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Abstract
It is challenging to realize the gas saturation (GS) estimation via the integration of seismic data and more complementary 
data (e.g., elastic attributes) in a traditional physical framework. Machine learning, especially multi-task learning (MTL), 
provides an alternative way for the fuse of multiple information and simultaneous inversion of two or multiple reservoir 
parameters without model-driven limitations and interactive operators. To improve the estimation accuracy of GS, we propose 
the prestack simultaneous inversion of P-wave impedance (PI) and GS using the multi-task residual network (MT-ResNet). 
The designed MT-ResNet consists of two task-related subnets. The first subnet establishes the nonlinear links among low-
frequency PI, prestack seismic data, and well-log derived PI. Furthermore, seismic data and the inverted PI via the first 
subnet are jointly entered into the second subnet and evolved into the well-log interpreted GS. A model based on measured 
petrophysical parameters associated with the field deep tight dolomite reservoir is used to test the proposed method. Tests 
on the synthetic data example and the field example demonstrate that the MT-ResNet can simultaneously estimate PI and GS 
models with the highest reliability, in comparison with single-task residual network (ST-ResNet) and the conventional seis-
mic inversion and rock-physics equations-based method. And the MT-ResNet inverted PI can be utilized as complementary 
information for improving the prediction accuracy of MT-ResNet inverted GS. Our proposed MT-ResNet has the potential 
to guide the design of the MTL-based multiple reservoir parameters prediction and practical application.

Keywords  Gas saturation prediction · P-wave impedance inversion · Multi-task learning · Machine learning · Prestack 
simultaneous inversion

Introduction

Reservoir characterization aims to delineate subsurface rock 
and fluid properties (e.g., lithology, porosity, permeability, 
and hydrocarbon saturation) based on available geophysi-
cal and petrophysical data (Eidsvik et al. 2004; Bosch et al. 
2010; Liu et al. 2022). In this paper, we focus on the precise 
assessment of gas saturation (GS), which is defined as the 
fraction of the total gas volume over the volume of con-
nected pores in the underground rock (Radke and Gillis 
1990). As one of reservoir parameters, GS is highly criti-
cal for uncovering the potential favorable gas distribution, 
assessing gas reserves, designing well locations, and opti-
mizing hydraulic fracture stimulation and completion (Singh 
et al. 2009; Lucier et al. 2011; Rezaee 2015).

GS determination contains well-log interpretation at 
the borehole scale and seismic inversion at the spatial 
scale. It is challenging to directly measure GS via con-
ventional well-logging tools; therefore, the construction 
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of GS curves is involved with rock-physics analysis and 
calibrated with laboratory measurements (Lucier et al. 
2011; Ahmad and Haghighi 2013; Qi et al. 2017). This 
type of methodology firstly constitutes empirical calcula-
tion models (e.g., total shale model) between site-specific 
well logs and water saturation measured from core data 
(Schlumberger 1989; Yu et al. 2022). And GS is eventually 
obtained by subtracting water saturation from unity under 
the hypothesis of two-phase mediums (Qi et al. 2021). For 
instance, the Archie formula utilized porosity and elec-
trical resistivity logs to evaluate GS of a pure sandstone 
formation with medium-to-large-size pores (Archie 1942). 
Qi et al. (2017) investigated compressional (P) to shear 
(S)-wave attenuation ratio (QP

−1/QS
−1) estimated from 

full-waveform sonic logs as a discriminate tool for shale 
GS with the criterion of QP/QS < 1. They showed that the 
QP

−1/QS
−1 has a positive correlation with GS and is more 

sensitive than the P- to S-wave velocity ratio (VP/VS) as a 
quantitative gas indicator in the studied shale gas forma-
tion (Qi et al. 2021). Most current GS models depend on 
calibration to in situ rocks and are time-consuming, expen-
sive, and spatially limited (Morgan et al. 2012). In addi-
tion, they have poor GS computation effect for some types 
of reservoirs characterized by low resistivity or high total 
organic carbon content (Xu et al. 2017; Qi et al. 2021; Yu 
et al. 2022).

Well-determined GS logs illustrate the gas distribution 
around the borehole, geophysicists further integrate seis-
mic, well log, and geology data (e.g., interpreted target 
horizons) to predict the spatial variability of GS. Since 
seismic data do not directly reflect the variation of GS 
in different underground rock or stratums, GS or hydro-
carbon-bearing prediction is historically implemented 
by two successive steps including seismic inversion and 
petrophysical modeling (Bosch et al. 2007; Aleardi et al. 
2018). First, elastic parameters are inverted from seismic-
reflection data via poststack impedance inversion, ampli-
tude variation with offset/angle (AVO/AVA) inversion, and 
other prestack simultaneous inversion (Connolly 1999; 
Mazzotti and Zamboni 2003; Ma et al. 2023). These sen-
sitive properties include P-wave impedance (PI), P-wave 
velocity (VP), S-wave velocity (VS), density, lambda-rho/
mu-rho, and so on (Goodway et al. 1997). Subsequently, 
these inversion models and petrophysical equations are 
utilized to implement statistical analysis and character-
ize the in situ gas-bearing or GS (Figueiredo et al. 2018; 
Weinzier and Wiese 2021; Liu et al. 2022). For instance, 
Mazzotti and Zamboni (2003) delineated the interactive 
relationship between elastic parameters of VP, VS, and 
density retrieved from nonlinear AVA inversion and rock 
properties of depth, porosity, and saturation, and carried 
out multiple linear regression to evaluate GS from these 

seismic parameters. Hampson et al. (2005) investigated 
the prestack simultaneous inversion to invert reliable VP, 
VS, and density models, and then calculated the VP/VS for 
specifying the gas-saturated sands of the shallow Creta-
ceous layers. Nevertheless, this classical stepwise proce-
dure is limited by both seismic inversion errors and rock 
physic modeling errors, which increase the uncertainty 
and non-uniqueness of GS inference. In addition, the rock-
physics templates usually use no more than three elastic 
parameters recovered from seismic inversion to predict 
GS in a low-dimension space. The transformation pattern 
cannot make full use of more information to express the 
complicated relationship between GS-sensitive parameters 
and GS in a high-dimension and nonlinear space.

Machine learning (ML) algorithms, as efficient solu-
tion tools, have been recently introduced into geophysi-
cal exploration realm again. Their typical application 
scenarios for seismic inverse problems include seismic 
noise attenuation (Yu et al. 2019; Sang et al. 2021), high-
resolution processing (Gao et al. 2022), seismic inversion 
(Wu et al. 2021; Yuan, et al. 2022; Bürkle et al. 2023), and 
reservoir prediction (Sang et al. 2023). Some researchers 
have combined multi-component or prestack seismic data 
with different ML algorithms (e.g., self-organizing neural 
network) for gas-bearing prediction or GS characterization 
(Zhang et al. 2022a). Gao et al. (2020) utilized convo-
lutional neural networks (CNNs) for gas-bearing estima-
tion of a deep tight dolomite reservoir, and illustrated that 
transfer learning can improve the generalization ability of 
CNNs and generates more reliable gas-bearing distribution 
from AVA gathers. Song et al. (2022) adopted k-nearest 
neighbor (kNN) for gas-bearing estimation in a tight sand 
reservoir. Compared with the root-mean-square attribute, 
the kNN employed both seismic data and GS curves that 
reflect the gas-bearing corresponding to the near-well seis-
mic traces, and obtained better gas-bearing delineation of 
the non-well seismic trace according to the average gas-
bearing of its first k most similar near-well seismic traces. 
Zhang et al. (2022b) investigated deep neural network 
(DNN) and multi-component composite attributes for gas-
bearing prediction in the Sichuan Basin, and generated 
more favorable gas-bearing results than the single PP-wave 
data. Weinzier and Wiese (2021) developed a three-layer 
neural network and rock-physics models for porosity and 
GS curves evaluation using elastic and attenuation attrib-
utes. In summary, most current ML-based studies have 
mainly focused on GS interpretation of specific well loca-
tions or qualitatively characterizing the spatial distribution 
of gas-bearing property. However, there are few research-
ers have explored quantitative spatial GS prediction using 
ML algorithms and prestack seismic data.
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It seems that adding more complementary information 
available from the same stratum is a possible approach to 
improve the estimation accuracy of GS. Previous model-
driven and data-driven methodologies merely use seismic 
data (or seismic attributes) and well-log data for gas-bear-
ing prediction. These methods do not make full use of 
seismic data and elastic properties to boost the prediction 
accuracy of GS. Proposed by Caruana (1993 and 1997), 
multi-task learning (MTL) provides a new approach to 
flexibly utilize various information and realize multiple 
associated tasks in parallel, such as simultaneous inver-
sion of elastic properties and joint interpretation of multi-
ple seismic processing tasks (Wu et al. 2019; Zhang et al. 
2023). Compared to single-task learning (STL), MTL has 
advantage over learning efficiency, prediction precision, 
and sample sharing by leveraging the differences and simi-
larities among these tasks and sharing information and 
representations. (Caruana 1997; Ruder 2017; Wu et al. 
2019). Currently, hard parameter sharing (Caruana 1993; 
Wu et al. 2019; Li et al. 2021), soft parameter sharing 
(Duong et al. 2015; Ruder 2017), and hierarchical shar-
ing (Chen et al. 2022; Li et al. 2023) are main parameter 
sharing approaches used in MTL. For example, Zhang 
et al. (2023) adopted hard parameter sharing that shares 
some hidden layers among different tasks and uses sev-
eral task-specific layers for the simultaneous inversion of 
VP, VS, and density from partially stacked angle stacks. 
They incorporated prior knowledge of elastic parameters 
into the MTL framework through a prior-based loss func-
tion term, and realized more stable and reliable inversion 
results compared with traditional learning-based methods. 
Hard parameter sharing can decrease the risk of overfit-
ting at the expense of artificially adjusting the percent-
age of shared layers, and it is subject to negative transfer 
when tasks are interfered or uncorrelated (Li et al. 2023). 
Soft parameter sharing is an alternative approach to hard 
parameter sharing when the connection among tasks is 
weak (Li et al. 2021). When a progressive relationship 
exists between tasks, hierarchical sharing can learn effec-
tive information from one low-level task to improve the 
accuracy of another more complex task. Li et al. (2023) 
chose hierarchical sharing approach and investigated the 
progressive multi-task learning network (PMLN) for low-
frequency extension of seismic shot gathers, elastic param-
eter (VP) inversion, and image super-resolution in a pro-
gressive manner. Their method exhibits higher efficiency 
and precision compared with traditional full-waveform 
inversion.

Currently, MTL is mainly employed for intelligent pre-
stack seismic inversion. The MTL framework for prestack 
simultaneous inversion of GS-related parameter and GS has 

not been investigated yet. Generally, gas-bearing strata have 
lower velocity and lower density compared to surrounding 
rock due to the existence of pores, resulting in a reduced 
PI (Weinzier and Wiese 2021). Therefore, PI and GS are 
two interrelated but heterogeneous properties. We take the 
simultaneous prediction of PI and GS as an example and 
investigate the potential of integrating seismic gathers and 
GS-related parameter to improve the accuracy and stability 
of GS estimation via MTL.

In this present paper, we based on hierarchical sharing 
proposed the multi-task residual network (MT-ResNet) 
to realize the prestack simultaneous inversion of PI and 
GS. The designed MT-ResNet adopts two subsets and 
two types of labels (i.e., PI and GS curves) to establish 
a high-dimensional and nonlinear network template, 
which considers the task hierarchies and maps seismic 
data into well-log derived PI and well-log interpreted GS 
curves of the same formation in a progressive procedure. 
Specifically, each subset consists of two residual blocks,  
a convolution layer, and three regression layers. The first 
subnet learns the physical connection among prestack seis-
mic gathers, low-frequency PI, and PI. Then the inverted 
PI together with prestack seismic gathers is entered into 
the second subnet, which further converts them into the 
desired GS curves. Furthermore, a single-task residual 
network (ST-ResNet) is employed as a contrast method. 
The ST-ResNet can be learned to capture the internal rela-
tionship between prestack seismic gathers and GS curves. 
We use a synthetic data example and a field data exam-
ple to testify the effectiveness of the MT-ResNet-based 
joint inversion of PI and GS. The test results indicate that 
the optimized MT-ResNet involving two regressors can 
be generalized to unseen seismic data to simultaneously 
predict PI and GS. And the estimation precision of GS via 
the MT-ResNet is higher than the ST-ResNet.

Methodology

Numerical model generation

Since few well-logging curves are available, the inverted 
cross-well results via deep learning-based inversion can-
not be evaluated and optimized by an expressible objective 
function. Consequently, extremely biased sample problems 
caused by abundant seismic data but rare well-log data have 
limited the rapid application of ML, especially supervised 
learning for geophysical/petrophysical parameter inversion. 
To relieve this restriction, a relatively comprehensive dolo-
mite reservoir data set is generated via geostatistical simula-
tion. It can meet the demand of sufficient samples and their 
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labels for deep neural network modeling, and meanwhile 
offer different parameter models for MTL-based reservoir 
parameter inversion.

Based on available well-log data, geological and petro-
physical understanding, and rock-physics or wave theory, 
the designed numerical models consist of lithofacies, 
petrophysical parameters, elastic parameters, and prestack 
seismic data. These four types of geophysical data simu-
late the same deep tight dolomite gas reservoir located in a 
basin of western China from different perspectives. Firstly, 
petrophysical parameters measured from the interested 
real tight dolomite reservoir are filled into the structure 
of the Marmousi2 model (Martin et al. 2006) to generate 
the petrophysical models, such as GS (Fig. 1a), porosity 
(Fig. 1b), and shale content (Fig. 1c). According to the 
content of petrophysical properties, lithofacies (Fig. 1d) 
are assigned into four categories, namely mudstone, water-
bearing dolomite, gas–water symbiotic dolomite, and gas-
bearing dolomite. And they are denoted as numbers 1–4 
shown in Fig. 1d. The bowl-shaped gas-bearing dolomite 
(red circle in Fig.  1d), gas–water symbiotic dolomite 
formed by a banded formation (white circle in Fig. 1d), 
and a spoon-like formation (green circle in Fig. 1d) are 
dominant gas-bearing areas that GS is over 40%. And their 
reservoir characteristics are favorable porosity and low 
shale content. Then the Kuster-Toksöz model (Kuster and 
Toksöz, 1974) is utilized to convert these petrophysical 
parameters into elastic parameter models, including VP 
(Fig. 1e), VS (Fig. 1f), and density (Fig. 1g). Figure 1h 
shows the PI model (i.e., the product of VP and density). 
The gas-bearing dolomite has a distinguishable charac-
teristic of low PI value. Next, the angle-dependent reflec-
tivities are derived from the synthetic elastic parameters 
via the Aki-Richards approximate formula (Aki and Rich-
ards 2002); the clean prestack AVA gathers are generated 
by convolving the reflectivities at different angles with a 
Ricker wavelet. The main frequency of the Ricker wavelet 
is 35 Hz. Finally, the noisy prestack AVA gathers (Fig. 4a) 
were obtained by adding 30% random noise to noise-free 
prestack AVA gathers. These models can be used for dif-
ferent reservoir-associated parameter prediction tasks with 
flexible combinations, such as simultaneous prediction of 
PI and GS.

MT‑ResNet‑based simultaneous inversion of PI 
and GS

In the designed dolomite reservoir data set, these param-
eter models (Fig. 1) reveal the stratum properties of the 
same underground gas reservoir from different perspec-
tives. For instance, the bowl-shaped gas-bearing dolomite 
(red circle in Fig. 1d) has the characteristics of high GS, 
high porosity, low PI, and low shale content. It means 
that these properties are interrelated and complementary, 
and one or multiple gas-related parameters can be chosen 
to help predict the target parameter of GS. In our studied 
synthetic and field cases, PI and GS have a high correla-
tion. Figure 2 shows the cross-plot between all points in 
the PI model (Fig. 1h) and all points in the GS model 
(Fig. 1a). The blue, cyan, yellow, and red points in Fig. 2 
mean that these PI or GS values correspond to mudstone, 
water-bearing dolomite, gas–water symbiotic dolomite, 
and gas-bearing dolomite, respectively. The relationship 
between GS and PI can be approximately expressed by a 
nonlinear fitting equation:

and the correlation coefficient between estimated GS and 
true GS is 0.6. Therefore, based on the framework of MTL, 
we take the simultaneous inversion of PI and GS as an 
example to demonstrate that the alliance of seismic data and 
sensitive attributes can improve the prediction accuracy of 
target parameters.

Once PI and GS are determined as two reservoir param-
eters to be inverted, the configuration of the MT-ResNet will 
be designed. Figure 3a shows the network architecture of the 
MT-ResNet. Compared with traditional ML-based method for 
unique parameter estimation, the MT-ResNet can directly real-
ize data-driven simultaneous inversion of PI and GS from pre-
stack seismic gathers. Wherein, the main task of MT-ResNet is 
GS prediction, and the auxiliary task of MT-ResNet is PI inver-
sion. In addition, the MT-ResNet has the potential to improve 
the prediction accuracy of GS by leveraging the GS-related 
information (i.e., PI) estimated by the auxiliary task. It is worth 
noting that these two tasks are trained at the same time. The 
MT-ResNet adopts two subnets to express the intrinsic physical 
correlation among seismic data and reservoir parameters and 
establish the complex nonlinear mapping to convert seismic 
data into PI and GS simultaneously. The first subnet is a data-
driven PI inversion solver. The input of the first subnet is the 
low-frequency PI log and prestack AVA or offset gathers, and 
its output is the inverted PI curve. Here, the low-frequency PI 
log controls the low-frequency trend and enhances the stability 
of data-driven PI inversion (Wu et al. 2021). The role of the first 
subnet is mainly to provide the second subnet with PI, which 
is a sensitive seismic attribute of GS here. The second subnet 

(1)GS = 46.4PI
2 + 1256.1PI8361.7,

Fig. 1   The synthetic petrophysical, lithological and elastic models for 
describing the same subsurface tight gas-bearing dolomite reservoir. 
(a)–(h) represents the gas saturation (GS), porosity, shale content, 
lithofacies, P-wave velocity, S-wave velocity, density, and P-wave 
impedance (PI) model, respectively. Numbers 1–4 in (d) refer to mud-
stone, water-bearing dolomite, gas–water symbiotic dolomite, and 
gas-bearing dolomite, respectively. Four extracted GS and PI logs 
(black curves in a and h) are used as the training labels of the multi-
task residual network (MT-ResNet)

◂
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is designed to integrate the prestack seismic data with the GS-
related seismic attribute to form a multi-information fused GS 
estimator. And its input is not only the raw prestack AVA or 
offset gather but also the PI curve inverted by the first subnet. 
And the output of the second subnet is the GS curve. In the 
framework of MT-ResNet, the inverted PI via the first subnet 
and the estimated GS via the second subnet can be mutually 
verified. Their structural similarity and corresponding physical 
relationship can be used to illustrate the reliability of the reser-
voir parameters predicted by the MT-ResNet. The hidden layers 
of the first or second subnet consist of two residual units, three 
convolution layers, and three fully connected layers (FCL). 
Each residual unit has two convolution layers and one addition 
layer. The convolution layer includes the convolution (Conv) 
operations with the kernel size of 3 × 3, the batch normalization 
(BN) operations, and the activation functions of rectified linear 
units (ReLU). The Conv operations are used to extract high-
dimensional “seismic attributes” related to PI or GS; the BN 
operations can maintain the stability of convergence and accel-
erate the training process of MT-ResNet (Ioffe and Szegedy 
2015). Here, the ReLU can enhance the nonlinear expression 
capability of the MT-ResNet. The addition layer aims to add the 
extracted features of shallow layers to the extracted features of 
deep layers. The introduction of the residual units can improve 
the flow of information between different layers and thus avoid 
performance degradation (He et al. 2016).

On the basis of the network architecture, we further 
illustrate the workflow of MT-ResNet. First, prestack seis-
mic data are normalized and clipped into seismic patches. 
The size of each seismic patch is m × n, where m and n 
represent the number of time samples and the number of 
angles or offsets, respectively. The low-frequency PI log 
corresponds to each seismic patch is also extracted, and 
its size is m × 1. We use normalized seismic patches and 
normalized low-frequency PI logs as two kinds of source 
information to form the input of the MT-ResNet. Therefore, 
the input one of the MT-ResNet has the size of m × (n + 1). 

Then under the supervision of PI logs, the first subnet hier-
archically learns latent reservoir characteristic or attrib-
ute information from low-frequency PI logs and seismic 
patches, and abstracts them into feature maps at different 
scales or levels via convolution layers and residual units. 
The extracted high-dimensional features are weighted and 
regressed into the inverted PI log via three fully connected 
layers in the first subnet. Subsequently, the evaluated PI log 
with the size of m × 1 and the raw prestack seismic patch 
with the size of m × n are flowed into the second subnet. 
The second subnet can be viewed as the implicit expression 
of sensitive parameter models or templates, which finally 
maps seismic gathers and gas-associated attribute (i.e., PI) 
into the desired GS log in a high-dimensional and nonlinear 
space. As displayed in Fig. 3a, the output size of each con-
volution layer or the residual unit is m × (n + 1) × c, wherein 
c represents the channel number of feature maps. And the 
output size of each FCL is p × 1, where p is the node num-
ber of the FCL. The objective function of MLT-ResNet 
is defined to measure the distance between estimated two 
properties and their ground truths, which is expressed as:

where N denotes the number of training samples, Θ1 rep-
resents the network parameters of the MT-ResNet, and 
Net1(•) stands for the nonlinear mapping of the MT-ResNet. 
di,PI

low
i

,PIi,and GSi stand for the ith prestack seismic patch, 
ith low-frequency PI log, ith true PI log, and ith true GS 
log, respectively. The total loss L1 consists of two terms, 
and each of them uses mean square error to calculate the 
estimated errors and jointly monitor the learning process of 
the MT-ResNet. The first term computes the loss between 
the estimated impedance PIpre

i
 and the impedance label PIi 

derived from well logs. The second term calculates the loss 
between the predicted gas saturation Net1(di;PI

pre

i
;Θ1) and 

the gas saturation label GSi interpreted from well logs. � can 
control the relative weight between the PI inversion task and 
the GS inference task. And 1-� is usually larger than � due 
to that now GS is a more crucial reservoir parameter. Here, 
the predicted impedance can be written as:

The Adam (Kingma and Ba 2014) algorithm is adopted 
to iteratively update Θ1 until the estimate errors converge to 
small values without a rising trend. Eventually, we apply 
the optimized MT-ResNet to the test data and predict PI 
and GS models simultaneously. The above workflow of the 
MT-ResNet is summarized in Algorithm 1.

(2)
L1 =

1
N

∑N

i=1

[

�‖‖
‖

PIi − Net1(di;PIlowi ;Θ1)‖‖
‖

2

2

+(1 − �)‖‖
‖

GSi − Net1(di;PI
pre
i ;Θ1)‖‖

‖

2

2

]

,

(3)PI
pre

i
=Net1(di;PI

low
i

;Θ1).

Fig. 2   The cross-plot between all PI values in Fig. 1h and all GS val-
ues in Fig. 1a
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As shown in Fig. 3b, the ST-ResNet, as the comparison 
approach of the MT-ResNet, is constructed to directly trans-
form the input prestack seismic patch with the size of m × n 
into the output estimated GS with the size of m × 1. There 
are two residual units, three convolution layers, and three 
FCLs in the ST-ResNet. Both the ST-ResNet and the first 
or second subnet of the MT-ResNet have the same amount 
of kernels in the convolution layer and the same number 
of nodes in the FCL. As a result, the training time of the 
ST-ResNet is around half that of the MT-ResNet. The ST-
ResNet, in contrast to the MT-ResNet, is a standard super-
vised learning system that merely utilizes prestack seismic 

data and well-log derived GS curves to implement network 
training. GS-related information (e.g., sensitive gas-bearing 
properties) is not integrated into the ST-ResNet for GS eval-
uation, resulting in GS estimation errors of the ST-ResNet 
are commonly larger than that of the MT-ResNet. The objec-
tive function of the ST-ResNet is expressed as:

where Θ2 represents the network parameters of the ST-
ResNet, Net2(•) represents the nonlinear mapping of the 
ST-ResNet, and Net2(di;Θ2) means the ith estimated GS log 

(4)L2 =
1

N

∑N

i=1

‖‖
‖
GSi − Net2(di;Θ

2)
‖‖
‖

2

2
,



882	 Acta Geophysica (2024) 72:875–892

1 3

via the ST-ResNet. The contrast of Eqs. (3) and (4) or Fig. 3a 
and b illustrates that the ST-ResNet only predicts GS and 
cannot achieve the simultaneous inversion of PI and GS as 
the MT-ResNet. As same as the MT-ResNet, the ST-ResNet 
also employs the Adam algorithm for its optimization.

Here, we use the root mean square error (RMSE) to meas-
ure the distance between the true model X (i.e., PI or GS) 
and the predicted model via the ST-ResNet or MT-ResNet:

(5)
RMSE =

�
��
�
� − �

���

2

2

√
J × K

,

Fig. 3   The network architecture of reservoir parameter prediction. a The MT-ResNet for simultaneous inversion of PI and GS, and b the ST-
ResNet for GS prediction

Fig. 4   The synthetic seismic data and the established initial model.  
a Noisy prestack seismic data generated by adding 30% (i.e., the 
ratio of noise energy to signal energy) random noise to the noise-
free seismic data, and b the initial PI model with the frequency band 

of 0–5 Hz. The initial PI logs (black curves in b) and corresponding 
near-well AVA gathers are utilized as the input training samples of 
MT-ResNet
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where J and K denote the number of rows and columns in X 
or � , respectively. In addition, we utilize structural similar-
ity index measurement (SSIM) to qualitatively evaluate the 
similarity between X and �̂:

where �
�
 and �

�
 are the mean values of � and � , respec-

tively. �
�

 and �
�

 are the standard deviations of � and � , 
respectively. Cov

��
 denotes the covariance between � and 

� . c1 and c2 are constants. Generally, c1 is equal to 0.01, and 
c2 is equal to 0.03 (Wang et al. 2004).

Examples

Synthetic data example

In this subsection, we will first go through the process of 
preparing training, validation, and test datasets. The network 
training for the ST-ResNet and MT-ResNet is then imple-
mented. Finally, we use the synthetic data test to illustrate 
the effectiveness and superiority of the MT-ResNet over the 
ST-ResNet for GS estimation.

In addition to the PI model (Fig.  1h), the GS model 
(Fig. 1a), and the prestack seismic data (Fig. 4a), we further 
apply a low pass filter of 0–5 Hz to Fig. 1h and acquire the 
low-frequency PI model (Fig. 4b) for the synthetic data test. 
The size of PI, low-frequency PI, or GS model is 1000 × 337, 
and the size of synthetic AVA gathers is 1000 × 24 × 337. 
Wherein, 1000, 24, and 337 refer to the time sampling num-
ber, the number of angles, and the number of common depth 
points, respectively. It is apparent that the continuity of seis-
mic events in Fig. 4a has been disrupted, and the S/N ratio 

(6)SSIM =
(2�

�
�
�
+ c1)(2Cov�� + c2)

(�2

�
+ �2

�

+ c1)(�
2

�
+ �2

�

+ c2)
,

(Sang et al. 2021) is 5.2 dB. Additionally, the noisy prestack 
AVA gathers have 24 incident angles that are evenly spaced 
and vary from 0° to 32°. The time sample interval of these 
earth models or seismic data is 1 ms.

Before generating the training set, we investigate the 
physical link among seismic data, PI, and GS, providing a 
foundation for evaluating the prediction results of the two 
networks. Figure 5 describes the near-well AVA gathers, 
PI logs (blue curves), and GS logs (red curves) at the well 
positions of CDP 92 and CDP 306. As illustrated in Fig. 5, 
the seismic and well-log responses of the gas-bearing dolo-
mite are markedly different from other lithofacies. It has the 
characteristics of low PI, high GS, high amplitude anomaly, 
and amplitude decreases with incidence angles. Gas–water 
symbiotic dolomite shows normal amplitude in small and 
medium angles, and amplitude increases with the angle in 
the range of large angles. Water-bearing dolomite and mud-
stone exhibit weak amplitude in all angles. Different lithofa-
cies have different AVA features, which provide a physical 
basis for PI and GS estimation. PI and GS show the best 
correlation in gas-bearing dolomite compared with other 
lithologies. In comparison with the ST-ResNet, the main 
advantage of MT-ResNet may be that it can ameliorate the 
prediction performance of GS around gas-bearing dolomite.

For methodological comparison, we begin to extract seis-
mic gathers and well-log curves and construct the training, 
valid, and test sets of these two networks. Before preparing 
these sets, all parameter models and prestack seismic data 
are individually normalized to [0, 1] by means of min–max 
normalization (Sang et al. 2021). Four pseudo wells are 
randomly selected to prepare the training sets of these two 
networks, and their concrete locations are CDP 13, CDP 92, 
CDP 184, and CDP 306. Taking the data sets construction 
of the MT-ResNet as an example, normalized PI and GS 
curves of four selected wells (black lines in Fig. 1h and a) 

Fig. 5   Near-well prestack seismic gathers at the training well locations of a CDP 92 and b CDP 306. The blue and red lines in a or b are PI and 
GS logs corresponding to the seismic gathers
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are firstly extracted for generating training labels. Four nor-
malized low-frequency PI logs (black lines in Fig. 4b) and 
corresponding normalized near-well AVA gathers in Fig. 4b 
are extracted for producing the training samples. Next, these 
extracted low-frequency PI, PI, and GS curves are clipped 
into patches by means of the local temporal window with 
the stride of 1. Each low-frequency PI, PI, or GS patch has 
the size of 65 × 1. The corresponding AVA gathers are also 
chopped into patches via a similar process. The size of each 
seismic patch is 65 × 24. Subsequently, we use these seis-
mic patches and low-frequency PI patches as the training 
samples of the MT-ResNet, PI patches as the training labels 
of the first subnet of the MT-ResNet, and GS patches as 
the training labels of the second subnet of the MT-ResNet. 
Specifically, the training data set has 3744 training samples, 
3744 PI labels, and 3744 GS labels. The size of each train-
ing sample is 65 × 25, and the size of each PI or GS label 
is 65 × 1. In addition, all seismic patches and GS labels in 
the training set of the MT-ResNet are also utilized as the 
training set of the ST-ResNet. Finally, the valid and test data 
sets of these two networks are prepared in a similar way to 
the training data set of them. After the preparation of these 
sets, the training samples and labels are used to train the 
MT-ResNet with a batch size of 256 and a learning rate of 
0.001. Under the joint implementation of training data, opti-
mizer, objective function, and backpropagation algorithm, 
the network completes its preliminary learning and train-
ing by setting the maximum number of epochs in advance. 
The loss curves are plotted to observe whether the training 
loss and the validation loss converge to a minimum value 
at the same time. And if not, we further adjust the epochs 
or the regularization parameter in Eq. 2 until two types of 
losses simultaneously satisfy the convergence conditions. 
By repeated experiments, the loss weight � in the objective 
function of the MT-ResNet is set to 0.4. The optimal MT-
ResNet model for prestack simultaneous inversion of PI and 
GS can be obtained when the maximum number of iterations 
is determined to be 400. The ST-ResNet is also trained with 
seismic patches and GS labels in terms of other conditions 
unchanged.

We apply the well-trained ST-ResNet and MT-ResNet to 
the test data set and obtain the PI or GS results with the size 
of 315,432 × 65, where 315,432 represents the number of 
test samples. The predicted PI or GS model is then obtained 
by averaging the test results over the overlapped parts. Fig-
ure 6a shows the estimated GS model via the ST-ResNet, 
and Fig. 6b shows the residuals between Fig. 6a and the 
true GS model (Fig. 1a). The RMSE and SSIM between 
Figs. 6a and 1a are 0.07 and 0.59, respectively. Figure 6a and 
b illustrate that the estimation accuracy of the ST-ResNet is 
highly influenced by the quality of prestack seismic gathers. 
The negative interference of random noise results in that 
the estimated GS model via the ST-ResNet shows terrible 

lateral continuity (Fig. 6a) and distinct deviation (Fig. 6b). 
Therefore, when the seismic data is heavily contaminated 
by noise, neural networks rely on more gas-sensitive attrib-
utes to improve the accuracy and stability of GS predic-
tion. It is worth noting that the inverted GS model clearly 
delineates the spatial morphology of gas-bearing dolomite. 
The potential reasons are that the seismic gathers around 
the gas-bearing dolomite have higher local S/N ratio com-
pared with the surrounding rock, and the GS labels in the 
training data set are comprehensive and are already enough 
to represent the gas-bearing features of gas-bearing dolo-
mite. Figure 6c and e displays the inverted PI model and 
the inverted GS model via the MT-ResNet, respectively. 
The differences between Fig. 6c and the reference PI model 
(Fig. 1h) are shown in Fig. 6a, and the differences between 
Fig. 6e and the reference GS model (Fig. 1a) are shown in 
Fig. 6f. And the RMSE and SSIM between Figs. 6e and 1a 
are 0.06 and 0.81, respectively. It can be illustrated from 
Fig. 6c and d that the MT-ResNet can precisely estimate 
the PI model using seismic amplitude and low-frequency PI 
information. The RMSE and SSIM between Figs. 6c and 1h 
are 0.02 and 0.97, respectively. On the one hand, the inverted 
PI model (Fig. 6c) can reduce the influence of seismic noise 
for the MT-ResNet based GS prediction. On the other hand, 
it can provide accuracy gas-sensitive properties for boosting 
the estimation precision of GS. Therefore, the inverted GS 
model (Fig. 6e) via the MT-ResNet is significantly superior 
to the inverted GS model (Fig. 6a) via the ST-ResNet. And 
the former shows more favorable consecutiveness and higher 
precision.

In Fig. 7, we ulteriorly compare the differences between 
the ST-ResNet and the MT-ResNet in terms of the frequency 
distribution of the estimated GS models. Figure 7a, b and 
c show the histograms of the true GS model (Fig. 1a), the 
ST-ResNet retrieved GS model (Fig. 6a), and MT-ResNet 
retrieved GS model (Fig. 6e), respectively. It can be seen 
from Fig. 6a that the true GS model obeys the non-Gaussian 
distribution. Both ST-ResNet and MT-ResNet can approxi-
mately fit this non-Gaussian distribution due to the non-
linear fitting ability of neural networks. On the whole, the 
GS distribution estimated by the MT-ResNet (Fig. 7c) is 
closer to the actual GS distribution (Fig. 7a) than that esti-
mated by the ST-ResNet (Fig. 7b). We divide the range of 
GS into four segments according to the content of GS in 
Fig. 7a, and they are denoted by purple, cyan, green, and 
red circles in Fig. 7, respectively. The ranges of GS repre-
sented by purple, cyan, green, and red circles are 0–20%, 
20–40%, 40–60%, and 80–100%, respectively. In addition, 
different ranges of GS correspond to different lithofacies. 
Purple, cyan, green, and red circles correspond to mudstone, 
mudstone or water-bearing dolomite, gas–water symbiotic 
dolomite or water-bearing dolomite, and gas-bearing dolo-
mite, separately. As shown in Fig. 6e and the cyan circles in 
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Fig. 7, the MT-ResNet has better prediction performance of 
GS than the ST-ResNet in some mudstone and water-bearing 
dolomite. The underlying reason may be these two litho-
facies occupy a larger proportion in both training and test 
sets. And the MT-ResNet mainly improves the estimation 

accuracy of GS in mudstone and water-bearing dolomite 
by the predicted PI with high precision. The GS prediction 
accuracy of two networks in purple and green circles is rela-
tively low, which may be caused by the that the AVA charac-
teristics of gas–water symbiotic dolomite (or water-bearing 

Fig. 6   Comparisons between the ST-ResNet and MT-ResNet esti-
mated parameter models. a The inverted GS model via the ST-
ResNet, b the residuals between true GS model (Fig. 1a) and (a), c 

the inverted PI model via the MT-ResNet, d the differences between 
true PI model (Fig. 1e) and (c), e the inverted GS model via the MT-
ResNet, and f the residuals between Fig. 1a and e
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Fig. 7   The histograms of a the true GS model of Fig. 1a, b the pre-
dicted GS model (Fig. 6a) via the ST-ResNet, and c the predicted GS 
model (Fig. 6e) via the MT-ResNet. The range of GS within the pink, 

cyan, green, and red circles in a–c corresponds to mudstone, mud-
stone or water-bearing dolomite, gas–water symbiotic or water-bear-
ing dolomite, and gas-bearing dolomite, respectively

Fig. 8   Comparisons between 
ST-ResNet and MT-Rest 
predicted GS curves at the blind 
well locations of a CDP 80, 
b CDP 160, and c CDP240. 
The black, blue, and red lines 
in (a–c) represent the true, 
ST-ResNet inverted, and MT-
ResNet inverted GS curves, 
separately
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dolomite) are similar to the mudstone in small and middle 
angles, as illustrated in Fig. 5. This similarity may cause the 
two networks to misestimate the GS of gas–water symbiotic 
dolomite (or water-bearing dolomite) as the GS range of 
mudstone, as displayed in purple and green circles of Fig. 7.

To further compare single-trace predictions via two net-
works, Fig. 8 shows the comparisons among true GS curves 
(black lines), ST-ResNet inverted GS curves (blue lines), and 
MT-ResNet inverted GS curves (red lines) at three blind well 
locations of CDP 80, CDP 160, and CDP 240. Compared 
with ST-ResNet estimated GS curves, the overall trend and 
local variation of MT-ResNet estimated GS curves are more 
consistent with true GS curves. The above-mentioned ST-
ResNet and MT-ResNet are trained by synthetic seismic data 
with the S/N ratio of 5.3 dB. Finally, we add 0–50% Gauss-
ian white noise to the clean seismic data and generate noisy 
seismic data with different S/N ratios. Noise-free and noisy 
seismic data are tested to evaluate the noise-resistance and 
generalization ability of the two networks. Table 1 summa-
rizes the RMSE and SSIM between inverted results via the 
two methods and true models for clean or noisy seismic data. 
As can be seen from Table 1, the RMSE and SSIM of esti-
mated PI or GS models via the two methods decrease with 
the decline of S/N ratios. However, the ST-ResNet is less 

stable and less accurate than the MT-ResNet with the gradu-
ally increase of noise levels. Their difference is prominent in 
the scenes of low S/N ratios. Figures 6, 7 and 8 and Table 1 
show that the MT-ResNet is better than the ST-ResNet and 
can obtain more precise and stable inversion results in both 
noise-free and low S/N cases.

Real data example

In this subsection, we adopt a field data example from 
Northern China to further verify the effectiveness of pre-
stack simultaneous inversion of PI and GS using the MT-
ResNet. The working area is a tight sandstone gas-bearing 
reservoir, characterized by low porosity and low permeabil-
ity. The gas reservoir is mainly composed of sandstone and 
mudstone. Figure 9a shows the prestack seismic data that 
passes through five wells (named w1–w5 from left to right). 
The size of prestack seismic data is 121 × 16 × 735. Wherein, 
121, 16, and 735 refer to the time sampling number, the 
number of offsets, and the number of common depth points, 

Table 1   The RMSE and SSIM between true parameters and inverted 
parameters using the ST-ResNet or the MT-ResNet for synthetic pre-
stack seismic data with different S/N ratios

S/N (dB) GS (ST-ResNet) GS (MT-ResNet) PI (MT-ResNet)

+∞(clean) 0.067/0.914 0.060/0.923 0.0173/0.992
10 0.068/0.753 0.060/0.882 0.0173/0.983
7.0 0.070/0.667 0.061/0.847 0.0174/0.975
5.2 0.072/0.594 0.061/0.808 0.0177/0.967
4.0 0.075/0.537 0.064/0.775 0.0179/0.960
3.0 0.077/0.489 0.064/0.746 0.0182/0.954

Fig. 9   The field seismic data and the established initial model. a The field prestack seismic data overlaid with five wells (w1–w5) and two inter-
preted horizons (i.e., two lateral black curves), and b the low-frequency PI model

Fig. 10   The cross-plot between PI values derived from five wells and 
GS values interpreted from five wells
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respectively. The time range and the offset range of prestack 
seismic data are 1.60–1.72 s and 500–4100 m, and the time 
sampling interval is 1 ms. The strata between two target 
horizons (black lateral curves in Fig. 9a) stand for the inter-
ested reservoir units with a burial depth of about 3 km. The 
thickness of the reservoir units is approximately 110–150 m. 
Geological characteristics of the target reservoir interval are 
severe interbedding of sand and mud, and developed single 
thin sand bodies are about 10 m. It can be seen from Fig. 9a 
that the seismic data is low resolution and only develops one 
trough in the reservoir units. After depth-time conversion, 
we up-sample the PI curves derived from the measured well 
logs and the GS curves interpreted from the measured well 
logs to 1 ms. Figure 9b shows the low-frequency PI model 

interpolated by seismic horizons and five PI curves, and its 
frequency band is 0–8 Hz.

Figure 10 shows the cross-plot between all PI values and 
all GS values of five well logs at the range of 1.60–1.72 s. 
Red and blue points in Fig. 10 correspond to sandstone and 
mudstone, respectively. GS and PI show certain negative 
correlation in the sandstone part, but show poor correlation 
in the mudstone part due to GS is interpreted as minimal 
constant in the mudstone. It can be seen from Fig. 10 that PI 
and GS have correlation on the whole. Therefore, we imple-
ment MT-ResNet-based prestack simultaneous inversion and 
use inverted PI to improve the prediction effect of GS. We 
adopt the well of w4 as the test blind well and use other four 
wells as the training wells. Four interpreted GS curves and 
their corresponding borehole-side AVO gathers are used to 

Fig. 11   Comparisons between 
the ST-ResNet and MT-ResNet 
estimated parameter models for 
the field data. a The poststack 
seismic profile, b the inverted 
GS profile via the ST-ResNet, 
c the inverted PI profile via the 
MT-ResNet, and d the inverted 
GS profile via the MT-ResNet
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construct the training set of the field data for the ST-ResNet. 
Four derived PI curves, low-frequency PI curves, and the 
training set of the ST-ResNet are utilized to establish the 
training set of the MT-ResNet. The preparation process of 
training and test sets and the network architecture of the 
ST-ResNet or MT-ResNet for the field data is the same as 
that adopted in the synthetic data. Once the two networks 
are optimized via 300 epochs, we apply them to the whole 
test data set.

Figure 11a–d shows the poststack seismic profile, ST-
ResNet inverted GS profile, MT-ResNet inverted PI profile, 
and MT-ResNet inverted GS profile around the reservoir 
units. The vertical pillars in Fig. 11b–d refer to true PI or 
GS curves at five well locations. Compared with the seis-
mic data in Fig. 11a, estimated GS results (Fig. 11b and d) 
via two methods show higher vertical and lateral resolution. 
Both of them indicate that the bottom of the reservoir section 
is the domain gas-bearing area, and the top of the reservoir 
section lacks gas. Figure 11b depicts that the ST-ResNet 
based GS results identify merely one gas-bearing strata. By 
comparison, the MT-ResNet-based GS results (Fig. 11d) can 
successfully identify two gas-bearing strata near the wells 
of w2 and w4. In addition, compared with the ST-ResNet, 
the MT-ResNet has a higher coincidence in the blind well 
position of w4. The contrast of converted PI and GS results 
(Fig. 11c and d) illustrates that the high gas-bearing region 
corresponds to the relatively low PI, which is in line with 
the petrophysical relationship between GS and PI around the 
wells (Fig. 10). Figure 12 shows the estimated GS results via 
two methods at the blind test well of w4. In comparison with 

the ST-ResNet inverted GS curve (the blue line), the MT-
ResNet inverted GS curve (the red line) is more comparable 
to the true GS curve (the black line). The RMSE between 
the true GS curve and the ST-ResNet estimated GS curve is 
0.07, while the RMSE between the true GS curve and the 
MT-ResNet estimated GS curve is 0.04. The field data test 
manifests that the MT-ResNet is more suitable for the actual 
application and it can utilize the inverted PI profile to further 
enhance the prediction accuracy and resolution of the target 
GS results. In addition, the retrieved PI and GS results are 
mutually verified and have the potential to decrease the risk 
of drilling decisions.

Discussions

In addition to the learning-based ST-ResNet, we compare 
our proposed MT-ResNet with the traditional non-learning-
based method for GS determination. Conventional methods 
usually adopt prestack seismic inversion and GS calculation 
models for calculating the spatial distribution of GS. We 
first prepare 0–5 Hz initial models of elastic parameters and 
utilize noisy prestack seismic gathers of Fig. 4a to gener-
ate partially stacked angle stacks. Then we implement AVO 
inversion based on Tikhonov (TK) regularization (She et al. 
2018), which primarily adopts the seismic data misfit and 
regularization term represented by specific prior assump-
tions to provide estimations of elastic parameters. By setting 
the regularization parameter as 0.1, the TK-constrained AVO 
inversion approach predicts VP, VS, and density. Figure 13a 
shows the inverted PI model based on estimated VP and den-
sity models. The RMSE and SSIM between Fig. 13a and 
the true PI model (Fig. 1h) are 0.03 and 0.84, respectively. 
Figure 13b shows the difference between Figs. 13a and 1h. 
By comparing MT-ResNet and conventional AVO inver-
sion estimated PI models (Figs. 6c and 13a), MT-ResNet 
shows less prediction deviation and is more stable to noise 
interference. Finally, we employ the nonlinear fitting for-
mula of Eq. 1 to transform the PI model of Fig. 13a into the 
calculated GS model, as shown in Fig. 13c. The RMSE and 
SSIM between Fig. 13c and the true GS model (Fig. 1a) are 
0.10 and 0.62, respectively. The inaccuracy estimation of PI 
and approximate rock-physics relation leads to that the esti-
mated GS results of Fig. 13c are worse than the MT-ResNet 
retrieved GS results (Fig. 6e).

Figures 6, 7, 8, 9, 10, 11, 12 and 13 and Table 1 demonstrate 
that the proposed MT-ResNet method is superior to both ST-
ResNet-based method and conventional non-learning method 
for GS estimation. Compared with these two methods, the MT-
ResNet can not only realize the simultaneous inversion of PI 
and GS, but also improve the estimation accuracy and stability 
of GS by integrating seismic data and the GS-related elastic 
attribute. Apart from these advantages, some potential issues 

Fig. 12   Comparisons between ST-ResNet and MT-Rest predicted 
GS curves at the blind well locations of w4. The black, blue, and red 
lines represent the true, ST-ResNet inverted, and MT-ResNet inverted 
GS curves, separately
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should be noticed and investigated in the future. First, the net-
work parameters of the MT-ResNet are nearly as twice as the 
ST-ResNet, resulting in the former achieving the simultaneous 
prediction of two parameters (i.e., PI and GS) at the expense 
of twice as long as the time of the latter. In the future, we need 
to optimize the network structure and ensure both efficiency 
and precision of MTL. Second, the cross-plot of Figs. 2 and 
10 shows that PI and GS have a complex relationship. Equa-
tion 1 only expresses the major relationship between PI and 
GS in Fig. 2. Therefore, we merely use PI as a sensitive attrib-
ute of a “soft” physical constraint to improve the accuracy of 
MT-ResNet estimated GS. If the relationship between PI and 
GS is relatively simple and straightforward (e.g., Fig. 2), an 
explicit formula like Eq. 1 can be derived and adopted as a 
physical constraint in the MT-ResNet. The initial GS results 
are calculated from the predicted PI of the first subnet of the 
MT-ResNet via this physical constraint. The initial GS results 
and seismic data can be further utilized to predict the final 
GS estimation via the second subnet of the MT-ResNet. If the 
relationship between PI and GS is complicated (e.g., Fig. 10), 

more sophisticated rock-physics models and more gas-bearing 
sensitive properties can be used as the physical constraints 
to assist the estimation of GS. In the future, we will further 
improve our method and investigate the feasibility and effec-
tiveness of above strategies for these potentially intractable 
situations. Lastly, as shown in Fig. 3a, we adopt a hierarchical 
learning framework to reduce the interference of different tasks 
as much as possible. Compared with hard parameter sharing 
and soft parameter sharing, the learned features of shallow lay-
ers (i.e., first subnet of MT-ResNet) will not directly influence 
the features of deep layers (i.e., second subnet of MT-ResNet) 
for the GS estimation task. In our hierarchical learning frame-
work, the risk of task interference mainly comes from the 
inverted PI by the first task. The inaccurate PI may introduce 
negative information into the second task of GS inference 
and reduce the prediction performance of GS. Estimating a 
more accurate PI model can reduce the task distraction in our 
method. In addition, hard parameter sharing with appropriate 
shared layers and task-specific layers or soft parameter shar-
ing with proper regularization between subnets also can be 

Fig. 13   Estimated parameter models using conventional AVO inver-
sion and the rock-physics model. a The inverted PI model based on 
TK-regularized AVO inversion, b the differences between the true 

PI model (Fig. 1h) and (a), c the GS model calculated from (a) via 
the rock-physics empirical formula of Eq.  1, and d the differences 
between the true GS model (Fig. 1a) and (c)
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studied to reduce the interference risk of multiple reservoir 
parameter tasks.

Conclusions

We propose a data-driven prestack simultaneous inversion 
framework (MT-ResNet) that integrates multi-source infor-
mation including seismic data, well data, and the sensitive 
attribute for PI and GS estimation. Test on the synthetic data 
example indicates that MT-ResNet can obtain more accurate 
and stable PI and GS models compared with ST-ResNet and 
the traditional AVO inversion and rock-physics formulas-
based method. PI and its low-frequency components dimin-
ish the negative influence of seismic random noise and 
improve the accuracy of MT-ResNet estimated GS. The 
field data example of a tight sandstone reservoir demon-
strates that MT-ResNet can mine the reservoir information 
embedded in seismic waveform and generate reasonable PI 
and GS models, which conform to well-logging curves and 
mutually describe the potential gas-bearing regions of sub-
surface rocks. The future work is to attempt MT-ResNet to 
predict other multiple reservoir parameters and clarify the 
mechanism of ML-based multiple information integration 
for seismic inversion and reservoir characterization.
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