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Abstract
Elastic full waveform inversion (EFWI) is a powerful tool for estimating elastic models by reducing the misfit between 
multi-component seismic records and simulated data. However, when multiple parameters are updated simultaneously, the 
gradients of the loss function with respect to these parameters will be coupled together, the effect exacerbate the nonlinear 
problem. We propose a parametric EFWI method based on convolutional neural networks (CNN-EFWI). The parameters 
that need to be updated are the weights in the neural network rather than the elastic models. The convolutional kernel in the 
network can increase spatial correlations of elastic models, which can be regard as a regularization strategy to mitigate local 
minima issue. Furthermore, the representation also can mitigate the cross-talk between parameters due to the reconstruction 
of Frechét derivatives by neural networks. Both forward and backward processes are implemented using a time-domain finite-
difference solver for elastic wave equation. Numerical examples on overthrust models, fluid saturated models and 2004 BP 
salt body models demonstrate that CNN-EFWI can partially mitigate the local minima problem and reduce the dependence 
of inversion on the initial models. Mini-batch configuration is used to speed up the update and achieve fast convergence. In 
addition, the inversion of noisy data further verifies the robustness of CNN-EFWI.

Keywords Full waveform inversion · Parametric · Machine learning · Convolutional neural network

Introduction

Elastic full waveform inversion (EFWI) is a powerful tool 
for estimating the elastic parameters such as P-wave and 
S-wave velocity (Mora 1987; Tarantola 1986). EFWI prob-
lem is mathematically equivalent to partial differential 

equation (PDE) constrained optimization problem. It solves 
elastic wave equation and minimizes the misfit between the 
multicomponent records and simulated seismic data. EFWI 
can be implemented in frequency domain (Brossier et al. 
2009; Pratt et al. 1998), the time domain (Shipp and Singh 
2002), or in a hybrid domain (Nihei and Li 2007; Sirgue 
et al. 2008). EFWI can utilize the long-offset reflection data 
to estimate the amplitude variation result with offset (AVO) 
(Borisov and Singh 2015; Chen et al. 2021, 2022). However, 
compared with the acoustic case, numerical simulation in 
elastic media may be computationally expensive 4–5 times. 
When multiple parameters are involved in the inversion, the 
nonlinearity increases, and the inversion result of EFWI may 
fall into a local minimum due to the cycle-skipping issue 
(Forgues and Lambaré, 1997; Innanen 2014; Prieux et al. 
2013; Wang and Cheng 2017; Zhang et al. 2021), and leads 
to increasing ill-posedness of the inversion problem.

To mitigate these problems, many approaches have been 
proposed in recent years. For example, one can use the Hes-
sian operator for mitigating the parameter cross-talk because 
that can be regarded as a decoupling operator on the gradi-
ents (Innanen 2014; Operto et al. 2013). The algorithm based 
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on Hessian operator has a quadratic convergence rate, but 
it needs a strong computational consumption. To avoid this 
problem, many scholars use the approximate substitutions 
of Hessian operator such as the pseudo-Hessian (Choi et al. 
2007; Shin et al. 2001) or a quasi-Newton method (Brossier 
et al. 2009). Another popular solution to the cross-talk prob-
lem is based on subspace method, which considers local 
projection onto a subspace of model parameters (Baumstein 
2014; Kennett et al. 1988). In addition, the hierarchically 
inversion (Freudenreich and Singh 2000; Ren and Liu 2016; 
Sears et al. 2008; Tarantola 1986) and mode decomposed 
(Wang and Cheng 2017) are demonstrated have the ability 
to reduce the cross-talk.

In recent study, there are many studies to apply the deep 
learning to FWI. In general, those deep learning-based 
methods for FWI can be categorized into two types: (1) to 
learn a direct map from seismic data to velocity models. For 
instance, Yang and Ma (2019) establish an inverse regres-
sion with convolutional neural network (CNN) from syn-
thetic training data set. Fabien-Ouellet and Sarkar (2020) 
estimate seismic velocity from CMP gathers using recur-
rent neural network (RNN). These methods are purely 
data-driven methods which can perform inversion directly 
after training networks. However, massive training data 
set are needed and the accuracy and generalization cannot 
be guaranteed without the physical constraints. In order to 
address these issues, Sun et al. (2021) proposed a physics-
guided training strategy, which incorporates physical laws 
in the training of neural network, and takes advantage of 
data-driven deep learning and conventional physics-driven 
methods. Wu and Lin (2019) used an encoding–decoding 
network structure to model the map from seismic data to 
velocity structures. (2) To regard deep learning as an effec-
tive signal processing tool and does not need any training 
data set. Richardson (2018) and Sun et al. (2020) implement 
FWI in the framework of recurrent neural network (RNN) 
and use automatic differentiation technology for the gradient 
calculating instead of adjoint state method. Zhu et al. (2021) 
uses reverse-mode automatic differentiation to invert P-wave 
velocity from acoustic FWI, and demonstrate the process of 
reverse mode automatic differentiation is same with conven-
tional adjoint state method. Zhang et al. (2021) and Wang 
et al. (2021) extend the RNN-based FWI to isotropic-elastic 
medium and anisotropic elastic medium. The latter proves 
the minibatch configuration is faster and more accurate than 
full-batch EFWI. These approaches allow for efficient cal-
culation of the derivatives of the residual through automatic 
differential backpropagation method. However, they need 
to store all intermediate variables for gradient back-prop-
agation, which is demanding for large memory resources. 
Complex neural networks can be constrained by physical 
rules to reduce its degrees of freedom. For example, Wu and 
McMechan (2019) and Zhu et al. (2022) reparametrize the 

velocity model by CNN, the unknown parameters become 
the weights and bias in CNN instead of physics models, this 
reparameterization has the ability to suppresses the local 
minima issue.

In this paper, we demonstrate that the representation of 
elastic models by CNNs can mitigate the cycle-skipping and 
the cross-talk effect in EFWI. We first generate the elas-
tic models from neural network and fed to the PDE solv-
ers to simulate the multicomponent seismic data. The L2 
norm between synthetic data and true data is defined as cost 
function and gradient-based optimization method such as 
Adam optimization method (Kingma and Ba 2014) is used to 
decrease the value of cost function. In contrast to the tradi-
tional EFWI, the parameters to be optimized in CNN-EFWI 
are the weight and bias in neural network. By decomposing 
and reconstructing the Frechét derivatives, CNNs can decou-
ple the P-and S-wave modes, leads to restrain the cross-talk 
between parameters. In addition, structure of CNN frame-
work can be regarded as an implicit regularization method, 
which is crucial to for solving the local minimum problem 
of EFWI.

In the follow section, we first review the base theory of 
EFWI, including the forward and inversion parts. Then, we 
illustrate the methodology and workflow of CNN-EFWI. 
Numerical examples on overthrust model, fluid model and 
2004 BP model verify the reparameterization and regulariza-
tion of the CNN-EFWI inversion scheme.

Theory

In the time domain, the 2D wave equation of the velocity-
stress form is:

where, vx and vz are the particle velocity along the x and z 
axis, respectively. �xx and �zz are two component of normal 
stress tensor. �xz is shear stress tensor. �t , �x and �z are the 
derivatives. � is the density. � and � are the Lamé param-
eters. We solve Eq. (1) using time domain finite-difference 
(FD), which allows for an accurate modelling of P- and S- 
waves in elastic models. At the process of forward propa-
gate, we use convolution perfectly matched layers (CPML) 
(Komatitsch and Martin 2007) to reduce unrealistic bound-
ary reflected waves.

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�tvx =
1∕�

�
�x�xx + �z�xz

�

�tvz =
1∕�

�
�x�xz + �z�zz

�

�t�xx = (� + 2�)�xvx + ��zvz + fx

�t�zz = (� + 2�)�zvz + ��xvx + fz

�t�xz = �
�
�zvx + �xvz

�
,
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Mathematically, the inversion process of EFWI can be 
expressed as a PDE constrained optimization problem, 
which consists of minimizing the misfit between observed 
data dobs(x, t) and prediction data dsyn(x, t):

where J is the scalar cost function.Ns and Nt is the number 
of shots and time steps, ui(x, t) is the wavefield at the time 
step t and the position x , which could be partial velocity or 
stress. S denotes a sampling function that is only non-zeros 
at the position of receivers and F is the solution of Eq. (1).

The mini-batch strategy is used for speed-up the con-
vergence, we split the shot gathers into small batches and 
update parameters from each batch. The minibatch setup 
is widely used in traditional deep learning field, and it has 
a faster convergence speed than using the entire data set as 
a batch (Bishop 2006). With mini-batch strategy, the cost 
function written as:

where the Nbs is the number of batch size. In full-batch EFWI 
algorithms, the gradients of cost function with respect to 
elastic models are calculated from all source gathers. How-
ever, in minibatch strategy, source gathers are distributed 
into small batches and the parameters are updated after one 
batch. In other words, this strategy has more update times 
than the traditional full-batch EFWI (Wang et al. 2021).

Equation (3) gives a quantitative measure of the misfit. 
The gradient of misfit function with respect to elastic param-
eters is calculated by adjoint state method, whose details are 
presented in Appendix I. The gradients’ formulas are:

where vx and vz are the forward partial velocity vectors 
in Eq. (1). ṽt+1

x
 and ṽt+1

z
 are the adjoint velocity vectors at 

the time step t + 1 , �̃�t+1
xx

 and �̃�t+1
zz

 are adjoint normal stress 

(2)
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vectors. �̃�t+1
xz

 is three adjoint shear stress vectors. t and T  are 
the discrete time step and maximum recording time, respec-
tively. It is well known that the model parameterization is 
important for multi-parameter EFWI (Tarantola 1986). We 
choose P-wave velocity ( Vp ), S-wave velocity ( Vs ) and den-
sity ( � ) as the parameterization. The corresponding gradients 
are derived by chain rule in the manner of Mora (1987):

Gradient-based inversion algorithm (such as L-BFGS, 
Adam) can be used to update velocity parameters. However, 
updating multiple parameters simultaneously is a challeng-
ing task because they can influence the seismic response 
together. The coupling of multiple elastic parameters can 
cause an update error in one parameter to affect other param-
eters. The various parameters have different sensitivities, 
which can exacerbate the crosstalk problem. Besides, due 
to the introduction of more degrees of freedom in the model 
space, the nonlinearity increases when multiple parameters 
are involved. In order to address these two issues, we repara-
metrize the velocity models using neural networks. The fun-
damental principle of neural network is the universal approx-
imation theorem. In other words, neural networks have the 
ability to approximate any function using nonorthogonal 
basis functions. In the structure of convolutional neural net-
works (CNN), the deep image prior be used as regularization 
for tasks such as denoising (Lempitsky 2018). Therefore, the 
reparameterization using convolutional neural networks can 
introduce the regularization into EFWI, which is crucial to 
mitigate the local minimum problem in EFWI. In addition, 
CNN provide a sparse representation of the velocity models 
by introducing convolutional layers, so we can extract some 
specific features by constructing specific layers of the net-
work. The diagram of traditional EFWI and proposed CNN-
EFWI are shown in Fig. 1. The structure of CNN-EFWI 
is more complex than traditional EFWI. Velocity models 
Vp and Vs are reparametrized by generative neural network 
structure, the process is expressed as:

where CNNvp and CNNvs are generative neural networks 
with respect to Vp and Vs , respectively.x is a random latent 
vector, which is transformed to a tensor by fully connected 
layer. wvp and wvs contain the weights and bias in neural 
networks. The velocity models generated by convolutional 
neural networks are input to the elastic wave Eq. (1) used 
in conventional EFWI. Vpinit and Vsinit are the initial P-wave 
and S-wave velocity models respectively. The initial model 
is directly combined with the output of the neural network, 

(5)
�VpJ = 2�VP��J

�VsJ = −4�Vs��J + 2�Vs��J,

(6)
Vp = CNNvp(x,wvp) + Vpinit

Vs = CNNvs(x,wvs) + Vsinit,
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which means that the neural networks are trained to predict 
the residuals between the initial models and the real models. 
A detailed of the structure is shown in Fig. 1. Different with 
conventional inversion methods, which update Vpinit and Vsinit 
models directly, the parameters to be optimized in CNN-
EFWI are the wvp and wvs in Eq. (6).

The gradients of cost function with respect to parameters 
have been decomposed and reconstructed in the process of 
inversion. With reparameterization by CNNs, the cost function 
of CNN-EFWI is defined by:

To minimize the Eq.  (7) using the gradient-based 
method, the gradient of the cost function with respect to 
the learnable parameters wvp and wvs should be calculated. 
The gradient formulas as:

(7)
min J =

Ns∑
i=1

Ji =

Ns∑
i=1

Nt∑
t=1

‖‖‖d
obs
i

− di
‖‖‖
2

2

s.t.di(x, t) = S(ui(x, t))

�tui(x, t) = F(ui(x, t),N(vp(x)),N(vs(x)),N(�(x)))

Fig. 1  The diagram of traditional EFWI (a) and proposed CNN-
EFWI (b). Downward arrow denotes the forward computation. Red 
upward arrow denotes the gradient calculation by automatic differ-

entiation (AD) and green upward arrow denotes gradient calculation 
by adjoint state method (ASM). SubBlock(n, n) denotes the kernel of 
convolution layer in SubBlock is (n × n)
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where �Nvp

/
�wvp , �Nvs

/
�wvs are gradients of neural network 

with respect to weight wvp and wvs respectively, which are 
obtained by automatic differentiation back-propagation in 
the deep learning framework such as Tensorflow or PyTorch. 
�vpJ and �vsJ are the Frechét derivatives in the Eq. (5). Equa-
tion (8) is a process of reconstructing the Frechét deriva-
tives, which can help mitigate the cross-talk problem as 
demonstrated in next section. We use Adam algorithm to 
minimize the cost function (Eq. 7) efficiently. Adam applied 
the concept of momentum and adaptively adjusted the gradi-
ent using the exponentially decaying average of the previous 
squared gradient. The update formula is as follows:

where � is learning rate, k denotes the update number, Pk 
denotes the update direction of the cost function, which is:

(8)
�wvp

J =
�Nvp

�wvp

�vpJ

�wvs
J =

�Nvs

�wvs

�vsJ,

(9)wk+1 = wk − �Pk,

(10)Pk = �wJ + �Pk−1,

where � denotes the momentum parameter and �wJ is the 
gradient of cost function with respect to neural network 
weights w.

Numerical experiments

In this section, we illustrate the reparameterization and 
regularization capabilities of CNN-EFWI with three com-
prehensive examples: SEG/EAGE overthrust models, fluid 
saturated models and 2004 BP salt body models. In these 
implementations, we assume that the source functions are 
well known and do not address this particular challenge of 
full waveform inversion.

SEG/EAGE over‑thrust model

We take 2D overthrust models as the first example to evalu-
ate the CNN-EFWI algorithm. The models are resam-
pled with a gird size of 68 × 202 and spatial sampling of 
Δx = Δz = 50m . Figure 2 shows the true P-wave and S-wave 
velocity models. To simulate offshore synthetic seismic 
data, we use 68 explosive Ricker wavelets with a domain 
frequency 3 Hz as the sources, and 199 receivers were fixed 

Fig. 2  SEG/EAGE overthrust 
P- and S-wave velocity models. 
(a)–(b) are the true models; 
(c)–(d) are the initial models; 
(e)–(f) is the inverted models 
by CNN-EFWI; (g)–(h) is the 
inverted models by conventional 
EFWI
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on the seabed to simulate OBC survey. The total recording 
time is 5 s with an interval of 2.5 ms. In order to demonstrate 
the decoupling ability of proposed CNN-EFWI method, we 
insert a high velocity layer at the bottom of P-wave velocity 

model. The initial models are the 1 − D increase models 
(Fig. 2). The same initial model and observed seismic data 
are used for conventional EFWI.

Table 1 lists the total computing times on GPUs with 
these two methods. We set the maximum iteration number 
as 40. We found that CNN-EFWI requires more compu-
tational time due to the additional neural network struc-
ture. But average time only increases about 5 percent. The 
inverted results are shown in Fig. 2. Both approaches have 
recovered P-wave velocity and S-wave velocity very well 
in the shallow part (above 2 km). The high-velocity thin 
layer in P-wave velocity has been recovered clearly in the 
results of CNN-EFWI. In contrast, conventional EFWI 

Table 1  The total computational 
costs of proposed CNN-EFWI 
and traditional EFWI

Method Time 
spent 
(min)

CNN-EFWI 5.50
EFWI 5.26

Fig. 3  Vertical profiles of over-
thrust P- wave velocity model 
(a) and S-wave velocity model 
(b). The area between two black 
lines in (a) is the high-velocity 
layer in P-wave velocity. The 
subplots (a): X = 2.02 km. (b): 
X = 4.04 km. (c): X = 6.06 km. 
(d): X = 8.08 km
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losses some resolution for the layer at the left and right 
boundaries of the model. Due to the influence of cross-talk 
effect, the resolution at the bottom of S-wave wave veloc-
ity is low. The vertical profiles of the P-wave velocity and 
S-wave velocity (Fig. 3) further verify that the CNN-EFWI 
outperforms the conventional approach at the position of 
inserted layer.

In order to quantitatively compare the accuracy of these 
inverted results, we calculate the mean square error ( MSE ) 
and structural similarity index measure ( SSIM ) between 
the inverted models and the true models. They are defined 
as:

where x is the true model and x̂ is the estimated model, 
�x and 𝜇x̂ are the meaning of true model and inverted 
model, respectively. �x and 𝜎x̂ are variance of true model 
and inverted model, respectively. 𝜎xx̂ denotes the covariance 
between true and estimated model. N denotes the total num-
ber of points in the model. MSE is measure of L2 norm dis-
tance between true and inverted models. SSIM evaluates the 
similarity of two images from local statistics, which close to 

(11)MSE(x, x̂) =

N∑
i=1

[x(i) − x̂(i)]2

(12)SSIM(x, x̂) =

(
2𝜇x𝜇x̂ + c1

)(
2𝜎xx̂ + c2

)
(
𝜇2
x
+ 𝜇2

x̂
+ c1

)(
𝜎2
x
+ 𝜎2

x̂
+ c2

) ,

one indicate high quality inversion results. In Table 1, CNN-
EFWI achieves more accurate inversion than conventional 
EFWI (Table 2).

Fluid saturated lens model

we consider a simple example of fluid saturated lens model. 
In many cases, FWI suffers from insufficient data to fully 
constrain inversion results. For example, inaccurate ini-
tial models can trap the optimization in the local minima 
and raise cycle skipping problem. As shown in Fig. 4, a 
square homogeneous background is perturbed two lens 
inclusions. We assume that the upper lens is gas satu-
rated ( Vp = 2.65 km  s−1, Vs = 1.66 km  s−1), and lower lens 
is water-saturated ( Vp = 3.0 km  s−1,Vs = 1.66 km  s−1). In 
order to evaluate the regularization effect of CNN-EFWI, 
two initial velocity models are used. One is the smooth ver-
sion of true velocity models (Fig. 5a,d) and another is set 
to the background homogeneous models (Fig. 5g,j). The 
grid size of the model is 100 × 250 and the spatial sample 
is Δx = Δz = 15m . 32 cells are added to the boundary of 
models for CPML conditions. On the surface of the model, 
50 shots are triggered with a horizontal interval of 30 m and 
receivers are deployed with an interval of 15 m. The sources 
are Ricker wavelets with a dominant frequency of 4.5 Hz. 
The seismic simulation time step is 2.5 ms, and the whole 
simulation time is 2.5 s.

At the case of using smooth initial model, Fig. 5b,e show 
the P-wave velocity models inverted by CNN-EFWI and 
conventional EFWI, respectively. Figure 5c,f show the inver-
sion results of corresponding S-wave velocity models. We 
observe that both P- and S-wave velocity are recovered very 
well by the CNN-EFWI, the sharpness of recovered lens 
outlines and the boundary is encouraging. In contrast, the 
inverted lens using conventional method are not as accurate 
as that obtained by CNN-EFWI especially at the low bound-
aries of the lens. Figure 6a,b,c,d show the difference between 
the true and inverted models. The figure indicate that the 
proposed approach estimates accurately for most parts of the 
models. The vertical profiles at the middle part of the models 
are shown in Fig. 7. We can see that the boundary of lens in 
CNN-EFWI results is sharper than results from conventional 

Table 2  MSE and SSIM between true and inverted overthrust models 
using CNN-EFWI and conventional EFWI

P-wave velocity S-wave velocity

CNN-EFWI Conventional 
EFWI

CCN-EFWI Conven-
tional 
EFWI

MSE
294.54 459.4 154.71 180.34
SSIM
0.9754 0.9411 0.9862 0.981

Fig. 4  The true fluid-saturated lens models. (a) is the true P-wave velocity model. (b) is the true S-wave velocity model
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EFWI, which indicates that CNN-EFWI is effective and can 
provide higher resolution models compared with traditional 
methods. Quantitatively comparation is shown in Table 3. 
From this table one could get the same conclusion with 
above comparison.

The inverted models using constant initial models is 
shown in Fig. 5. We can see that the inversion results using 
conventional method hardly image the structure of the lens 
in S-wave velocity model because of inadequate initial mod-
els. The cross-talk between P- and S-wave velocity lead to 
incorrect imaging lens in the S-wave velocity model. In addi-
tion, the lower boundaries of the lens inverted by conven-
tional method is fuzzy. The lack of low-frequency content 
will accentuate the cycle-skipping problem, the optimization 
is trapped at a local minimum. In the early stage of opti-
mization, due to the influence of parameter crosstalk, both 
P- and S-wave velocity cannot be updated correctly. Thus, 
the inversion eventually inadequate converges due to limited 
iterations. However, CNN-EFWI successfully mitigated the 
crosstalk and recovered sharper both P-and S-wave velocity 
models, especially at the upper and lower boundaries of the 
lens. Residual between true and inverted models are shown 
in Fig. 6. It is interesting to note that inverted S-wave veloc-
ity using constant initial models is more accurate than results 

of using smooth initial models. Vertical profiles across the 
lens (Fig. 7) further verify that the CNN-EFWI has the abil-
ity to image fluid saturated lens even using constant initial 
models. The MSE and SSIM between models and seismo-
gram are presented in Table 4. These comparisons verify 
the regularization effect and reparameterization ability from 
the CNN.

BP salt body model

2004 BP models (Billette and Brandsberg-Dahl 2005) are 
difficult to image for EFWI because their complex salt bod-
ies, which is based on a geological cross section through 
the Western Gulf of Mexico. The sharp contrast of large 
salt bodies leads to serious cycle-skipping and amplitude 
discrepancy. We slice the origin models and extract the left 
parts for tests. The S-wave velocity (Fig. 8c) was derived 
from P-wave velocity model (Fig. 8a) using an empirical 
formula (Mavko et al. 2020). The field covers the area of 
9.4 km × 3.4 km (X- and Z-directions, respectively), the size 
of each cell is 50 m for both dimensions, representing a uni-
form mesh of 68 × 188 grid points. C-PML boundary condi-
tion is also used in the test with 20 grid points. 63 sources 
wavelets with a 1.2 Hz domain frequency is used to generate 

Fig. 5  The initial fluid-saturated lens models and corresponding 
inverted results. (a)–(c) are smooth initial P-wave velocity model, 
inverted result with CNN-EFWI and conventional EFWI, respec-
tively. (d)–(f) are corresponding S-wave velocity models. (g)–(i) are 

constant initial P-wave velocity model, inverted result with CNN-
EFWI and inverted result with conventional EFWI, respectively. (j)–
(l) are corresponding S-wave velocity models



681Acta Geophysica (2024) 72:673–687 

1 3

multicomponent seismic waveform data. 185 receivers are 
deployed with an interval of 15 m. The time step is 9.2 ms, 
which is small enough to avoid dispersion. It is assumed that 
we know nothing of the salt bodies and the initial models are 
set to constant value: P-wave velocity = 1.486 km  s−1 and 
S-wave velocity = 0.891 km  s−1, respectively.

Because the salt body is very complex, the learning rate 
setting is a trial-and-error process. If the learning rate is too 
small, the convergence speed of network parameters will be 
very slow. However, a high learning rate leads to divergence 
of the loss function. To permit a cross-talk between the 
speed of convergence and stability, we implement a multiple 

Fig. 6  The residuals of true models minus inverted models. (a)–(b) 
are true P-wave velocity model minus inverted P-wave velocity mod-
els using smooth initial models with CNN-EFWI and conventional 
EFWI, respectively. (c)–(d) are corresponding S-wave velocity mod-

els. (e)–(f) are P-wave velocity models using constant initial models 
with CNN-EFWI and conventional EFWI, respectively. (g)–(h) are 
corresponding S-wave velocity models
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learning rate strategy within the process of optimization. The 
learning rate become smaller when loss function decrease.

A comparison of the inverted results from different 
approaches is shown in Fig. 8. As we can see, Convolutional 
method cannot recover the shape of salt body of both P- and 
S- wave velocity models. Only the upper boundary of salt 
body is recovered. There are no updates for both velocity 

models in the case of conventional EFWI. In contrast, CNN-
EFWI correctly images the salt body, especially the lower 
boundary of salt body and the left U-shaped target. It is dem-
onstrated that CNN-EFWI can image the P- and S- velocity 
of complex salt body using constant initial models. Figure 9 
shows the features learned from one of the CNNs of the 50 
iterations and 100 iterations. Noted that with the increasing 
of iterations, the features learned from the network are closer 
to the shape of salt body.

Next, we added two different levels of noise to the CMP 
gathers to verify the robust of CNN-EFWI. As shown in 
Fig. 10. The SNR (signal/noise ratio) are 25 and 20 dB, 
respectively. Figure 11 shows the final inverted P- and 
S-wave velocity models using different noisy data. We 
observe that a significant error in the lower right corner of 
P-wave velocity results with the increase of noise. However, 
the position of main salt body is located successfully, even 
the U-shape target is correctly imaged. The example demon-
strates that spatial regularization from convolutional neural 
networks could reduce the influence of noise on inversion 
results.

Discussion

Proposed method provides a framework for combining the 
convolutional neural networks and EFWI applications. Dif-
ferent with purely data-driven method, which rely on a large 
number of training data set, including data pairs of velocity 
models and corresponding seismic data. CNN-EFWI can 
introduce elastic physical information into neural networks 
and does not need any extra data set.

Fig. 7  The vertical profiles at the middle of the models. (a) and (b) are inverted P- and S-wave velocity results with smooth initial models.  
(c) and (d) are inverted P- and S-wave velocity results with constant initial models

Table 3  MSE and SSIM between true and inverted fluid-saturated 
models using CNN-EFWI and conventional EFWI at the case of 
smooth initial models

P-wave velocity S-wave velocity

CNN-EFWI Conventional 
EFWI

CCN-EFWI Conven-
tional 
EFWI

MSE
17.9 27.39 16.24 33.56
SSIM
0.9716 0.9255 0.9884 0.9397

Table 4  MSE and SSIM between true and inverted fluid-saturated 
models using CNN-EFWI and conventional EFWI at the case of  
constant initial models

P-wave velocity S-wave velocity

CNN-EFWI Conventional 
EFWI

CCN-EFWI Conven-
tional 
EFWI

MSE
22.94 66.06 14.7 95.78
SSIM
0.9522 0.7368 0.9901 0.3878



683Acta Geophysica (2024) 72:673–687 

1 3

The EFWI also could be applied in the frequency domain, 
which is mathematically equivalent to the time domain 
method (Pratt et al. 1998). However, the implementation 
of the frequency domain approach is memory consuming. 
In addition, another crucial problem is that the inversion of 
a set of sparse frequencies is susceptible to the Gibbs phe-
nomenon (Brenders et al. 2012). Therefore, the time domain 
approach is more suitable for inverting complex elastic mod-
els. In addition, in the time domain method, the number of 
shots and the number of time steps are the key factors of 
parallel computation, which makes it easy to use GPU to 
accelerate the computation.

Compare to traditional EFWI, CNN-EFWI can provide 
more stable inversion results because of the convolutional 
structure in neural network, which increase spatial correla-
tions of elastic models and can be regard as a regularization 
strategy to mitigate local minima issue, even if the initial 
models are not accurate enough. But it deeply relies on the 
low frequency data in seismic data, CNN-EFWI can’t invert 
reasonably results without it.

Models parameterized using Neural networks increases 
the flexibility of inversion. However, more flexibility makes 
the method less robust. To mitigate the problem, the maxi-
mum and minimum of models should be defined to constrain 

Fig. 8  2004 BP salt body models. (a) and (b)The true P- and S-wave 
velocity models. (c) and (d) are initial P- and S-wave velocity models. 
(e) and (f) are inverted P- and S-wave velocity models using CNN-

EFWI. (g) and (h) inverted P- and S-wave velocity models using  
conventional EFWI
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the optimization in the process of inversion. Otherwise, the 
models will update in the wrong direction and be trapped in 
local minima. Typically, the minimum value of the models 
is set to zero, while the maximum value of models is set as:

(13)Vpmax =
0.6min(dx, dz)√

2dt

Fig. 9  Features learned by neural networks. (a) and (b) are features of one layer in CNNvp after 50 and 100 iterations, respectively. (c) and (d) are 
features of one layer in CNNvs after 50 and 100 iterations, respectively

Fig. 10  The seismogram generated from true models at the posi-
tion of (x, z) = (5.0, 0.0)  km. (a) and (d) are noise free horizontal 
and vertical particle-velocity common-source gathers, respectively.  
(b) and (e) are horizontal and vertical particle-velocity common-

source gathers with 10 dB noise, respectively. (c) and (f) are horizon-
tal and vertical particle-velocity common-source gathers with 20 dB 
noise, respectively
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where the Vpmax and Vsmax denote the maximum value of P- 
and S-wave velocity models respectively. min(dx, dz) is the 
minimum between dx and dz . Formula (12) is the stability 
condition of finite difference.

Noted that density is not inverted in our tests, which is 
difficult to reconstruct because its perturbations have hardly 
any effect on the phases or travel times of P- and S-waves. 
For simplicity, many studies assume that models have the 
constant density. (Brossier et al. 2009; Sears et al. 2008; 
Shipp and Singh 2002) or calculate by the empirical rela-
tionship with P-wave velocity (Borisov and Singh 2015). 
However, there also are same scholars consider density as 
an inversion parameter. For example, Xu and McMechan 
(2014) use a multistep-length EFWI approach to mitigate 
the cross-talk between P-wave velocity, S-wave velocity and 
density. Recently, Zhang et al. (2021) invert the density in 
the framework of RNN. Extension to density inversion is one 
direction of future works.

CNN-EFWI is not limited to the specific configuration 
used in this paper. The tune of hyperparameters of neural 
networks is a crucial challenge. A variety of types of hyper-
parameters in CNN-EFWI should be considered, including 
the layers of neural networks, the learning rate, the scale 
parameters, the activation function and the optimization 
algorithm. The hyperparameters in our implementation are 
not unique, because the turning of these hyperparameters is 
a trial-and-error process. It should be noted that the resolu-
tion of P-wave velocity is less than S-wave velocity because 
the spatial wavelengths of P-wave propagating in medium 

(14)Vsmax = Vpmax∕
√
2,

are greater than wavelengths of S-wave. Therefore, the con-
volutional kernels in CNNs with respect to P-wave velocity 
should be greater than that of S-wave velocity.

Conclusion

In this work, we introduce a method CNN-EFWI to miti-
gate the cycle-skipping problem in EFWI by combining the 
convolutional neural network and PDEs. The weights and 
bias in CNNs are updated by connecting the gradient from 
adjoint state method and automatic differentiation. The con-
volutional kernel in CNN increases the spatial correlation 
of models, which can be regarded as an implicit regulariza-
tion, which is significant for EFWI. In addition, CNNs also 
have the ability to decouple the P-wave and S-wave modes 
by reconstructing the Frechét derivatives. Numerical exam-
ple on overthrust models demonstrate the reparameteriza-
tion effect of proposed CNN-EFWI. Then, we design a fluid 
saturated lens model, inversion results show that proposed 
method outperforms than conventional method. Even the 
initial model is a constant model, the proposed method can 
image the lens clearly. Finally, the example of 2004 BP salt 
body model further verify the regularization ability of neural 
network. In addition, the features learned by neural network 
automatically filter out noise, which improves the robust-
ness of inversion. CNN-EFWI can be directly applied to the 
same datasets as conventional EFWI to improve the inver-
sion performance.

Fig. 11  Inverted models with 
noise data using CNN-EFWI. 
(a) and (c) are inverted P- and 
S-wave velocity models with 
25 dB noise. (b) and (d) are 
inverted P- and S-wave velocity 
models with 20 dB noise
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Appendix I

In this appendix, we derive the gradient of cost function with 
respect to Lamé parameters ( � and � ) and density ( � ). For 
simplicity, we ignore the non-reflecting PML regions. The 
sum of squared errors is used as the cost function:

where Nt is the number of time points. In the adjoint state 
method algorithms, the gradient for elastic model parameters 
�J∕�� , �J∕�� and �J∕�� depend on the adjoint wavefields, 
which is calculated by chain rule. We obtain the adjoint 
equations:

where the wavefields with a tilde denote the adjoint wave-
field. In other words, they are the partial derivatives of J 
with respect to corresponding wavefields. For example, ṽz 
indicates �J∕�vz . Δt is discrete time interval. Sx(t) and Sz(t) 
are adjoint source.

As the adjoint wave fields propagate backward in time, 
the derivatives of the objective function with respect to the 
elastic parameters are calculated as:

Note that the system is solved backwards in time. Con-
nect Eqs. (3) and (2), the gradients of the objective function 
J with respect to elastic models � , � and � are:

(15)min J =

Ns∑
i=1

Ji =

Nbs∑
i=1

Nt∑
t=1

‖‖‖d
obs
i

− di
‖‖‖
2

2
,

(16)

�̃�xx(r, t − Δt) =�̃�xx(r, t) +
𝜕ṽx(r, t)

𝜕−x
Δt

1

𝜌
+ Sx(t)

�̃�zz(r, t − Δt) =�̃�zz(r, t) +
𝜕ṽz(r, t)

𝜕−z
Δt

1

𝜌
+ Sz(t)

�̃�xz(r, t − Δt) =�̃�xz(r, t) +

(
𝜕ṽx(r, t)

𝜕+z
+

𝜕ṽz(r, t)

𝜕+x

)
Δt

1

𝜌

ṽx(r, t − Δt) =ṽx(r, t) +

[
𝜕�̃�xx(r, t)

𝜕+x
(𝜆 + 2𝜇) +

𝜕�̃�zz(r, t)

𝜕+x
𝜆 +

𝜕�̃�xz(r, t)

𝜕−z
𝜇

]
Δt

ṽz(r, t − Δt) =ṽz(r, t) +

[
𝜕�̃�zz(r, t)

𝜕+z
(𝜆 + 2𝜇) +

𝜕�̃�xx(r, t)

𝜕+z
𝜆 +

𝜕�̃�xz(r, t)

𝜕−x
𝜇

]
Δt,

(17)

��xx

��
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��zz
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(
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)
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��
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(
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