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Abstract
Tight glutenite reservoirs characterization and effective hydrocarbon-bearing formation identification faced great challenge 
due to ultra-low porosity, ultra-low permeability and complicated pore structure. Fracturing fracture-building technique 
always needed to obtain deliverability because of poor natural productive capacity. Pore structure characterization and 
friability prediction were essential in improving such type of reservoir evaluation. In this study, fractured tight glutenite 
reservoirs in Permian Jiamuhe Formation that located in northwest margin of Junggar Basin, northwest China, were chosen 
as an example, and 25 typical core samples were drilled and simultaneously applied for mercury injection capillary pres-
sure (MICP), nuclear magnetic resonance (NMR) and whole-rock mineral X-ray diffraction experiments. A novel method 
of synthetizing pseudo-pore-throat radius (Rc) distribution from porosity frequency spectra was established to characterize 
fractured formation pore structure. Quartz and calcite were considered as the fragile mineral, and rock mineral component 
ratio method was used to predict brittleness index. Meanwhile, the statistical model raised by Jin et al. (SPE J 20:518–526, 
2015) was used to predict two types of fracture toughness. And then, brittleness index and fracture toughness were com-
bined to characterize tight glutenite reservoirs friability. Combining with maximal pore-throat radius (Rmax, reflected rock 
pore structure) and friability, our target formations were classified into four clusters. In addition, relationships among pore 
structure, friability and daily hydrocarbon production per meter (DI) were analyzed, and a model to predict DI from well-
logging data was established. Comparison of predicted DI with the extracted results from drill stem test (DST) data illustrated 
the reliability of our raised models. This would be valuable in determining optimal hydrocarbon production intervals and 
formulating reasonable developed plans.
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Introduction

Permian Jiamuhe Formation in northwest margin of Junggar 
Basin, China, developed a large set of tight glutenite, and the 
thickness ranged from 108.0 to 154.0 m (Liang et al. 2021). 
Compared with conventional formations, our target gluten-
ite reservoirs contained such characteristics of ultra-low 

porosity, ultra-low permeability, complicated pore structure 
and strong heterogeneity. Core-derived porosity ranged from 
5.0 to 17.0%, and the average porosity was 9.64% (Fig. 1a), 
permeability distributed from 0.03 to 5.01 mD, and the aver-
age permeability was only 0.15 mD (Fig. 1b), the relation-
ship between them was poor (Fig. 1c). In addition, fractures 
were well developed, and this improved the seepage capa-
bility. All these made the difficulty of identifying effective 
reservoirs, determining “sweet spot” area and predicting 
hydrocarbon deliverability based on common method (Jiang 
et al. 2022a, b). Generally, characterizing pore structure was 
an effective method in improving tight reservoirs evalua-
tion and predicting permeability (Coates et al. 2000; Dunn 
et al. 2002; Li et al. 2021; Gui et al. 2022; Jiang et al. 2018, 
2022a, b). Many methods had been raised to characterize 
formation pore structure, and nuclear magnetic resonance 

Edited by Dr. Liang Xiao (ASSOCIATE EDITOR) / Prof. 
Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF).

 *	 Tingting Hu 
	 Hutingting79@126.com

1	 Research Institute of Geophysical, Research Institute 
of Exploration and Development, PetroChina Xingjiang 
Oilfield Company, Urumchi 830013, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-023-01110-8&domain=pdf


274	 Acta Geophysica (2024) 72:273–286

1 3

(NMR) logging was considered unique (Looyestijn, 2001; 
Volokitin and Looyestijn 2001; Green et al. 2008; Shao 
et al. 2009; Olubunmi and Chike 2011; Xiao et al. 2016; 
Gao et al. 2023). Looyestijn (2001) and Volokitin and Looy-
estijn (2001) raised a linear calibration method to construct 
pseudo-capillary pressure (Pc) curve from NMR logging. 
Afterward, the constructed pseudo-Pc was used to displace 
experimental mercury injection capillary pressure (MICP) 
curve to characterize formation pore structure. This method 
had been widely used in the last 20 years and was verified 
to be valuable in conventional clastic formation with rela-
tive high porosity and permeability. However, in low perme-
ability sandstones, pore structure should be overestimated 
(Xiao et al. 2016). Although Looyestijn (2001) analyzed 
the reason and proposed a modified model to characterize 
low permeability to tight sandstone reservoirs pore struc-
ture, the theoretical basis was lacked, and the results were 
not obviously improved. Kuang et al. (2010) and Xiao et al. 
(2016) raised a model to enhance formation pore structure 
characterization based on piecewise power function, and 
the predicted results were valuable in water saturated lay-
ers. However, in hydrocarbon-bearing formations, NMR T2 
spectra were always affected by saturated hydrocarbon, and 
these made NMR data lose its advantage (Mao et al. 2007; 
Xiao et al. 2018). If we recklessly used NMR logging to 

characterize formation pore structure, the validity would be 
overestimated. In addition, fracture was developed in our 
target glutenite, NMR logging cannot be used in such type 
of formation due to slight responses of fracture to T2 spec-
trum (Xiao et al., 2011). To effectively characterize fractured 
formation pore structure, Dong et al. (2019) and Xiao et al. 
(2020) proposed that electrical image logging can be used 
to replace NMR logging to synthesize pseudo-Pc curve, and 
estimate pore structure parameters. Although these methods 
had been verified to be effective in predicting fractured for-
mation permeability, plenty of intermediate process of cal-
culation made the accuracy much decrease. Meanwhile, pore 
structure was only characterized to predict permeability and 
classify formation, and relationship between pore structure 
and hydrocarbon deliverability was not deeply researched.

Generally, tight reservoirs did not contain natural hydro-
carbon production capability, fracturing fracture-building 
technique was indispensable, and friability was essential 
(Razaz et al. 2020). Geophysical well-logging data were 
valuable (Kim et al. 2019). Two aspects needed to be con-
sidered in evaluating formation friability: brittleness index 
(BI) and fracture toughness. Brittleness index reflected the 
ability of cracks to crack, and crack propagation after rock 
was subjected to pressure. Generally, easily fractured for-
mations tended to have a high BI, and vice versa. On the 

Fig. 1   Statistical histograms of 
core-derived porosity (a), per-
meability (b) and relationship 
between these two parameters 
(c). These figures illustrated that 
our target glutenite reservoirs 
were tight, contained compli-
cated pore structure and strong 
heterogeneity
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contrary, fracture toughness reflected the ability of rocks 
to block hydraulic fracturing and avoid creating new and 
continuously expanding cracks. These two parameters were 
inversely proportional. Investigation that focused on BI 
prediction was deeply, and it was commonly used to char-
acterize friability and reservoir quality (Jarvie et al. 2007; 
Rickman et al. 2008; Hucka and Das 1974; Altindag 2003; 
Dubey et al. 2019; Wood 2022; Ye et al. 2022). Generally, 
BI was associated with lithology and rock mechanics. Plenty 
of methods have been raised to predict BI from well-logging 
data, as listed in Table 1.

Here, Vqa, Vca, Vdo and Vcl are the constituent content of 
quartz, calcite, dolomite and clay, and separately, the unit of 
them is %. ΔE is the normalized Young’s modulus, and Δv 
is the normalized Poisson’s ratio, and they were all dimen-
sionless. εrs, εt, εirs, εp and εr are the recoverable strain, total 
strain, non-recoverable strain and residual strain with dimen-
sionless. σc and σt are the uniaxial compression and uniaxial 
tensile strength in MPa; λ and μ are the Ramey coefficient 
and shear modulus.

In the model raised by Rickman et al. (2008), ΔE and Δv 
were calculated from rock mechanics parameters: 

where E, Emin and Emax are the measured, minimum and 
maximum dynamic Young’s modulus, respectively, and their 
unit was GPa. v, vmin and vmax are the measured, minimum 
and maximum dynamic Poisson’s ratio, respectively.

Although Table 1 lists several methods that can be used to 
predict BI from well-logging data, several difficulties cannot 
be overcame: (1) Mineral type should be first analyzed by 
whole-rock mineral X-ray diffraction experiment. (2) Many 
special experiments, such as rock acoustic measurement and 
triaxial stress analysis, should be applied to acquire Young’s 

(1)ΔE =
E − Emin

Emax − Emin

(2)Δv =
vmax − v

vmax − vmin

,

modulus, Poisson’s ratio and other parameters, and this was 
difficult. In our target formation, no rock acoustic and tri-
axial stress experimental data were acquired. (3) Many used 
parameters cannot be directly acquired, and complicated cal-
culation process enlarged the systematic error.

There were three types of fracture expansion after the 
hydraulic method was used, which were the opening-type, 
staggered-type and tearing-type. In tight hydrocarbon-bearing 
formations, the opening-type (Mode-I) and staggered-type 
(Mode-II) cracks were easily produced, and they were cre-
ated simultaneously, but the tearing-type crack was rare (Jin 
et al. 2015; Yuan et al. 2017). Hence, only fracture toughness 
that prevented Mode-I and Mode-II fractures was calculated 
(Yuan et al. 2017). There were two types of methods to calcu-
late fracture toughness, which were Brazilian disk test method 
in laboratory and empirical statistical method (Jin et al. 2001, 
2008; Chen et al. 2015). In the Brazilian disk test method, a 
disk core of thickness B and radius R was first prepared, and 
then, a high pressure was applied to create fissures. The length 
and width of Mode-I and Mode-II fissures were related to the 
amount and angle of pressure applied. Based on experimental 
data, fracture toughness of Mode-I and Mode-II can be cal-
culated. This method was not operable, and many systemic 
errors were introduced. This made it cannot be widely used. 
Yuan (2017) raised an empirical statistical method to predict 
fracture toughness of Mode-I and Mode-II (defined as KIC 
and KIIC, separately). Relationships between KIC and KIIC with 
geophysical well-logging data were established, and they were 
used to predict KIC and KIIC from conventional logging data. 
Although this method was established in a certain formation, 
it had been widely used, especially in regions with no experi-
mental data which can be acquired.

The purpose of this paper was to raise a method to 
directly extract Rc distribution to characterize tight fractured 
glutenite reservoirs pore structure, quantitatively analyze the 
relationship among pore structure, friability and deliverabil-
ity and establish a model to predict glutenite reservoir deliv-
erability. The Rc distribution was extracted from electrical 
image logging porosity frequency spectrum, and friability 

Table 1   Methods of predicting 
BI from well-logging data

Method Model Reference

Mineral composition BI =
Vqa

Vqa+Vca+Vdo+Vcl

Jarvie et al. (2007)

Rock mechanics parameters BI =
ΔE+Δv

2
Rickman et al. (2008)

Strain BI = �rs
�t
, BI = �irs ∗ 100%,

BI = �p−�r
�p

Hucka and Das (1974)

Strength BI =
�c

�t
, BI =

�C−�t

�c+�t
Hucka and Das (1974)

Strength
BI =

�c�t

2
, BI =

√

�c�t

2

Altindag (2003)

Ramey coefficient and shear modulus BI =
�+2�

�
Dubey et al. (2019)
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was directly estimated from conventional well-logging data. 
Field examples illustrated that pore structure and friability 
were two key factors in indicating formation validity, and 
they were valuable in predicting deliverability.

Method to characterize fractured tight 
glutenite reservoir pore structure

Theory of extracting pore‑throat radius 
from electrical image logging

At present, the electrical image logging data were acquired 
from some special tools, such as the Schlumberger’s for-
mation microresistivity scanning image logging (FMI) tool 
or Halliburton’s X-tended range micro imager (XRMI) 
tool. In our target region, electrical image logging was 
mainly acquired from FMI tool, we would introduce 
the theory of extracting pore-throat radius from electri-
cal image logging that acquired by using FMI tool. FMI 
tool had 8 positioning arms that evenly distributed in a 
360-degree range around the well. In every positioning 
arm, 24 button electrodes were arranged in two rows. 
Hence, there were total 192 button electrodes around the 
borehole. This can be approximated as dividing borehole 
into 192 tiny units (Fig. 2). Once these button electrodes 
were energized, 192 electrical conductivity curves can 
be acquired. For every tiny formation unit, the porous 
media can be considered that it was constructed only by 
intergranular pores. Secondary interstice, such as fracture 
and cave, can be ignored. Meanwhile, shallow investiga-
tion depth of FMI tool made the saturated pore fluid in 
flushed zone was mud filtrate. Relationship among forma-
tion resistivity, mud filtrate resistivity, water saturation 
and porosity in flushed zone can be written by Archie’s 
equation (Archie 1942).

where Sxo is the flushed zone water saturation in v/v. Rxo is 
the flushed zone formation resistivity, and Rmf is the mud 
filtrate resistivity, and the unit of them was Ωm. a, b, m and 
n are the parameters that are associated with rock resistivity.

The investigation depth of FMI tool was closed to that 
of the microresistivity logging, and Eq. 3 established based 
on microresistivity logging can be directly used. After 192 
electrical conductivity data were substituted into Eq. 3, a 
derivative equation can be acquired to calculate 192 apparent 
porosities around borehole.

where Ci is the measured ith electrical conductivity, S/m. 
φi,FMI is the calculated ith porosity by using electrical con-
ductivities. K is the proportionality coefficient between Rxo 
and Ci, and it was a constant. K′ is the square root of K.

Theoretically, the calculated φi,FMI was a fixed value 
in homogeneous formation due to the close relationship 
between Rxo and Ci. However, φi,FMI was various and fluc-
tuated around φ, because Rxo*Ci was not a constant. The 
more heterogeneous the formation was, the more violent 
the porosity fluctuated. If we normalized φi,FMI from 0.0 to 
100.0% and calculated the frequency of φi,FMI occurrence in 
each porosity unit, a porosity frequency histogram would be 
acquired (Fig. 3). After this technique was applied to process 
FMI logging, and porosity frequency histogram was smooth-
filtered, the porosity frequency spectra can be consecutively 
obtained.

(3)�m
=

abRmf

Sn
xo
Rxo

,

(4)

�
i,FMI =

m

�

abRmf

Sn
xo
Rxo

=
m

�

abRmf

Sn
xo
Rxo

∗ Rxo∗ K ∗ C
i

=
m

√

�m∗ Rxo∗ K ∗ C
i

= � ∗ k
�

∗
m

√

Rxo∗ C
i
,

Fig. 2   Formation were divided 
into 192 tiny units around bore-
hole by button electrodes
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Morphology comparison of porosity frequency 
spectrum and pore‑throat radius distribution

Porosity frequency spectra can well reflect formation het-
erogeneity and pore structure. In strongly heterogeneous 
formation, e.g., carbonate or volcanic formation with sec-
ondary porosity, porosity frequency spectrum had wide 

bimodal distribution, and the main peak located in the right, 
whereas the porosity frequency spectrum would be narrow 
unimodal, and the main peak would locate in the left in for-
mation with relatively simple pore structure (Fig. 4a and b). 
Rc distribution, which is extracted from MICP curve, directly 
illustrated rock pore structure. For example, Rc distribution 
in tight reservoirs with intergranular pores was narrow and 
located in the left, and once formation contained good pore 
structure, Rc distribution would be wide unimodal (Fig. 5a 
and b). However, measured NMR T2 distributions for the 
same core samples did not exhibit any difference (Fig. 6a 
and b). This comparison verified that NMR data lost its role 
in tight glutenite with complicated pore structure. Although 
the morphology of porosity frequency spectra and Rc dis-
tributions was similar in the same type of formation, the 
physical significance of them, especially the x-axis, was 
absolute different. We can only qualitatively analyze pore 
structure from porosity frequency spectra, and if we wanted 
to quantitatively characterize formation pore structure, the 
best method was to transform porosity frequency spectrum 
as Rc distribution. Afterward, many parameters associated 
with formation quality, e.g., the average pore-throat radius 
(Rm), the maximal pore-throat radius (Rmax), the threshold 
pressure (Pd), can also be calculated.

Fig. 3   The porosity frequency histogram acquired from FMI logging

Fig. 4   Porosity frequency 
spectra of two types of rock 
in our target formation. Rock 
with good pore structure con-
tained wide bimodal porosity 
frequency spectrum (a) and the 
porosity frequency spectrum 
in tight rock with poor pore 
structure presented as narrow 
unimodality (b)

Fig. 5   Rc distributions of two 
types of rock in our target for-
mation. Bimodal Rc distribution 
corresponded to high-quality 
rock (a). However, Rc distribu-
tion would be unimodal in tight 
rock (b)
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Method of transforming porosity frequency spectra 
as Rc distribution

The physical significance of y-axis in Figs. 4a and 5a was 
similar, it reflected the probability that porosity or pore 
throat appeared in a certain scope, and if we wanted to 
acquire Rc distribution from porosity frequency spectrum, 
relationship between φi,FMI and Rc should be established. In 
this study, a cumulative amplitude matching method was 
raised to extract φi,FMI under every pore-throat radius (Rc(i)). 
This method covered following procedures:

(1)	 Normalizing the amplitude of Rc distribution, and 
cumulating the normalized Rc amplitude from 0.0 to 
100.0% with Rc(i) increased from minimal to maxi-
mal value to get a cumulative Rc relative amplitude 
(Fig. 7a).

(2)	 Normalizing the frequency of porosity spectrum, and 
cumulating the normalized porosity frequency spec-
trum from 0.0 to 100.0% with φi,FMI increased from 0.0 
to 100.0% to get a cumulative porosity spectra relative 
frequency (Fig. 7b).

(3)	 Determining Rc and φi,FMI based on the same normal-
ized cumulative amplitude and frequency. This meant 
that we first determined a certain value (e.g., 20% in 
Fig. 7), and severally automatic searched for Rc and 
φi,FMI that corresponded to this value in cumulative Rc 
relative amplitude and cumulative porosity spectra rela-
tive frequency. Collecting Rc and φi,FMI as a data pair to 
analyze the relationship between them.

By using this method, we collected several data pairs 
of (φi,FMI, Rc) from core samples and porosity frequency 
spectra and displayed them in a log–log coordinate. Figure 8 
exhibits the relationship between these two parameters. This 
figure illustrated that there were good power function rela-
tions between these two parameters, and this power function 
exhibited as a straight line in log–log coordinate. However, 
the relationships were not uniform for all core samples; for 
different types of core sample, the relationships were diver-
gent. Meanwhile, in different pore-throat parts (small and 
large pore throat), the relationships were also varied, and 
this variation exhibited as segmentation.

Fig. 6   NMR T2 spectra of two 
types of rock in our target for-
mation. The NMR T2 distribu-
tions exhibited no change in 
different type of rocks

(a)

Fig. 7   Principle of determining φi,FMI that corresponded to every Rc based on cumulative amplitude matching method
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Model of synthesizing Rc distribution based 
on formation classification

Figure 8 illustrates that power function relation existed 
between porosity frequency spectrum and Rc distribution 
for a single core sample. However, in heterogeneous forma-
tion, it was difficult to exhibit such relation by using uni-
form function in the whole intervals. In other words, if we 
only used one relation to acquire pseudo-Rc distributions 
from porosity frequency spectra, the pore structure char-
acterization accuracy would deeply decrease. In this study, 
to extract reasonable pseudo-Rc distribution, 25 core sam-
ples were drilled from tight glutenite reservoir in Permian 
Jiamuhe Formation of northwest margin in Junggar Basin, 
northwest China, and they were simultaneously applied for 
mercury injection capillary pressure (MICP), NMR and 
whole-rock mineral X-ray diffraction experiments. Rc dis-
tributions and porosity frequency spectra were acquired. The 
experimental results are listed in Table 2. Based on these 
25 core samples, a model of synthesizing pseudo-Rc from 
porosity frequency spectra based on formation classification 
was raised. In this model, 25 core samples were first clas-
sified into 4 clusters based on physical property difference. 
Second, for every type of core sample, independent power 
function was used to reflect the relationship between φi,FMI 
and Rc. Meanwhile, in small and large pore-throat parts, 
two functions were, respectively, used. Third, applying the 
established model in field application, after formations were 
classified by using the same physical property criteria, con-
secutive pseudo-Rc distributions can be constructed in the 
intervals with which electrical image logging was acquired. 

Model of synthesizing pseudo-Rc distributions from poros-
ity frequency spectra based on formation classification was 
expressed as follows:

where Rc(i) is the ith pore-throat radius in μm. as, bs, al and 
bl are the involved parameters, and their values needed to 
be calibrated by using experimental data of core samples.

By using experimental data of 25 core samples, the 
involved parameters of as, bs, al and bl were separately 
calibrated for four clusters of rocks, and models of syn-
thesizing pseudo-Rc distributions from porosity frequency 
spectra were established and are displayed in Fig. 9. This 
figure clearly indicated that good segmented power func-
tions existed between these two parameters. Once they were 
extended into field application in the intervals with which 
porosity frequency spectra were extracted from electrical 
image logging, Rc distributions can be acquired to character-
ize tight glutenite reservoir pore structure.

Reliability verification

Models that are displayed in Fig. 9 were applied in field 
application to process electrical image logging, and pseudo-
Rc distribution was synthetized to characterize pore struc-
ture. Further, the pore structure evaluation parameters, e.g., 
Rmax, Pd, pore-throat radius corresponded to 10.0% mercury 
injection saturation (R10), and median pore-throat radius 
(R50), were calculated. To verify the reliability of our raised 
technique, we compared the calculated pore structure param-
eters with core-derived results, and displayed in Fig. 10. 
The first three tracks of this figures displayed conventional 
well-logging curves, and they were used to identify effec-
tive formation, calculate porosity and identify pore fluids, 
separately. POR_HIST displayed in the fourth track was 
the porosity frequency spectra extracted from electrical 
image logging. RC_DIST was the synthetized pseudo-Rc 
distributions from porosity frequency spectra based on our 
raised technique and exhibited in the fifth track. RMAX, 
R10, PD and SWANSON displayed from the sixth to ninth 
tracks were the pore structure parameters calculated from 
pseudo-Rc distributions, separately. CRMAX, CR10, CPD 
and CSWANSON were the derived results from core sam-
ples. Good consistency between the calculated pore structure 
parameters from pseudo-Rc distributions and core-derived 

(5)Small pore-throat part: R
c(i) = as ∗ �

bs

i,FMI

(6)Large pore-throat part: R
c(i) = a

l
∗ �

bl

i,FMI
,

Fig. 8   Relationship between φi,FMI and Rc for several types of core 
samples
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results demonstrated the reliability of our raised technique. 
The synthetized pseudo-Rc distributions can be used to well 
characterize formation pore structure.

Estimation of tight glutenite reservoir 
friability

Generally, friability was affected by two aspects: positive 
brittleness and negative fracture toughness. Friability cannot 
be directly calculated, statistical methods was always used 
to first predict brittleness and fracture toughness from well-
logging data, and then, these two parameters were combined 
to acquire rock friability.

Estimation of BI

Only whole-rock mineral X-ray diffraction experimen-
tal data were acquired in our target Permian Jiamuhe 

Formation, we would establish BI prediction model based 
on mineral contents in this study. Generally, quartz and 
carbonate were considered to be friable, and feldspar, clay 
and pyrite were flexible in Jiamuhe Formation (Hu 2021). 
Hence, a model of calculating BI based on mineral con-
tents was established:

where BI is the brittleness index in dimensionless. Vfd and 
Vpy are the constituent content of feldspar and pyrite, sepa-
rately, and the unit of them was %.

To predict BI by using Eq. 7, Vqa, Vca, Vfd, Vpy and Vcl 
should be first acquired. In Jiamuhe Formation, based on 
whole-rock mineral X-ray diffraction experimental data of 
25 core samples, optimization technique based on multimin 
module in Paradigm’s Geolog software was applied, and BI 
was consecutively predicted from conventional well-logging 
data.

(7)BI =
Vqa + Vca

Vqa + Vfd+Vca + Vpy + Vcl

,

Fig. 9   Models of transforming porosity frequency spectra as Rc distribution based on formation classification method
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Estimation of fracture toughness

In our target tight glutenite reservoirs, no core samples were 
used to apply for Brazilian disk experiment in laboratory, 
and the empirical statistical method raised by Yuan et al. 
(2017) was directly applied to predict fracture toughness. 
Models of predicting fracture toughness of Mode-I and 
Mode-II were expressed as follows.

where KIC and KIIC are the fractured toughness that caused 
by Mode-I and Mode-II expansion of fracture. ρ is the bulk 
density in g/cm3, and AC is the interval transit time in μs/m. 
Their values were directly acquired from conventional well-
logging data. Vsh is the content of shaly in v/v. Its value was 
calculated from natural gamma ray:

(8)
KIC = 0.45 × � − 0.151 × exp

(

Vsh

)

+ 0.201 × ln(AC) − 0.87

(9)KIIC = 2.121 ⋅ � − 0.245 ∙ exp
(

Vsh

)

+ 1.152 ∙ ln(AC) − 8.378,

(10)IGR =
GR − GRmin

GRmax − GRmin

(11)Vsh =
2GCUR∙IGR − 1

2GCUR − 1
,

where GR is the natural gamma ray in API. GRmin and GRmax 
are the minimal and maximal values of natural gamma ray 
in a formation in API, respectively. IGR is the shale-content 
index. GCUR is the dimensionless Hilchie index, and its 
value was commonly defined as 3.7.

Friability evaluation

Based on the negative correlation between BI and fracture 
toughness, a parameter, named as friability, was raised. It 
was defined as the degree to which a rock was easily frac-
tured. Hence, friability was positively related to BI, and 
negatively related to fracture toughness, and calculated as 
follows:

where Frac is the fracability in MPa−1 m−0.5. α and β are the 
statistical proportionality coefficient, and their values need 
to be calibrated and satisfied following relation: α + β = 1.0. 
Once no calibration data were available, their values were 
defined as 0.5 and 0.5, separately.

(12)Frac = BI ×
1

� × KIC + � × KIIC

,

Fig. 10   Comparisons of calculated pore structure parameters from synthetized pseudo-Rc distribution with core-derived results in our target tight 
glutenite reservoir
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Formation validity estimation 
and deliverability prediction

Validity estimation

To analyze the effect of pore structure and friability to 

reservoir quality, 11 formations that contained drill stem test 
(DST) data in our target region were collected. Formation 
pore structure and friability were first characterized from 
electrical image and conventional well logging, separately. 
Meanwhile, daily hydrocarbon production per meter (defined 
as deliverability index, and expressed as DI) was used to 
reflect formation quality. Relationship among pore struc-
ture, friability and reservoir quality was analyzed. Finally, 
we found that Rmax, Frac and DI were closely related to each 
other. Based on DI, our target tight glutenite reservoirs were 
classified into four cluster (Fig. 11), and the corresponded 
reservoir classification criteria and DI difference are listed in 
Table 3. The first type of formation contained the best pore 
structure and highest friability and thus had the highest DI. 
The second type of formation had relative higher friability, 
but relative poorer pore structure, fracturing fracture-build-
ing technique can be used to raise hydrocarbon production. 
The third type of formation contained relative better pore 
structure but weaker friability, and stable capacity can be 
acquired but DI was low. Meanwhile, fracturing fracture-
building technique lost its roles. The fourth type of forma-
tion was dry layer, and no liquid can be produced. Based 
on Fig. 11 and Table 3, the validity of our target reservoirs 
was evaluated, and high-quality producing pays can be well 
identified.

Fig. 11   Tight glutenite reservoirs validity estimation by combining 
with pore structure and friability

Table 3   Criteria of classifying tight glutenite reservoirs based on pore structure and friability

Reservoir type Maximal pore-throat radius 
(Rmax), μm

Friability (Frac) Daily hydrocarbon production per 
meter (DI), m3/(day m)

Reservoir quality

Type 1 Greater than 3.0 Greater than 0.3 Greater than 3.12 Top-quality
Type 2 0.5 ~ 3.0 Greater than 0.3 0.80 ~ 3.12 Relatively high-quality
Type 3 0.5 ~ 3.0 Lower than 0.3 0.15 ~ 0.80 Relatively low-quality
Type 4 Lower than 0.5 Lower than 0.3 Lower than 0.15 The worst

Fig. 12   3D surface graph (a) and contour map (b) of friability, maximal pore-throat radius and daily hydrocarbon production per meter of our 
target tight glutenite reservoir
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Deliverability prediction

In formations with DST data, we used the equal area method 
to obtain the mean values of Rmax and Frac (defined as Rmax_m 
and Frac_m), and they were used to represent formation prop-
erties. Relationship among Rmax_m, Frac_m and DI was ana-
lyzed. Figure 12a and b displays this relation based on 3D 
surface graph and contour map, separately. It can be clearly 
observed that good positive correlation existed among these 
three parameters. With the increase of Rmax_m and Frac_m, the 
corresponding DI was higher. Based on this analysis, we 
tried to establish a model to connect these three parameters, 
as was expressed in Eq. 13. It should be noted that Rmax_m 
was logarithmic due to large range of numerical variations. 
By using this model, DI can be first predicted from Rmax 
and friability in the intervals with which DST data was not 
acquired. Once formation effective thickness was deter-
mined, hydrocarbon deliverability can be predicted. This 
was of great importance in exploration wells to determine 
the optimal production intervals and formulate the appropri-
ate developmental plans.

(13)
DI = 6.21 ∗ log210

(

Rmax_m
)

+ 0.50 ∗ log10
(

Rmax_m
)

+ 0.58 ∗ Frac_m − 1.16

Case study

By using the established models, several wells with con-
ventional and electrical image logging were processed in 
our target tight glutenite reservoirs. After pore structure 
was characterized by using synthetized pseudo-Rc distri-
butions, pore structure parameters were calculated. Mean-
while, friability was also predicted from conventional well 
logging by using the proposed method. In addition, the 
daily hydrocarbon production per meter was calculated 
from Rmax and Frac based on Eq. 13. Figure 13 displays a 
field example of characterizing formation pore structure, 
evaluating friability and predicting formation type. The 
physical significance of the displayed well-logging curves 
in the first six tracks was the same as that displayed in 
Fig. 10. In the seventh track, we displayed the calculated 
fracture toughness of Mode-I and Mode-II, and friabil-
ity curve (FRAC) was exhibited in the eighth track. In 
the last track, we displayed the predicted DI from Rmax 
and Frac. Based on Rc distribution, Rmax and Frac, it can be 
clearly predicted that the interval of 2156.0–2177.0 m was 
the highest quality in this well due to good pore structure 
and friability (belonged to the first type of formation in 
Fig. 11), and the calculated DI reached to 7.33 m3/(day m). 
This prediction was verified by the DST data. In the inter-
vals of 2138.0 ~ 2142.0 and 2164.0 ~ 2170.0 m, pure light 

Fig. 13   A field example of characterizing formation pore structure, evaluating friability and predicting daily hydrocarbon production per meter 
by using our raised models
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oil was produced, and the measured DI was 7.24  m3/
(day m), and it was very closed to the predicted result.

Figure 14 compares the predicted DI from well-logging 
data based on our raised technique and calculated result from 
DSI data in 11 wells. Blue dotted line was the 45° diagonal, 
and it was used to reflect the deviation degree of predicted 
DI with that of extracted results from DST data. This fig-
ure clearly illustrated that the data points were distributed 
on both sides of the diagonal and meant that the predicted 
results were infinitely closed to the true values. This veri-
fied that our raised methods of characterizing tight glutenite 
reservoirs pore structure, evaluating friability and predicting 
DI were reliability in Permian Jiamuhe Formation. Once 
they were extended to formations with similar properties, 
DI can be well predicted, and this was of great importance 
in improving complicated reservoirs characterization and 
formulating reasonable development plans.

Conclusions

Fractured tight glutenite reservoirs pore structure charac-
terization and friability evaluation were of great impor-
tance in improving high-quality formation identification 
and hydrocarbon-producing capacity prediction. The NMR 
logging lost its role in characterizing fractured formation 
pore structure, whereas the porosity frequency spectra 
extracted from electrical image logging were valuable.

Based on the morphological characteristics analysis 
of porosity frequency spectra and Rc distributions for 

different types of rocks, we raised a novel technique of 
transforming porosity frequency spectra as pseudo-Rc 
distributions to characterize fractured tight glutenite res-
ervoir pore structure based on formation classification 
method, and the corresponding models were established. 
Reasonable results illustrated the reliability of our raised 
technique.

Brittleness index and fracture toughness were predicted 
from conventional well-logging data, and a parameter of 
friability was raised to reflect the effect of engineering 
scheme to formation property and deliverability.

Combining with pore structure and friability, our target 
tight glutenite reservoirs were classified into four clusters. 
Meanwhile, relationships among pore structure, friability 
and DI were analyzed, and a model of predicted DI from 
Rmax and Frac was established. Good consistency between 
the predicted DI and the extracted results from DST data 
illustrated the reliability of our raised method.
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