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Abstract
Noise suppression is of great importance to seismic data analysis, processing and interpretation. Random noise always over-
laps seismic reflections throughout the time and frequency, thus, its removal from seismic records is a challenging issue. We 
propose an adaptive time-reassigned synchrosqueezing transform (ATSST) by introducing a time-varying window function 
to improve the time-frequency concentration, and integrate an improved Optshrink algorithm for the suppression of seismic 
random noise. First of all, a noisy seismic signal is transformed into a sparse time-frequency matrix via the ATSST. Then, 
the obtained time-frequency matrix is decomposed into a low-rank component and a sparse component via an improved 
Optshrink algorithm, where the D transformation and its first derivative are further simplified to reduce the computational 
burden of the original OptShrink algorithm. Finally, the denoised signal is reconstructed by implementing an inverse ATSST 
on the low-rank component. We have tested the proposed method using synthetic and real datasets, and make a comparison 
with some classical denoising algorithms such as f − x deconvolution and Cadzow filtering. The obtained results demonstrate 
the superiority of the proposed method in denoising seismic data.

Keywords Adaptive time-reassigned synchrosqueezing transform · Time frequency representation · Improved OptShrink 
algorithm · Random noise suppression

Introduction

Seismic data is constantly contaminated with a variety of 
noise during field acquisition process (Zhong et al. 2015; 
Zheng et al. 2017; Sun and Li 2020; Liu et al. 2023). Among 
them, random noise is one of the most important noises 
presented in seismic data (Bing et al. 2020), which has the 
irrelevant property from trace to trace (Oropeza et al. 2011). 
Failure to effectively suppress random noise could have a 
severe impact on following seismic processing tasks, for 
instance, seismic amplitude interpretation, multiples attenu-
ation, pre-stack migration imaging, seismic inversion, and 
so on. Random noise attenuation and thus enhancing the 
signal-to-noise ratio (SNR) enhancement of seismic data is 
the primary issue in geophysics.

In the past several decades, numerous approaches have been 
proposed for the denoising of seismic data, and they can be 
generally classified into four categories. (I) Predictive filtering 
methods make full use of the predictable property of signal 
to construct the predictive filters for noise removal, for exam-
ple, f − x deconvolution (Canales 1984), forward-backward 
prediction approach (Wang 1999), t − x predictive filtering 
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(Abma and Claerbout 1995), non-stationary predictive filter-
ing (Chen and Ma 2014), nonstationary polynomial fitting 
(Liu et al. 2011), nonstationary signal inversion (Yang et al. 
2020), nonstationary predictive filtering (Wang et al. 2021), 
and 3-D structural complexity-guided predictive filtering (Fu 
et al. 2022). (II) Decomposition-based approaches transform 
noisy seismic data into an ensemble of modes and then select 
the signal-dominant modes to reconstruct the desired signals. 
The widely utilized techniques include empirical mode decom-
position (EMD) (Huang et al. 1998; Long et al. 2021) and its 
variations (Wu and Huang 2009; Torres et al. 2011), varia-
tional mode decomposition (VMD) (Dragomiretskiy and Zosso 
2014; Yu and Ma 2018; Li et al. 2018; Liu and Duan 2020; 
Yao et al. 2021), two-dimensional variational mode decompo-
sition (2DVMD) (Zhang et al. 2022), mini-batch multivariate 
variational mode decomposition (MMVMD) (Wu et al. 2022), 
singular value decomposition (SVD) (Ji and Wang 2022), and 
local singular value decomposition (LSVD) (Bekara and van 
der Baan 2007). (III) Transformed-domain-based method and 
dictionary learning can be classified to sparse representation 
(Dong et al. 2022). They firstly map seismic data into a trans-
formed domain in which the data has the sparse property, and 
then shrink the coefficients using a threshold function, and 
finally perform back-transforming the processed coefficients 
to the time domain. Such algorithms include wavelet transform 
(Sinha et al. 2005; Lan et al. 2023), wavelet adaptive threshold-
ing (Zhang et al. 2022), radon transform (Trad et al. 2002), 
curvelet transform (Herrmann et al. 2007; Yang et al. 2017), 
seislet transform (Chen and Fomel 2018), shearlet transform 
(Kong and Peng 2015), dreamlet transform (Wang et al. 2015), 
time-synchroextracting transform (Li et al. 2020), and match-
ing demodulation synchrosqueezing S transform (Wang et al. 
2022). (IV) Rank-based methods, e.g., rank reduction, low-rank 
and sparse decomposition. The former assumes that seismic 
signal is approximately low-rank while the existing noise will 
increase the rank of a matrix (Chen et al. 2017), thus one can 
remove the random noise by implementing a rank-reduction 
procedure. In the second strategy, one can obtain a low-rank 
component and a sparse component by performing an appropri-
ate algorithm on the time-frequency representation of a seismic 
trace with noise. And then we can recover the denoised data by 
the aid of the obtained low-rank component. Various denoising 
methods related with such techniques have been gradually used 
in practice such as classical Cadzow filtering (Sacchi 2009; 
Trickett 2008), singular spectrum analysis (Oropeza et al. 
2011), damped singular spectrum analysis (Huang et al. 2016; 
Chen et al. 2016), low-rank matrix approximation (Siahsar et al. 
2016; Anvari et al. 2017), improved low-rank matrix approxi-
mation (Li et al. 2020), enhanced low-rank matrix estimation 
(Oboue and Chen 2021), low-rank tensor minimization (Feng 
et al. 2022), adaptive weighting rank-reduction (Bayati and Trad 
2023), and low-rank total variation (Ghosh et al. 2023). In addi-
tion, the community geophysics has developed a number of 

deep-learning-based denoising methods for seismic data since 
2016. Although these deep-learning-based methods show bet-
ter denoising methods, they still have drawbacks, such as the 
time-consuming training and dependence on training dataset 
(Dong et al. 2019; Yuan et al. 2018; Yu et al. 2019; Dong and 
Li 2021; Dong et al. 2021).

More recently, a novel reassignment algorithm that would be 
termed as time reassigned synchrosqueezing transform (TSST) 
(He et al. 2019) was introduced as an effective technique for 
analyzing the time-varying non-stationary signal, in which the 
time-frequency coefficients are reassigned along the time axis 
instead of that along the frequency axis as the STFT-based 
synchrosqueezing transform (FSST) does. Such a technique 
achieves a sharpened time-frequency representation (TFR) for 
a wide class of strongly modulated signal. However, the origi-
nal TSST algorithm is conducted by means of the short-time 
Fourier transform (STFT) with a fixed window. Therefore, once 
the window function is defined, the time-frequency resolution 
is also determined, which means that the high resolutions in 
both time and frequency cannot be achieved simultaneously. 
In fact, for a low-frequency component in the signal, the wide 
window is more suitable, while a narrow window is helpful 
for characterizing the high-frequency content (Li et al. 2020). 
To deal with this issue, we propose to improve the existing 
TSST by introducing a time-varying window function in the 
paper, which is called the adaptive TSST (ATSST). The ATSST 
achieves the optimized energy concentration and signal recov-
ery for a class of multicomponent non-stationary signal with 
the fast time-varying feature.

Inspired by the high resolution property of ATSST and low-
rank strategy for noise reduction, we integrate the ATSST and 
the low-rank matrix recovery to achieve seismic random noise 
attenuation. The proposed method consists of three main steps. 
Firstly, the seismic trace with noise is decomposed into a sparse 
time-frequency matrix by using the ATSST. Then, one can 
solve an optimization problem via an improved Optshrink algo-
rithm to obtain a low-rank matrix. Finally, the filtered signal is 
retrieved by means of the obtained low-rank time-frequency 
matrix through the inverse ATSST. Our contributions are as 
follows: (1) we propose an adaptive TSST (ATSST) algorithm 
to enhance time-frequency concentration for seismic signal, (2) 
We combine the ATSST and the improved Optshrink algorithm 
for seismic random noise suppression, (3) Our method show 
better ability in signal amplitude-preserving compared to some 
traditional approaches.

The structure of this paper is arranged as below: Section II 
focuses the ATSST in detail as a time-frequency representation 
of the non-stationary seismic signal, and then the Optshrink 
algorithm is introduced and improved with respect to its imple-
mentation in order to obtain a low-rank component related with 
seismic signal from the noisy time-frequency matrix. In Section 
III, the proposed method is tested on the synthetic data and field 
datasets, and we make a comparison between the presented 
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approach, the f − x deconvolution and the Cadzow filtering. 
A discussion concerning the parameters setting associated with 
the denoising methods is provided in Section IV. Section V 
draws some key conclusions.

Theory

Time‑reassigned synchrosqueezing transform 
(TSST)

The standard STFT of an input signal f is expressed as below:

where � and � denote the time and frequency, respectively, 
and g is a real-valued window function.

Now, an impulse signal is considered:

where A denotes the amplitude.
Substitude Eq. (2) into Eq. (1), we get:

Then, the first-order group delay (GD) estimator is written 
as:

where R{∙} denotes the real part of a complex number.
Finally, the TSST is formulated as:

and the mode reconstruction from TSST is achievable by:

Adaptive time‑reassigned synchrosqueezing 
transform (ATSST)

It is noteworthy that the above-mentioned TSST algorithm is 
intrinsically based on the STFT with a fixed window size, that is 
to say, the high time resolution and frequency resolution cannot 
be attained simultaneously. However, for a multicomponent sig-
nal, a short window is helpful for analyzing the high-frequency 
content while a long window is beneficial to the low-frequency 
one (Li et al. 2020). Thus, the selection of the optimal window 
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function for signal analysis is a vital issue. In this paper, we pro-
pose an adaptive TSST (ATSST) by introducing a time-varying 
window function, in which the window width can be adaptively 
determined.

Herein, we consider a time-varying window g�(�):

where both � and g are the positive functions with respect to 
t, and g(0) ≠ 0 . Here, g(t) is defined as:

Thus, g�(�) is the Gaussian function. It should be pointed out 
that the width of window function g�(�) in the time domain 
depends on the parameter � in Eq. (11) since the time dura-
tion of g�(�) is � , which means that the parameter � has an 
important influence on the TFR of a signal.

Subsequently, we combine Eqs. (11) and (12), and sub-
stitute into Eq. (7), the STFT of f with a time-varying � 
can be obtained:

Under the framework of TSST algorithm, the GD estimator 
can be rewritten as:

Finally, the ATSST is reformulated as:

The mode reconstruction based on ATSST is expressed as:

Calculation of time‑varying �

We employ the Rényi entroy to measure the distribution con-
centration of a TFR (Sheu et al. 2017). The �-Rényi entroy 
of a nonzero function f is described as:
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where 𝛼 > 0 and ‖f‖� ∶=
�∫ �f (x)��dx

�1∕� . Generally speak-
ing, 𝛼 > 2 is recommended for TFR measure (Stankovic 
2001). In the paper, we choose � = 3 . Detailed description 
of these parameters can be found in Stankovic (2001). As is 
known to all, a lower Rényi entroy indicates a more concen-
trated TFR. Therefore, we are aiming at finding the lowest 
Rényi entroy.

The measure of distribution concentration is represented 
as:

where � is the time, c denotes the size of the neighborhood, 
and I� ∶= [� − c,� + c] × [0,∞).

Finally, the local optimal window width at � is deter-
mined by:

It is worth noting that the parameter c is found to be insensi-
tive to the final result, thus, it is set to 0.15 by several trials 
in the paper.
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The proposed ATSST algorithm is outlined in Algo-
rithm 1. Now, a two-component signal is taken into account:

We calculate the time-frequency maps using the original 
TSST and the proposed ATSST, respectively. The spectrums 
are shown in Fig. 1. It can be found that the ATSST further 
enhances the time-frequency energy concentration compared 
with the original TSST. Figure 1c plots the calculated time-
varying �.

Next, we will focus on incorporating the ATSST with the 
improved OptShrink algorithm for denoising seismic data.

Improved OptShrink algorithm

OptShrink algorithm, proposed by Nadakuditi (2014), 
is employed to produce the low-rank matrix related with 
the signal from the noisy time-frequency matrix. The key 
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principle of the algorithm is that the signal matrix with the 
low-rank property and the noisy measurement matrix have 
the same singular value vectors, and it implements a auto-
matically calculated threshold function to shrink the sin-
gular value (Cai et al. 2010). Thus, the signal matrix with 
the low-rank property can be recovered using the measure-
ment matrix associated with the noisy data by performing 
a reweight on the singular value vectors obtained from the 
measurement matrix (Anvari et al. 2017).

Here, we simplify the D transformation and its first 
derivative in the original OptShrink algorithm in order 
to reduce the computational cost, which is also called the 
improved OptShrink algorithm. Furthermore, the new 
algorithm is more convenient and efficient to implement. 
We have tested the original OptShrink algorithm and the 
improved version on the single signal shown in Fig. 3b, 
the result demonstrates that the computing efficiency is 
increased by 2 times using the improved algorithm on 

condition that the recovery performance is comparable to 
that obtained using the original algorithm. The workflow 
is detailedly as below:

First of all, r̂ is considered as the rank of a input signal, and 
then the optimum weight regarding kth singular value vector 
can be computed based on Eq. (21).

where D̂(x;Z) denotes a D transformation and the corre-
sponding first derivative is D̂�

(x;Z) , which are expressed as 
follows:

where n and m are the column and the row of the data matrix 
corrupted by noise, H is the conjugate transpose.

In our problem, the singular value matrix Z is a square and 
diagonal matrix, thus, m = n and ZH = Z . Therefore, Eqs. (22) 
and (23) can be further simplified as:

where Z represents the singular value matrix constructed 
from the (N + 1) th singular value to the last one, M repre-
sents the size of the square matrix Z, Tr(X) represents the 
sum of elements on the main diagonal of a square matrix 
X, and

where �̂�r̂ denotes the singular value extracted using singular 
value decomposition:
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Fig. 1  Results on the two-component signal, a conventional TSST, b 
ATSST, and c time-varying � curve
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Finally, the denoised estimate of the signal matrix with rank 
r̂ can be computed by using the attained weighted singular 
values:

Proposed denoising framework

In the paper, a new seismic denoising method using the pro-
posed ATSST and the improved Optshrink algorithm is pre-
sented. Figure 2 illustrates the proposed algorithm workflow, 
and the detailed description is as follows:

Step 1: Calculate the sparse TFR of a seismic trace with 
noise using the ATSST algorithm.

Step 2: Extract the amplitude spectrum and phase spec-
trum based on the obtained TFR.

Step 3: Perform the improved OptShrink algorithm on 
the amplitude of TFR to separate the low-rank component.

Step 4: Treat the low-rank component as the desired 
amplitude spectrum.

Step 5: Generate the denoised seismic signal by back-
transforming the aforementioned amplitude spectrum based 
on the inverse ATSST.

Step 6: Repeat steps (1)–(5) to denoise all seismic traces.
For seismic data with complex geological structures, 

the rank extraction becomes a challenging task. Thus, the 
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ûk𝜐

H
k
.

effective rank estimation plays a significant role in this 
algorithm. In addition, it is noteworthy that the proposed 
approach is implemented based on the single trace data, the 
computational efficiency regarding this approach is substan-
tially determined by the ATSST decomposition of seismic 
trace. Compared with the ATSST, the computational cost of 
OptShrink algorithm in calculating singular value decompo-
sition may be negligible.

Examples

In this part, we show some examples including synthetic 
data and real field datasets to illustrate the validity of the 
proposed denoising method. Meanwhile, the denoised 
results based on our method, the Cadzow filtering, and the 
f − x deconvolution are compared. Here, the metrics, SNR 
and MSE (mean squared error), are utilized to evaluate the 
denoising performance of the aforementioned methods:

where d or d(m) denotes the clean signal, d̂ or d̂(m) denotes 
the denoised signal, and the signal length is M.
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Fig. 2  The proposed algorithm 
scheme
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Single trace

First, a single trace example is presented, as plotted in 
Fig. 3. The clean synthetic seismic trace is composed of 
a 50Hz normal Ricker wavelet at 0.125s, a phase-rotated 
40Hz Ricker wavelet at 0.3s, a polarity-inversed 20Hz 
Ricker wavelet at 0.5s, and two close 30Hz Ricker wave-
lets at 0.7 and 0.775s, respectively. The noisy single trace 
is with a SNR of 2 dB. The clean signal and noisy version 
are plotted in Fig. 3a, b), respectively. Figure 3c, d are the 
amplitude spectrums regarding the aforementioned sig-
nals, which are obtained by using the ATSST.

Then, the improved Optshrink algorithm is employed 
to transform the time-frequency matrix of the signal with 
noise into a low-rank matrix and a sparse one as displayed 
in Fig. 4. It can be seen that the resulting low-rank compo-
nent and sparse component can be approximately viewed 
as the denoised signal and removed noise, respectively. 
Thus, the filtered result can be acquired by transforming 
the estimated low-rank part based on the inverse trans-
form of ATSST, which is plotted in Fig. 5a. As reported 
in Fig. 5, the recovered signal by the proposed method has 
a perfect reconstruction and a negligible error compared 
with the original signal. Moreover, the SNR of the single 

trace is improved from 2 dB (Fig. 3b) to 7 dB (Fig. 5a). 
In addition, we also estimate the noise by extracting the 
sparse component and transforming it back into the time 
domain, which is plotted in Fig. 5b.

Synthetic data

Next, a 2D synthetic data based on convolutional model is 
considered, which is comprised of 150 traces, and the time 
sampling rate is 2 ms with a total time of 1 s. The data con-
tains the hyperbolic and curved events, and is corrupted by 
random noise with a SNR of 2 dB. Figure 6a, b exhibit the 
clean and noisy synthetic records, respectively.

We evaluate the Cadzow filtering, the f − x deconvolu-
tion, and the presented approach using the synthetic data 
with noise. In this example, the rank parameter is set to 
5 for our algorithm. For the Cadzow filtering, the same 
parameter is chosen as six owing to the existing non-linear 
events in this data, and we obtain the best noise suppres-
sion performance in this case. For the f − x deconvolu-
tion, the length of predictive filter is 15 and the process-
ing frequency band is between 1 and 90 Hz. Figure 7a–c 
show the denoised results by the f − x deconvolution, the 
Cadzow filtering, and the presented method, respectively. 
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Figure 7d–f are the corresponding removed noise. As 
shown on the figures, the presented approach does a good 
job in preserving seismic signals (see Fig. 7f) despite some 
noise still remaining in the denoised result (see Fig. 7c). 
The f − x deconvolution shows a greater ability to sup-
press random noise as compared with the Cadzow filtering. 
However, inspection of the noise sections indicates that 
a significant amount of signal leakage can be perceived 
for the f − x deconvolution (see red arrows in Fig. 7e), 
and some useful signals are also leaked in the case of the 
Cadzow filtering (see red arrows in Fig. 7d).

We also calculated the amplitude spectrums regarding 
clean, noisy, and denoised results via the Cadzow filtering, the 
f − x deconvolution, and the presented algorithm, which are 
displayed in Fig. 8. These figures indicate that residual noise 
exists in different denoised results (see red boxes in Fig. 8d–f). 
It is obvious from Fig. 8f that the amplitude spectrum from the 
proposed method has the same features as that of the noise-
free data within the effective frequency band, which means 
that the presented method is able to retrieve the seismic signals 
well. However, the other two methods, the Cadzow filtering 
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and the f − x deconvolution, do damage to seismic signals; for 
instance, the Cadzow filtering leads to the low-frequency com-
ponent leakage (see red arrows in Fig. 8d), the f − x deconvo-
lution can not reconstruct the middle-frequency content effec-
tively (see red arrows in Fig. 8e.

Furthermore, the SNR and MSE for the results of 
above-mentioned methods are also calculated, which are 
displayed in Fig. 9a, b, respectively. The figures demon-
strate that the presented method is superior to the other 

Fig. 7  Denoised results using a the Cadzow filtering, b the f − x deconvolution, and c the proposed method. Removed noise sections corre-
sponding to d the Cadzow filtering, e the f − x deconvolution, and f the proposed method



838 Acta Geophysica (2024) 72:829–847

1 3

two approaches, because it has the highest SNR and low-
est MSE.

Pre‑stack shot data

To further assess the effectiveness of the proposed algorithm 
in practice, a real pre-stack shot data is taken as an exam-
ple, in which there are several types of noise such as ran-
dom noise, multiples, and external source interfrence noise, 
herein the random noise is concerned. The data is composed 
of 100 traces, the time sampling rate is 2 ms, and each trace 
has 500 time samples. Figure 10 shows the noisy shot data. 
Figure 11a–c exhibit the filtered results of applying the 

Cadzow filtering, the f − x deconvolution, and the presented 
algorithm, respectively. Figure 11d–f are the corresponding 
noise. The rank parameters for the Cadzow filtering and the 
proposed algorithm are set to 18 and 20, respectively. For 
the f − x deconvolution, we set the filter length as 10, and 
the processing frequency band is between 1 and 120 Hz. It 
is obvious that, although the Cadzow filtering and the f − x 
deconvolution can attenuate the most random noise, both of 
them cause some harms to the seismic reflection events to 
a certain degree (see blue arrows in Fig. 11d, e), especially 
for the f − x deconvolution. By comparison, the proposed 
approach preserves the seismic events well (see Fig. 11f).
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For the sake of clarity, we have enlarged one area between 
0.5 and 0.8 s, and shown it in Fig. 12. As reported in these 
results, the presented method preserves the amplitude of the 
primary refection events well compared with the Cadzow fil-
tering and the f − x deconvolution. However, the continuity of 
some events may be damaged a bit. It should be noted that all 
figures are shown using the same amplitude interval. Figure 13 
shows the three local similarity maps between the denoised shot 
data and removed noise for the three methods, which indicates 
vividly that both of the Cadzow filtering and the f − x decon-
volution cause a large amount of damaged signals in the noise, 
especially for the f − x deconvolution, and the signal damage 
using the proposed method is the least.

Besides, we also compute the amplitude spectrums for the 
aforementioned approaches, which are plotted in Fig. 14. It can 
be clearly observed that the presented method is able to retrieve 
the seismic signals well, but the Cadzow filtering and the f − x 
deconvolution cannot preserve the seismic events.

Post‑stack data

In the section, a post-stack data is considered. This noisy data 
is shown in Fig. 15, which consists of 400 traces, each trace 
has 1000 time samples and the sampling rate is 2 ms in the 
time domain. Figure 16e exhibits the filtered result based on 
the proposed algorithm. Similarly, the Cadzow filtering and the 
f − x deconvolution are also utilized for comparison, which are 
exhibited in Fig. 16a, c, respectively. Figure 16b, d, f are the 
removed noise related with the above-mentioned methods. In 
the example, the input rank parameters are 16 and 20 for the 
Cadzow filtering and the proposed method, respectively. For 
the f − x deconvolution, the frequency range is still from 1 to 
120 Hz, but the length of predictive filter is 8.

As can be obviously observed, the presented algorithm 
performs better, with less the energy of signal leakage (see 
Fig. 16f). However, a significant amount of energy leaking 
associated with seismic events occurs when applying the Cad-
zow filtering and the f − x deconvolution (see Fig. 16b, d). 
Furthermore, we also zoom in one area of interest marked by 
the black box (see Fig. 16), as shown in Fig. 17. As indicated in 
the results, the proposed algorithm does a good job in preserv-
ing the amplitude of seismic events, than the Cadzow filtering 
and the f − x deconvolution. For evaluating the signal damages 
for this example, we calculate the local simimarity between 
the denoised post-stack data and the noise and show them in 
Fig. 18, where the small local similarity is shown in the similar-
ity map corresponding the proposed method.

Additionally, the amplitude spectrums of the above-
mentioned methods also indicate that the presented algo-
rithm is better than the other ones (see Fig. 19).
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Fig. 11  Denoised results of shot 
data using a the Cadzow filter-
ing, b the f − x deconvolution, 
and c the proposed algorithm, 
respectively. d–f are the 
removed noise corresponding to 
the three methods
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Discussion

In the paper, we have presented a new denoising approach, 
which integrates the ATSST and the improved OptShrink 
algorithm. In the proposed approach, we first transform a 

seismic signal corrupted by noise into a time-frequency 
matirx through the ATSST. Next, the low-rank component 
and the sparse component are estimated via an improved 
OptShrink algorithm. Compared with the original TSST 
algorithm, the ATSST with a time-varying parameter can 

Fig. 12  Zoomed denoised 
results and removed noise using 
a, b the Cadzow filtering, c, d 
the f − x deconvolution and 
e, f the proposed algorithm, 
respectively
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further enhance the energy concentration of TSST in the 
time-frequency plane and resolution of a multicomponent 
signal, thus, it is very promising in instantaneous frequency 
estimation of the component of a multicomponent signal and 
accurate component recovery. It is worth noting that the pre-
sented method operates trace by trace, it makes that the com-
plex geological structures of the field data does not affect 

the performance of such an algorithm, which is also one of 
the prime reasons why the proposed method outperforms 
the traditional 2D denoising approaches. In addition, the 
improved OptShrink algorithm reduces the computational 

Fig. 13  A local similarity com-
parison between denoised shot 
data and removed noise. a The 
Cadzow filtering, b the f − x 
deconvolution, c the proposed 
method
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cost by simplifying the D transformation and its first deriva-
tive in the original OptShrink algorithm, thus, it is more con-
venient and efficient to implement. However, the proposed 
method runs involving multiple time-frequency transforms 
in practice, it inevitably has an influence on computational 
efficiency, and parallel computing may be the direction of 
future improvement.

On the basis of aforementioned principle, we can recover 
the desired signal from the low-rank component of time-fre-
quency matrix of the noisy seismic data. So it is very impor-
tant to accurately separate the low-rank component. With 
regard to the OptShrink algorithm, the presence of noise 
will have a great impact on the estimation of matrix rank, 
thus, estimating the effective rank plays a significant part in 

Fig. 16  Denoised post-stack sections using a the Cadzow filtering, c the f − x deconvolution, and e the proposed algorithm, respectively. b, d, 
and f are the removed noise corresponding to the three methods
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the algorithm. Figure 20 shows the relationship between the 
output SNR and the rank values for the synthetic single trace 
in Fig. 3b. It can be found that the SNR first increases fast, 
then reaches the peak followed by a small reduction trend 
as the rank values vary. Note that a larger rank will increase 
the burden of calculation and decrease the noise removal. 
Thus, several trials need to be done to obtain the optimal 
rank value in the real case.

Additionally, the commonly used noise reduction meth-
ods such as the Cadzow filtering and the f − x deconvolution 
are utilized to compare in the paper. In the Cadzow filter-
ing method, a trade-off exists between the noise suppression 
and the seismic events recovery. A higher rank will reduce 
the noise suppression and better preserve the seismic events 
and vice versa. For the f − x deconvolution method, the 
input frequency band and the predictive filter length are two 

significant parameters, which usually have an impact on the 
level of noise reduction. We have tested the aforementioned 
algorithms with a variety of parameters until the best results 
can be obtained.

Conclusion

We propose an adaptive time-reassigned synchrosqueezing 
transform (ATSST), which is designed to achieve a high-
resolution and reversible representation for strongly time-
varying non-stationary signal. Afterwards, we combine the 
ATSST with the improved OptShrink algorithm for random 
noise attenuation. In the proposed approach, a time-varying 
window function is introduced to improve time-frequency 
energy concentration of the original TSST algorithm. 

Fig. 17  Zoomed denoised post-
stack sections and correspond-
ing noise using a, b the Cadzow 
filtering, c, d the f − x decon-
volution, and e, f the proposed 
algorithm, respectively
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Additionally, the low-rank property of seismic signal will 
be unchanged from time-domain to time-frequency domain, 
thus, the denoised seismic signal can be rocovered by the 
inverse transformation of the low-rank matrix from ATSST 
decomposition. We have tested the presented approach on 

both synthetic data and real field datasets, and compared 
it with the Cadzow filtering and the f − x deconvolution 
approaches. The results demonstrate that the presented 
approach performs clearly better in seismic signal preserva-
tion. Future works will focus on trying other types of win-
dow functions, and develop new applications.
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