However, the introduction of this 
profile also hinders the entry of waves into the boundary, 
forming false reflections similar to those generated at free 
interfaces. Therefore, while ensuring the stability, the sta-
bility factor should not be too large. The larger the stability 
factor value, the stronger the obstruction of the attenuation 
profile and the stronger the false reflection.

The energy decay pattern follows the model presented 
in Fig. 4, with the energy curves for the entire domain and 

Fig. 3   Wavefield snapshots. a 
RPML. b M-RPML includes 
the stability factors P(x/z) and 
P(z/x), P = 0.02. c M-RPML, 
P = 0.1. d CFS-RPML includes 
the frequency shifted factor (η) 
and scaling factor (β), η0 = 3, 
β0 = 2. e MCFS-RPML includes 
p(x/z), p(z/x), η and β simultane-
ously, P = 0.02, η0 = 3, β0 = 2. f 
MCFS-RPML includes p(x/z), 
p(z/x), η and β simultaneously, 
P = 0.05, η0 = 3, β0 = 2
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main domain illustrated by dashed and solid lines, respec-
tively. When the stability factor is introduced, the difference 
between two curves is the smallest. The η and β improve the 
stability and absorbing ability, but it will generate energy 
disturbances in the second half of the decay curve; this 
means that it will bring about another unstable phenomenon 
while enhancing the boundary stability. This phenomenon 
also occurs in multiaxial complex frequency shifted-NPML 
(MC-NPML) (Luo and Liu 2022). The P(x/z) and P(z/x) 
can eliminate the residual energy and suppress this energy 
disturbance.

In order to study RPML better, we compare it with NPML 
and ADEPML, and study the energy attenuation in the inte-
rior domain. As shown in Fig. 5a, the absorption effect of 
RPML is better than that of ADEPML, similar to that of 
NPML. Similarly, as shown in Fig. 5b, the curve attenua-
tion effect of C-ADEPML is worse than that of C-RPML 
and C-NPML.

Fig. 4   Decay curve of energy

Fig. 5   Decay curve of energy for RPML, ADEPML and NPML
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However, the influence of the three factors on RPML, 
NPML and ADEPML is different. For the stability factor 
(Fig. 5c), the attenuation curve of M-ADEPML is still the 
slowest at 0.5 s, but the M-NPML curve decreases the slow-
est by about 1.4 s, which has weak absorption effect on weak 
secondary reflection wave.

Of course, as a boundary, we hope that when the wave 
reaches boundary, it will absorb completely. Therefore, the 
attenuation at 0.5 s is the most important. The absorption of 
M-RPML to weak secondary reflection wave is obviously 
stronger than that of M-NPML, and it performs well in all 
time intervals.

For precise calculation time, we have recorded the total 
time taken for 20,000 iterations. As portrayed in Fig. 6, 
computational time consumption for the three PMLs is 
tADEPML > tNPML > tRPML. Figure 6 shows that RPML has 
higher computational efficiency, while ADEPML has lower 
computational efficiency due to the need to calculate spatial 
derivatives.

Model 2 (marmousi model)

Next, the wave equations and simulation results in other 
media or models are presented to verify the importance of 
MCFS-RPML.

Figure 7 is the simulation result of the Marmousi model. 
In order to study the stability of the boundary, we take a 
long-time simulation of this model. As shown in Fig. 7e, 
the boundary becomes unstable, the error accumulates, 
finally increases exponentially and returns to the calcula-
tion interval.

In model 1, C-RPML can effectively eliminate the accu-
mulation of seismic wave energy in the boundary as Fig. 3d 
shown, but not in model 2. We can still see a large amount 
of residual energy in Fig. 7c. Therefore, it is necessary to 
introduce the stability factor. It can be seen from Fig. 7(e–h), 
the additional stability factor, scaling factor and frequency 

shifted factor can improve the boundary stability to a certain 
extent.

The wavefield snapshot in Fig. 7 corresponds to Fig. 8a. 
Just compare the three perfectly matched layers, as shown 
in Fig. 8b, the stability of RPML is the best because its 
instability occurs the latest. The simulation results show 
that the new method is not only the simplest in theory, but 
also effective. Compared with the other PMLs, RPML has 
better absorption effect and better stability. From Figs. 3a, 
7, and 8, it can be seen that even though RPML is more 
stable, instability can occur when simulating wave field 
propagation in complex models, and it is also difficult 
to absorb grazing waves. Therefore, we need to further 
deduce and propose MCFS-RPML.

Conclusions

We present a novel algorithm for perfect matching lay-
ers (PML), named Residual PML (RPML). Our approach 
involves defining residuals, which results in two types of 
RPML, namely RPML-I and RPML-II. Essentially, all 
PMLs can be classified into these two categories since 
residuals are the difference between the original equa-
tions and PML equations or between PML wavefield 
and original wavefield. Numerical simulation shows that 
our method is effective. RPML is superior to NPML and 
ADEPML in both stability and absorption. More impor-
tantly, RPML-II not only does not need to change the form 
of the original equation just like NPML, but also there is 
only one partial derivative of time which is convenient 
to extend to high-order time simulation. However, RPML 
still has some defects caused by CCS transformation and 
attenuation factor distribution. Therefore, we further 
deduce and propose the MCFS-RPML.

Fig. 6   Calculation time under 
model 1
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Fig. 7   Wavefield snapshots of 
the Marmousi model. a RPML, 
1.5 s. b M-RPML, P = 0.1, 
1.5 s. c C-RPML, η0 = 3, β0 = 2, 
1.5 s. d C-RPML, η0 = 3, 
β0 = 2, 1.5 s. e RPML, 12 s. 
f M-RPML, P = 0.1, 12 s. g 
C-RPML, η0 = 3, β0 = 1, 12 s. h 
C-RPML, η0 = 0, β0 = 5, 12 s

Fig. 8   Decay curve of energy for RPML, ADEPML and NPML
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