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Abstract
In many geological conditions, obtaining the static elastic moduli of crustal rocks is an essential subject for accurate mechani-
cal analyses of crust. The elastic wave method may be the best choice if rock specimens cannot be taken since elastic wave 
propagation can be applied to in-situ environments. Although many signs of progress have been made in the elastic wave 
method, some issues still restrict the accurate extraction of static moduli and its applications. A review of this method and its 
further research prospect is urgently needed. With this purpose, this paper summarized and analyzed the published experi-
mental data about the relationship between the static and dynamic Young’s moduli of rock, and the frequency dependence 
of wave velocities and dynamic elastic moduli. P- and S-wave velocities, Young’s, and bulk moduli of rock, especially the 
saturated rock, have strong frequency dependence in a wide frequency range of  10–6–106 Hz. Different rocks or conditions 
(such as water content, amplitude, and pressure), have different frequency-dependent characteristics. The current elastic wave 
method can be classified into two methods: the empirical correlation method and the multifrequency ultrasonic method. The 
basic principle, advantages, and disadvantages of both methods are analyzed. Especially, the reasonability of the multifre-
quency ultrasonic method was elaborated given the nonlinear elasticity, strain level/rate, and pores/cracks in rock materials. 
Existing problems and prospects on the two methods are also pointed out, such as the choice of a proper empirical correla-
tion, accurate determination of the critical P- and S-wave velocities, the prediction of Young’s modulus at each strain level, 
and the reasonability of the method under various water contents and fracture structures.

Keywords Static elastic modulus · Dynamic elastic modulus · Rock · Wave velocity · Frequency dependence

Introduction

The mechanical behavior of rock is a key issue in many geo-
logical environments, where the elastic moduli of rock are key 
parameters for accurate analyses. For instance, the interpreta-
tion of elastic wave velocity is of great significance for deter-
mining the crustal rock structure, which requires important rock 
mechanical parameters: elastic moduli. Elastic moduli control 

the deformation behavior of rock under a specific pressure, 
which can be classified into static elastic moduli and dynamic 
elastic moduli according to loading conditions. In geophysi-
cal measurements, the elastic moduli obtained by static and 
dynamic approaches are different (e.g., Simmons and Brace 
1965; Cheng and Johnston 1981; Tutuncu et al. 1998). Taking 
deep geothermal engineering as an example, the static elastic 
moduli of the reservoir rock are related to the performance of 
the fracture network. Therefore, an accurate and rapid determi-
nation method of static elastic moduli has substantial signifi-
cance for deep geothermal energy exploitation.

Rapid and non-destructive methods for the static moduli 
of rock are a continuous research topic, where the method 
using elastic wave velocity is commonly used. In some 
extreme environments, such as deep mining, tunneling, and 
seismic zone (Kurlenya et al. 2015; Shreedharan and Kula-
tilake 2015; Catalán et al. 2017), rock specimens are very 
difficult to obtain. In those cases, obtaining the static elastic 
moduli of rock by wave velocity may be the best choice 
since the wave propagation test is a rapid, nondestructive, 
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and in-situ measurement. Although many signs of progress 
have been made on the elastic wave method, some issues 
still restrict the accurate extraction and its applications. A 
review of this method and its further research prospect is 
urgently needed.

The empirical correlations proposed by previous research-
ers provide convenient and feasible methods. Nevertheless, 
the results obtained from multiple correlations are different 
(sometimes with a large difference), which presents a large 
application obstacle for the prediction of the static modulus. 
In addition, empirical correlations were only obtained by 
fitting experimental data. It lacks a theoretical basis, and its 
rationality does not answer scientific questions. Under dif-
ferent frequencies, the wave velocities of rock are different, 
leading to the difference in the calculated dynamic elastic 
moduli, which brings greater error to predict the static elas-
tic modulus by empirical correlations. What is the repre-
sentative frequency to obtain dynamic elastic modulus (or 
how to get the representative modulus based on frequency 
dependence)? The results under the uniaxial compressive 
condition reveal that the static modulus of rock is nonlinear 
(e.g. Hilbert et al. 1994; Kurlenya et al. 2015; Sebastian 
and Sitharam 2018; Wu et al. 2020). What stage does the 
modulus obtained by elastic waves represent (or under what 
strain condition)? To date, these questions are still unknown 
and require further studies.

In this paper, we review the relationship and empirical 
correlations between the static and dynamic elastic moduli, 
the frequency dependence of the P- and S-wave velocities, 
and dynamic Young’s and bulk moduli of rock. By summa-
rizing the experimental data published in previous literature, 
the research status of the elastic wave method for obtaining 
the static elastic moduli of rock is presented. Finally, exist-
ing problems and further prospects are pointed out for better 
development of the elastic wave method.

Static and dynamic elastic moduli of rock

Static elastic modulus

The elastic moduli of rocks are the deformation character-
istics during the elastic deformation stage. The static elastic 
moduli reflect the deformation characteristics of rocks under 
static loading conditions which include Young’s modulus, 
bulk modulus, and shear modulus. The methods for obtain-
ing the static elastic moduli of rock include two categories: 
static and dynamic methods. This section mainly introduces 
static methods, where static elastic moduli could be obtained 
using static mechanical tests.

Young’s modulus was originally defined in steel defor-
mation. During the elastic stage, the stress-strain curve is 
nearly linear, hence Young’s modulus of steel is a constant. 

However, the stress-strain curve of rocks varies with strain 
since rock deformation is nonlinear. According to stain level, 
Young’s modulus includes the initial Young’s modulus and 
Young’s modulus. Initial Young’s modulus is calculated 
at the original stage where the rock is loaded with a small 
force, which reflects the initial deformation characteristic. 
Young’s modulus is calculated when rock enters the elastic 
deformation stage from the fracture closure stage.

The most used test method in static methods is the uni-
axial compressive test (UCT), where cylindrical specimens 
are generally used. Generally, three calculation approaches 
were used for Young’s modulus of rock:

 i. Tangent modulus. The choice of stress level can be a 
few percent of uniaxial compressive strength (UCS, 
�c ), and the general value is taken as 0.5 �c . This cal-
culation is the most common method.

 ii. The average slope of a stress-strain curve in the elastic 
stage (straight section).

 iii. The secant modulus from the original point to a spe-
cific stress level can be Young’s modulus, where the 
stress level is generally taken as 0.5 �c.

The bulk modulus of rock is the ratio of volume stress 
and volume strain and can be obtained by uniaxial com-
pressive test and triaxial compressive test. The shear mod-
ulus of rock is the ratio of shear stress and shear stain and 
can be obtained by triaxial compressive test, direct shear 
test, and compression shear test. In addition, in-situ load-
ing tests can also obtain the deformation characteristics of 
rock, such as the plate load (ISRM 1979), flat jack (ISRM 
1986), and Goodman jack test (Selig and Heuze 1984).

The static elastic moduli of a rock specimen obtained 
by different calculation methods are generally different. 
The results of Al-Shayea (2004) show that the difference 
between static elastic moduli from different calculation 
methods can reach 20%. Besides, the static method is  
time-consuming and expensive, and the results are 
discrete.

Dynamic elastic modulus

Similar to static elastic moduli, dynamic elastic moduli are 
composed of dynamic Young’s modulus, bulk modulus, 
and shear modulus. The main methods to obtain dynamic 
elastic moduli are wave velocity tests, dynamic experiments 
(force deformation), and resonant techniques. Wave velocity 
measurement is the most widely used method to determine 
dynamic elastic moduli, which needs the P- and S-wave 
velocities of rock and then determines the dynamic elastic 
moduli according to elastic wave propagation theory, where 
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the rock is assumed as a continuous, isotopic, and homog-
enous medium with small strain and no initial stress.

In terms of the P- and S-wave velocities, dynamic 
Young’s modulus can be calculated by (Goodman 1989):

where Ed is dynamic Young’s modulus, � is density, and cp 
cs are the P- and S-wave velocities, respectively.

The dynamic bulk modulus of rock can be calculated 
by:

The dynamic shear modulus of rock is as follows:

The conventional wave velocity test processes the rock 
specimen into a certain shape and measures P- and S-wave 
velocities in laboratory experiments. By a detector, a seis-
mograph, or other equipment, in situ tests of large-scale 
rock can also be carried out for determining the dynamic 
elastic moduli of rock. Although moduli obtained by a static 
method have a larger dispersion, it can obtain the static mod-
uli under a high strain level (it can reach  10–2). The dynamic 
method has a smaller dispersion, but the measured strain 
level ( <  10–5) is also low (Al-Shayea 2004).

The dynamic experiment could be also conducted to 
determine the dynamic elastic modulus by applying an 
impact load to a rock specimen. During this process, the 
deformation parameters of the specimen are determined by 
a high-speed camera or strain gauges (Fan et al. 2017). The 
main purpose of this paper is to focus on the wave velocity 
test. Many works show the dynamic experiment. Readers 
can refer to published literature (e.g. Peng et al. 2019; Liu 
et al. 2021).

Methods for the determination of wave velocities

The determination method for accurate arrival times of 
P- and S-waves is a premise for calculating P- and S-wave 
velocities. At low-frequency range (generally below 100 Hz), 
a seismic experiment was usually used. At a high-frequency 
range (thousands of Hz), an ultrasonic test was usually used. 
Based on a time-domain analysis, a frequency-domain analy-
sis, and mathematical models, researchers have proposed 
many methods for the determination of arrival times of elas-
tic waves (including AE wave, ultrasonic wave, and seismic 
wave). Revised or new methods are also being improved 
or proposed. In terms of the differences in the degree of 
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automation and algorithm, these methods can be classified 
into three categories.

Category 1: manual identification or semi‑automatic 
method

This category includes the direct observation method, the 
start-to-start distance method in the time domain, and the 
peak-to-peak distance method in the time domain (Ogino 
et al. 2015). If the arrival time of the start vibration is easy 
to identify, direct observation can be used. This method is 
suitable for the P-waveform with a high signal-to-noise ratio 
(SNR). A large error may be caused by manual operation on 
the S-waveform because the arrival time of the S-wave is dif-
ficult to be observed. The start-to-start distance is a widely 
used method for P-wave. The linear regression method is 
used to make a tangent at a point after the start vibration 
point of the waveform, where the tangent point can be taken 
as a point whose voltage is about one-third of the first peak. 
The intersection point between the tangent and the time axis 
is considered the arrival time. The peak-to-peak distance in 
the time domain is taken as the travel time where the first 
peak is that of the excitation signal, and the second peak is 
that of the received wave. This method is widely used in 
waveforms whose arrival time is difficult to be identified, 
such as S-wave.

Category 2: the threshold method

This category determines the arrival time in terms of a 
threshold value and can be further classified into two types. 
If the voltage of a waveform exceeds a threshold value, the 
wave is considered to arrive. In type 1, the threshold value is 
fixed. This type is suitable for the waveform with high SNR 
or high amplitude. For a waveform with low amplitude or 
low SNR, the noise before the arrival of the wave may be 
sometimes regarded as the arrival, resulting in a large error 
in wave velocity calculation. In type 2, the arrival time can 
be determined by a dynamic threshold value and a charac-
teristic function. This type of method can be also called the 
short-term average/long-term average method and has been 
widely applied in seismic waves (Allen 1978; Allen 1982; 
Earle and Shearer 1994; Dai H and MacBeth 1995; Leonard 
and Kennett 1999).

Category 3: a method based on statistics

This category determines the travel time by automatic 
regression analysis based on mathematical statistics (Slee-
man and van Eck 1999; Leonard 2000; Zhang et al. 2003; 
Bai et al. 2016). The Akaike information criterion (AIC) 
is well-known in this category and is an efficient method 
suitable for in situ and laboratory tests. The arrival time 
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is regarded as the minimum of the AIC function. The AIC 
function can effectively separate the noise in front of the real 
arrival time. For an array of waveform data composed of N 
points, the AIC value of each point could be determined by 
(Maeda 1985):

where k is the No. of the point in a discrete signal and 
var(∙) is the variance of the voltages of the discrete signal 
in the voltage range of [1, k] or [k + 1, N]. The minimum of 
the AIC value is the arrival time ( tP for P-wave and tS for 
S-wave). By choosing an appropriate time window we can 
accurately obtain the ultrasonic wave velocities.

Extracting static elastic modulus according 
to empirical correlation

Besides static mechanical tests, dynamic Young’s modulus 
is often used to predict the static Young’s modulus of rock 
(dynamic method). Since the 1930s, due to the application 
of wave propagation testing technology in mining, petro-
leum, and civil engineering, scholars began to study the 
relationship between dynamic and static elastic moduli. A 
large amount of measured data were obtained. The dynamic 
and static Young’s moduli of rock generally differ. Using 
the dynamic-static ratio, their relationship can be described:

(4)
AIC(k) = k log

[
var(Vi[1, k])

]
+ (N − k − 1) log

[
var(Vi[k + 1, N])

]
,

(5)kd/s =
Ed

Es

,

where Ed and Es are the dynamic and static Young’s moduli, 
respectively.

A scatter diagram of the dynamic and static Young’s 
and bulk modulus of rock is given in Fig. 1. In most cases, 
the dynamic-static ratio is greater than 1. In the low modu-
lus range (< 70 GPa), the dynamic-static ratio is different. 
In some cases, this parameter is less than 1. By summariz-
ing ten kinds of rocks, van Heerden (1987) revealed that the 
dynamic-static ratio reduces with increasing Young’s modulus. 
At a high Young’s modulus level (still in the elastic stage), the 
dynamic-static ratio is a little less than 1. Al-Shayea (2004) 
revealed that the dynamic-static ratio would be equal for dense 
rock. van Heerden (1987) revealed that the dynamic Young’s 
moduli of low modulus (< 100 GPa) samples were greater 
than the static Young’s modulus, whereas the static Young’s 
modulus of high modulus (> 100 GPa) samples is larger than 
the dynamic Young’s modulus.

Through regression analysis, scholars have proposed many 
empirical correlations between dynamic and static Young’s 
moduli. Table 1 lists the current empirical correlations of 
Young’s modulus, and Table 2 lists the current empirical corre-
lations of bulk and shear moduli. According to the expression 
form of the empirical correlations, they can be divided into 
linear relations and nonlinear relations, in which the nonlinear 
relations include logarithms, power functions, binomial func-
tions, and so on. Some scholars established their relationship 
by introducing other parameters, such as density and porosity. 
Through these formulas, a mutual prediction can be made.

Savich (1984) found that the relationship is related to the 
stress state. van Heerden (1987) established an empirical cor-
relation by testing Young’s modulus of different rock speci-
mens under the stress of 10, 20, 30, and 40 MPa:
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Fig. 1  Relationship between the dynamic and static elastic moduli of rocks
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where a and b are the parameters related to the rock stress 
state.

Based on the summary of the test data of more than 40 
rocks, Davarpanah et al. (2020) systematically studied the 
relationship, which was fitted by a linear function, a power 

(6)Es = aEb
d
, function, and a logarithmic function. The empirical correla-

tions were also related to rock type. Igneous rock and meta-
morphic rock were more suitable for logarithmic and power 
functions. Sedimentary rocks are more suitable for a linear 
function.

Although many empirical correlations have been pro-
posed, the prediction results by different correlations often 

Table 1  Empirical correlations between the dynamic and static Young’s moduli of rocks

� is density; �
s
 is ultrasonic attenuation coefficient; � is Poisson’s ratio; a

1
 and b

1
 are two constants related to the stress state of rock; � is porosity 

(%)

Empirical correlation R2
E
d
(GPa) Rock type Refs.

Linear Es = 1.26Ed − 29.5 0.82 40–120 Igneous, Metamorphic King (1983)
Es = 0.74Ed − 0.82 0.70 5–110 All types Eissa and Kazi (1988)
Es = 0.69Ed − 6.40 0.75 0–110 Crystalline Mccann and Entwisle (1992)
Es = 1.05Ed − 3.16 0.99 25–110 All types Christaras et al. (1994)
Es = 1.153Ed − 15.2 – – Es > 15 GPa Nur and Wang (2000)
Es = 0.541Ed + 12.852 0.60 0–130 Limestone Ameen et al. (2009)
Es = 0.867Ed − 2.085 0.96 5–30 Calcareous Brotons et al. (2014)
Es = 0.93Ed − 3.42 0.97 20–80 All types Brotons et al. (2016)
Es = 0.38Ed+6.34 0.91 10–90 Schist rocks Chawre (2018)
Es = 1.538�d − 20.62 0.692 15–70 Anhydrite rock Yin and Xie (2018)
Es = 0.3676Ed+11.2 0.72 40–70 Shale, mudstone Bian et al. (2019)
Es = 0.4017Ed − 0.1537 0.97 27–37 Granite Liu et al. (2019)
Es = 0.4029Ed 0.89 0–100 Basalt Pereira et al. (2021)
Es = 0.419Ed + 0.6787 0.60 15–70 Litharenite Motahari et al. (2022)

Power/logarithm logEs = a1 logEd − b1 – – All types Savich (1984)
logEs = 0.77 log(�Ed) + 0.02 0.92 5–130 All types Eissa and Kazi (1988)
logEs = 1.749 logEd − 1.075 0.75 0–110 Crystalline Mccann and Entwisle (1992)
logEs = 1.28 log(�Ed) − 4.71 0.97 5–30 Calcareous Brotons et al. (2014)
logEs = 0.97 log(�Ed) − 3.31 0.99 20–80 All types Brotons et al. (2016)
Es = aEb

d
 , a = 0.097–0.152; b = 1.485–1.388 – 20–135 Sandstone, granite van Heerden (1987)

Es = 0.0158E2.74
d

– – All types Ohen (2003)

Es = 0.014E1.96
d

0.87 13–74 Limestone Najibi et al. (2015)

Es = 11.53�−0.46E1.25
d

0.99 20–80 All types Brotons et al. (2016)

Es = 0.0811E1.491
d

0.78 30–200 Limestone Daraei and Zare (2019)

Es = 0.091E1.55
d

– – Sedimentary rocks Davarpanah et al. (2020)

Es = 0.0259E1.7554
d

0.79 5–70 Limestone Khosravi et al. (2022)
Quadratic Es = 0.018E2

d
+ 0.422Ed

– – Sedimentary Lacy (1997)
Es = 0.0293E2

d
+ 0.4533Ed

– – Sandstone Lacy (1997)
Es = 0.0428E2

d
+ 0.2334Ed

– – Shale Lacy (1997)
Es = 0.0014E2

d
+ 6.93Ed − 1.18 – – Various rocks Yale and Swami (2017)

Others Es = 0.076c3.23
p

– – Shale Horsrud (2001)

Es =
Ed

3.8�−0.68
s

�c2
p

(1−2�)(1+�)

1−�
– – Limestone, marble Martínez-Martínez et al. (2012)

Es = 0.196c3.324
p

0.90 – Limestone Najibi et al. (2015)

Es = 3.97 × 106�−2.09E1.29
d

�−0.12 0.99 20–80 All types Brotons et al. (2016)

Es = 4.71 × 106�−2.10E1.23
d

�−0.13�0.035
c

0.99 20–80 All types Brotons et al. (2016)



920 Acta Geophysica (2024) 72:915–931

1 3

vary, and some of them are quite different (see Fig. 2). 
Therefore, the empirical correlations can be used for rough 
prediction. Accurate determination by the dynamic method 
still requires further studies.

Extracting static elastic modulus according 
to frequency dependence

Frequency‑dependent wave velocity

The frequency dependence of wave velocities (also known 
as wave velocity dispersion) refers to differences in wave 
velocities at different frequencies of stress wave (includ-
ing P- and S-wave velocities). In other words, the P- and 
S-wave velocities vary with the change in frequency. Many 
experiments demonstrated that the P- and S-wave velocities 
of rocks increase with increasing frequency. For example, 

Table 2  Empirical correlations between the dynamic and static bulk and shear moduli of rocks

Empirical correlation R2
K
d
(GPa) Rock type Refs.

Linear Ks = 1.293Kd − 11.634 – 0–50 Sandstone Jizba and Nur (1990)
Ks = 0.5Kd – 10–60 Carbonate Bakhorji and Schmitt (2009)
Gs = 0.537Gd + 5.311 0.58 5–60 Limestone Ameen et al. (2009)
Ks = 0.479Kd + 10.213 0.43 5–100 Limestone Ameen et al. (2009)
�s = 0.897�d − 0.034 0.565 0.15–0.3 Anhydrite rock Yin and Xie (2018)
Ks = 0.59Kd − 4.49 0.77 – Igneous Davarpanah et al. (2020)
Ks = 0.45Kd − 2.91 0.38 – Sedimentary Davarpanah et al. (2020)
Ks = 0.69Kd + 2.04 0.87 – Metamorphic Davarpanah et al. (2020)
Ks = 0.64Kd + 0.037 0.77 0–120 All types Davarpanah et al. (2020)
Ksat
s

= 0.1494Ksat
d

+ 0.6035 0.56 30–50 Carbonate Sharifi et al. (2020)

K
dry
s = 0.2115K

dry

d
+ 3.0592 0.19 20–40 Carbonate Sharifi et al. (2020)

Ks = 0.996Kd − 3.157 0.93 0–30 Argillites Blake et al. (2021)
Power/logarithm Ks = 0.377K1.157

d
0.88 0–90 Igneous Davarpanah et al. (2020)

Ks = 1.131K0.739
d

0.31 0–60 Sedimentary Davarpanah et al. (2020)

Ks = 0.237K1.227
d

0.98 0–120 Metamorphic Davarpanah et al. (2020)

Ks = 0.458K1.061
d

0.69 0–120 All types Davarpanah et al. (2020)
logKs = 1.15 log �Kd − 0.87 0.88 Power/logarithm Igneous Davarpanah et al. (2020)
logKs = 0.73 log �Kd − 0.24 0.30 – Sedimentary Davarpanah et al. (2020)
logKs = 1.22 log �Kd − 1.11 0.98 – Metamorphic Davarpanah et al. (2020)
logKs = 1.06 log �Kd − 0.76 0.69 – All types Davarpanah et al. (2020)

Others Ksat
s

= 0.0034cP − 10.205 0.74 – Carbonate Sharifi et al. (2020)

K
dry
s = 0.002cP − 0.0867 0.15 – Carbonate Sharifi et al. (2020)
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from 5 Hz to 800 kHz, the P- and S-wave velocities of car-
bonatite and sandstone have strong frequency dependences, 
and both increase with a rise in frequency (Batzle et al. 
2006). Although different scholars reached different results 
based on different rocks, the frequency dependence of rock 
wave velocities has been widely confirmed and recognized. 
This law applies to soft rock, quartzite, low frequency, and 
high frequency. Figure 3 shows the variations in the P- and 
S-wave velocities of typical rocks with frequency.

Frequency‑dependent elastic modulus

Since dynamic elastic moduli can be calculated from wave 
velocities, the frequency dependence of dynamic moduli is 
also frequency dependence, which is widely studied in the 
seismic field, mainly in the range of 0.1–200 Hz. In addition, 
some researchers have also tested the wave velocities under 
an ultrasonic wave and found that there is also a frequency 
dependence. James and Spencer (1981) measured that the 
dynamic Young’s modulus of Navajo Sandstone gradually 
increases with increasing frequency in 2–200 kHz. Lozovyi 
and Bauer (2019a) measured the P- and S-wave velocities 
of three kinds of shale and one kind of mudstone at frequen-
cies of 1–150 Hz (belonging to seismic wave frequency) 
and 500 Hz. The dynamic Young’s modulus obtained at low 
frequency is different from that obtained at high frequency. 
From low frequency to high frequency, the dynamic Young’s 
modulus increases by 70%. The dispersion of the S-wave 
velocity with frequency (15–44%) is more obvious than 
that of the P-wave velocity (2–25%). Subsequently, Lozovyi 
and Bauer (2019b) measured the dynamic Young’s modu-
lus of shale at 0.5–150 Hz. The results show that with the 
increase in frequency in the test range, the dynamic Young’s 

modulus gradually increases from ~ 4.8 to ~ 5.4 GPa, increas-
ing by 13%. Szewczyk et al. (2016) measured the dynamic 
Young’s modulus of shale under confining pressure, show-
ing that the dynamic Young’s modulus gradually increases 
with increasing frequency. The dynamic Young’s moduli 
of shales at high frequencies are much more than those of 
seismic waves. They attributed this difference to the strain 
level and frequency dependence. Under different hydrostatic 
loading (3.5, 1.35, 23.5 MPa), the change laws of frequency 
dependence are similar, but the dynamic Young’s modu-
lus increase with increasing hydrostatic loading. Pimienta 
et al. (2015, 2016) measured the change in the dynamic 
Young’s and bulk moduli of sandstone with frequency in 
the range of 0.01 Hz–300 kHz, showing that the dynamic 
Young’s and bulk modulus increases slowly in the range of 
0.01–2 Hz and increases rapidly with increasing frequency 
in the range of 2 Hz–300 kHz. Figure 4 shows the frequency 
dependence of dynamic Young’s modulus and bulk modulus 
of rocks. All results demonstrate that, in a wide frequency 
range  (10–2–106 Hz), the dynamic Young’s modulus of rocks 
increases with increasing frequency.

Frequency‑dependent attenuation

Attenuation (Q−1) describes the change rate of frequency 
dependence, whose peak is at a relation frequency, where 
velocity/elastic modulus increases rapidly. Attenuation 
could be classified as velocity attenuation, Young’s attenu-
ation, bulk attenuation, and so on. In a linear viscoelastic 
medium, the velocity/modulus dependence and attenuation 
are related (Cole and Cole 1941; Bourbie et al. 1987). For 
a single relaxation mechanism, velocity/elastic modulus 
increases with a sigmoidal character. Figure 5 shows a sketch 
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map of the frequency dependence of wave velocity and its 
related attenuation. The attenuation peaks at the relation 
frequency. Figure 5 also shows the influence of fluid on fre-
quency dependence. Dry rock and saturated rock show dif-
ferent peaks. The peak frequency will be lower if the rock is 
saturated. And, the rock saturated with lower mobility fluid 
has a lower peak frequency. Young’s and bulk attenuations 
have a similar change to velocity attenuation. Figure 6 shows 
the bulk and Young’s attenuations of saturated limestone 
and sandstones, revealing different peak frequencies with 
different rocks.

Influence of fluid and pressure on the frequency 
dependence

Fluid influences the frequency dependence of wave veloc-
ity and elastic moduli. Rock is a porous medium. Fluid 
in its pores will change its properties. Figure 7 shows the 
frequency dependence of wave velocities and bulk modu-
lus of dry and saturated sandstones. The existence of fluid 
could increase the P- and S-wave velocities and bulk modu-
lus. Given the change rate of frequency dependence, fluid 
may make the frequency dependence more obvious. For 
instance, the increase rate of glycerine-saturated sand-
stone at 4 ×  10–2 Hz obtained from Pimienta et al. (2015) is 
much higher than that of water-saturated and dry sandstone 
specimens.
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Pressure also influences the frequency dependence of 
wave velocity and elastic moduli. Different from static load-
ing, ultrasonic loading is applied with a specific frequency 
and amplitude, where the amplitude is the maximum loading 
of the applied excitation force. Figure 8 shows the influ-
ence of amplitude on the frequency dependence of dynamic 
Young’s modulus, indicating that the dynamic Young’s 
modulus increases with increased amplitude. If the tested 
specimen is under confining pressure, the dynamic Young’s 
modulus will differ. As is shown in Fig. 9, hydrostatic load-
ing increases the dynamic Young’s modulus of Pierre shale.

It should be noticed that there are many factors influ-
encing frequency dependence, such as humidity and rock 
structures (fractures). The influence of fractures will be 
introduced in the next section. Figure 10 shows the dynamic 
Young’s modulus of Mancos shale with increased frequency 
under different relative humidity. The specimens tested at 
11% and 100% relative humidity have a large difference in 
Young’s modulus. Large relative humidity may increase the 
change rate of frequency dependence. However, why this 
phenomenon is not revealed.

Multifrequency ultrasonic approach

According to the frequency-dependence wave velocities, 
we have proposed a multifrequency ultrasonic approach to 
extracting the static initial Young’s modulus of rock (Zhang 
et al. 2021). In a dynamic test, if the frequency of the excita-
tion wave becomes increasingly lower, the loading condition 
will be the same as that in the static test when the frequency 
nears zero. Under this condition, the wave velocity can be 
regarded as the critical wave velocity (it does not exist in 
reality). Based on this idea, the modulus should be the real 
static modulus of rock. By determining the critical P- and 
S-wave velocities through the change law of the frequency 
dependence in experiments (Fig. 11a, b), the static modulus 
from UT can be obtained by:

where EUT
s

 is static modulus obtained from the ultrasonic 
test, �p(⋅) and �s(⋅) are the functions of P-wave velocity and 
S-wave velocity with frequency, respectively, and f is fre-
quency. Figure 11c shows the comparison between the static 
initial Young’s moduli obtained from static and ultrasonic 
methods, which experimentally demonstrate the rationality 
of the multifrequency approach. We also validate the pro-
posed method by using the distinct lattice spring model and 
found that increased fracture length in rock could lead to an 
increase in the standard deviation. Therefore, the character-
istics of cracks during thermal damage can be preliminar-
ily estimated. Detailed information about this method sees 
Zhang et al. (2021).

Discussion

Empirical correlation method

Using P- and S-wave velocities, the dynamic elastic moduli 
of rocks can be calculated. Through regression analysis, 
all kinds of empirical correlations have been established to 
quickly achieve in situ tests or ultrasonic acquisition of the 
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static Young’s modulus of rock. An accurate method using 
ultrasonic waves for the determination of the static Young’s 
modulus of rock still has great difficulty. Empirical correla-
tion methods have three challenges. One is the choice of a 
proper correlation. Selecting a suitable correlation is very 
difficult from so many correlations since different correla-
tions have different results, and some of them are even far 
from each other. Such a large difference makes it difficult to 
choose a proper empirical method for accurate determina-
tion. The second one is that the relationship between the 
dynamic Young’s modulus and static Young’s modulus 
is not fixed. There is no specific relationship between the 
dynamic and static moduli of different rocks (or specimens). 

The third one is the theoretical basis of the relationship 
between dynamic and static parameters. Currently, most 
of the work has focused on the mathematical relationship 
between dynamic and static parameters, which aims to real-
ize the mutual prediction of dynamic and static parameters 
from the mathematical relationship. However, there are still 
some deficiencies in the research on the internal relation-
ship and the mechanism of dynamic and static Young’s 
moduli. Although different scholars have explained the  
dynamic-static relationship, these explanations lack quan-
titative analysis, and the theoretical basis of the dynamic-
static relationship is still unclear. There is no unified under-
standing of it.
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Multifrequency ultrasonic method

Explanations for the difference between dynamic and static 
moduli can be classified into three aspects: the nonlinear 
elastic response of strain, the strain level, and strain rate, and 
the influences of pores and cracks. However, according to 
the dynamic and static test results in the experimental results 
(Zhang et al. 2021), the dynamic and static moduli of gran-
ite are the same when the compaction stage finishes, while 
the dynamic modulus of sandstone near the elastic stage 
is always higher than the static modulus, which cannot be 
explained by the nonlinear elastic response of rock. The dif-
ference between the dynamic and static parameters of rock 

is also caused by the difference in the strain level and strain 
rate (Hilbert et al. 1994; Martin and Haupt 1994; Tutuncu 
et al. 1994; Al-Shayea 2004). The frequency dependence of 
the dynamic Young’s modulus of rock leads to the fact that 
the dynamic Young’s modulus obtained at different frequen-
cies is not a constant. Static Young’s modulus and dynamic 
Young’s modulus are variables. Without knowing the influ-
encing factors and changing rules of the rock modulus, we 
can only obtain some general conclusions. It is not enough 
to determine the exact relationship between them. Elastic 
wave propagation theory was established by assuming that 
material is of continuum, elasticity, small strain, isotropy, 
homogeneity, and no initial stress. For a material, if it is an 
intact crystal, its dynamic and static moduli are equal. How-
ever, there are many cracks in rock structures. Wave velocity 
is largely dependent on frequency (e.g. Ciccotti and Mular-
gia 2004; Borgomano et al. 2019). According to the result 
of Zhang et al. (2021), the wave velocity of a homogenous 
model is larger than that of the cracked model. This reveals 
that cracks have significant influences. The wave velocity of 
rock trends to be the velocity of mineral grains with increas-
ing frequency. Therefore, wave velocity has an increasing 
trend with the increase in frequency. In addition, if the fre-
quency of the ultrasonic wave decreases gradually to zero, 
the loading condition is similar to the static loading. Accord-
ing to the nonlinear response of rock elasticity, the modulus 
calculated by the critical wave velocity is, theoretically, the 
static Young’s modulus of rock under the condition of a low 
strain level. The dynamic modulus of rock is larger than the 
static modulus because cracks exist in the rock interior. If 
there are fewer cracks in a rock (namely its stiffness is large), 
the dynamic modulus is close to the static modulus. Consid-
ering this, the multifrequency ultrasonic method provides 
a potential approach for accurate static Young’s modulus.

Frequency dependence of rock exists in a large frequency 
range (see Fig. 5). Theoretically, the static modulus obtained 
by a full frequency range (including seismic region and 
ultrasonic region) is conducive to an accurate result. How-
ever, full-frequency measurement is difficult and has large 
application limitations in practice. Ultrasonic measurement 
is easy for laboratory tests with small rock specimens (10 cm 
length is enough). Our experimental results demonstrated 
this method is reasonable. But, wave velocity has large dis-
persion in the ultrasonic region, and the attenuation of the 
ultrasonic wave is large. Low-frequency wave velocity can 
be tested by seismic experiments. Wave velocity has low dis-
persion in the low-frequency velocity range (Wei et al. 2015; 
Yin et al. 2017; Sun et al. 2018). In practice application, the 
seismic wave can propagate far with lower attenuation than 
the ultrasonic wave.
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Factors influencing dynamic and static moduli

The value of the static modulus of rock is related to the 
calculation methods. Due to the nonlinear elastic response 
of rock, the static elastic moduli based on different methods 
must differ (see “Static elastic modulus” section). For the 
dynamic elastic modulus, besides the influence of cracks on 
dynamic and static elastic moduli, fluid in pores and cracks 
(Yurikov et al. 2018; Sun and Gurevich 2020), density, pores 
(Moos et al. 1997; Yan et al. 2017), mineral grains (Yin 
et al. 1995; Blake and Faulkner 2016; Li et al. 2017; Brotons 
et al. 2016; Wang et al. 2020a, b), and loading conditions 
(Muqtadir et al. 2020) also have effects on the difference 
between dynamic and static moduli. For example, cracks 

have larger effects on static modulus than dynamic modu-
lus (Blake and Faulkner 2016). These influencing factors 
may cause different static or dynamic responses, leading 
to differences in dynamic and static results. Furthermore, 
the dynamic modulus is related to measuring frequency. At 
different wave frequencies, the dynamic moduli must be 
different.

Rock is an anisotropic material due to oriented crack 
networks or foliation, showing a difference in proper-
ties in different directions. For instance, the anisotropy 
of P-wave velocity is higher than S-wave velocity in the 
Naparima Hill Formation mudstones (Blake et al. 2020). 
Different lithofacies have different anisotropy (Blake et al. 
2020). The Young’s moduli in different direction may differ 
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several times, and the change amplitudes between dynamic 
and static moduli are also different. The results of Condon 
et al. (2020) show that the change law of static and dynamic 
Young’s moduli of different samples may be different (see 
Fig. 12). However, many researchers did not take anisot-
ropy considerations when determining the dynamic elastic 
properties. The dynamic elastic properties calculated by 
elastic wave velocity present that in the wave propagation 
direction. This result may have large differences with that 
in other direction. Therefore, this factor may cause large 
error between the dynamic and static moduli. The extent of 
how anisotropy affects the results for the static and dynamic 
elastic properties is now still uncertain. Further work should 
be carried out.

Further research prospect

Obtaining the static elastic moduli of rock is a premise for 
accurate mechanical analyses. Although many signs of pro-
gress on the elastic wave method have been made over the 
past few decades, some significant issues still exist to be 
addressed. These include:

In the empirical correlation method, much work should 
be done to accurately predict static Young’s modulus by 
using dynamic Young’s modulus, which mainly includes 
two aspects. One is the expansion of correlation equations. 
As we know, rock is a complex material. Different rocks 
have different dynamic-static relationships. In empirical cor-
relations, only is there a proper correlation for the specific 
rock, and can we obtain the true static value. Another is the 
choice of a proper empirical correlation. How to choose a 
proper correlation is very difficult. For example, even though 
two specimens with the same lithology, may have different 

dynamic-static relationships. To date, the influencing factors 
of the dynamic-static relationship are still unknown, which 
include rock structure, lithology, fluid, and so on. Finding out 
the factor, and revealing the mechanism and reaction rule of 
the factor on the dynamic-static relationship is meaningful.

The multifrequency ultrasonic method is newly proposed. 
Four aspects should be focused on in future research. One 
is the further demonstration of its wide application to all 
kinds of rocks. We have tested three types of granite and 
three types of sandstone, demonstrating the reasonability 
of this method (detailed information see Zhang et al. 2021). 
This method is also suitable for thermally-damaged gran-
ite (Fig. 11) Another is to accurately determine the critical 
P- and S-wave velocities. The current determination uses 
the fitting method in the frequency range of 30 to 425 kHz. 
Literature has shown that the frequency dependence of wave 
velocities has a wide frequency range  (10–3–106 Hz). Few 
studies were conducted in such a wide frequency range. 
Further research should be conducted to reveal the full 
frequency dependence law and find an effective frequency 
range. By doing so, a more accurate determining method 
can be proposed, where we can determine the critical P- and 
S-wave velocities without testing a full frequency depend-
ence curve. The third one is the prediction of Young’s 
modulus at each strain level. The multifrequency ultrasonic 
method can extract the static initial Young’s modulus of 
rock since the applied ultrasonic amplitude is low. How-
ever, Young’s modulus of rock varies with strain level. Wave 
velocities and their frequency dependence are the compre-
hensive results of rock structure, minerals, and so on. How to 
use the wave information to extract Young’s modulus at each 
strain level is a meaningful subject. The last one is the influ-
ence of fluid and fractures in the rock. The multifrequency 
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ultrasonic method was obtained in the condition of dry rock. 
Whether it is reasonable for the rock with various water con-
tent is unknown. And, what is the influence of fractures on 
frequency dependence is not completely revealed.

Conclusions

Obtaining the static elastic moduli of rock by elastic wave 
velocities is a rapid and convenient approach, which is also 
a significant method in geophysical prospecting to capture 
the crustal rock’s static elastic moduli. This paper reviews 
the published work on this approach. Some conclusions are 
as follows.

1. According to P- and S-wave velocities, there are two 
methods to extract static elastic moduli: empirical cor-
relation method and multifrequency ultrasonic method. 
Through P- and S-wave velocities, dynamic elastic 
moduli (including Young’s modulus, bulk modulus, and 
shear modulus) can be calculated based on elastic wave 
propagation theory. By establishing correlation equa-
tions between the static and dynamic Young’s moduli 
of all kinds of rocks, the empirical correlation method 
can obtain the static Young’s modulus of rock by P- and 
S-wave velocities. Up to now, many correlation equa-
tions have been made, such as linear, power/logarithm, 
quadratic, and other equations. These equations could 
achieve relatively accurate calculations for specific rock 
types and structures. Different from the empirical cor-
relation method, the multifrequency ultrasonic method 
uses frequency dependence to calculate the static ini-
tial Young’s modulus base on elastic wave propagation 
theory. This method has been demonstrated reasonable 
for three kinds of sandstone and granite.

2. The frequency dependences of the wave velocity and 
dynamic elastic moduli of rock are summarized. P- and 
S-wave velocities, Young’s modulus, and bulk modulus 
of rock, especially the saturated rock, have strong fre-
quency dependence in a wide range of  10–6 to  106 Hz. 
With the increase in frequency, these four parameters 
increase. However, in different rocks or conditions, the 
increased characteristics are different. For instance, the 
attenuations (Q−1) and the peak frequencies of differ-
ent rocks are different. The peak frequency of saturated 
rock is lower than that of dry rock. Saturated rock has 
stronger frequency dependence. Besides, amplitude and 
pressure also have influences on frequency dependence.

3. Three reasons can be used to explain the difference 
between the dynamic and static moduli: nonlinear elas-
tic response, strain level/rate, and pores and cracks in 
rock material. According to the multifrequency depend-
ence, the critical P- and S-wave velocities are closed to 

static loading with low amplitude. Therefore, the result 
obtained from the multifrequency ultrasonic approach 
is the static initial Young’s modulus, which provides a 
potential method for the quick and convenient acquisi-
tion of the static elastic modulus of rock.

4. Existing problems and prospects for the two methods are 
also pointed out. For the empirical correlation method, 
more correlation equations should be established for all 
kinds of rocks through extensive tests, and the choice 
of a proper empirical correlation is a key issue. For the 
multifrequency ultrasonic method, much work should 
be done: more demonstration cases with various rocks, 
accurate determination of the critical P- and S-wave 
velocities, the prediction of Young’s modulus at each 
strain level, and the reasonability of the method under 
complex water contents and fracture structures.
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