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Abstract
In recent years, the groundwater resources of Arak plain have been under severe stress, so in some areas, due to the drying 
up of wells, the depth of wells has increased to access water. In some areas, the groundwater depth is high, which will lead to 
the salinization of those lands in the future. Regional modeling was used to organize and measure the response of the ground-
water resources of Arak plain against the implementation of different management and implementation scenarios. This study 
aims to investigate the effective factors in the groundwater depth to provide a regional model with multiple linear regression 
(MLR) methods for Arak plain aquifer. For this purpose, the average groundwater potential maps (GPMs) in the Arak plain, 
as a dependent variable, and the transmissivity of the aquifer formations, groundwater exploitation values, altitude, average 
precipitation of the region, the amount of evaporation, and the distance from water resources are considered independent 
variables and regression analysis is done in SPSS software media. It was done to present a linear model. In the next stage, 
the presented model was evaluated by applying it to places where its statistics and information were not used to present the 
model, and finally, by applying this model in the GIS environment, the GPMs for the region were created. The study was 
prepared. Also, an artificial neural network (ANN) was used to simulate the depth of underground water. The performance 
of the ANN was measured through parameters such as root-mean-square error (RMSE) and correlation coefficient between 
real and desired outputs (R). The results of both methods indicate that factors such as the transmissivity of aquifer forma-
tions, GPMs drawdown, topography (the height of the well site on the level of the watershed), the groundwater exploitation 
values at the maximum operating radius of the well, and the distance from water resources are the main factors of GPMs 
drawdown. But the effectiveness of ANN in estimating GPMs drawdown is higher than the MLR method. The implemented 
methodology could be generalized to other watersheds with water scarcity problems for groundwater management.

Keywords Aquifer formation · GPMs drawdown · Multiple linear regression · Artificial neural network

Introduction

In many dry countries of the world, including Iran, the 
main source of water supply is groundwater resources. The 
need for water is increasing due to the increase in human 
population, the development of agriculture, industries, 
and other human activities (Chowdhury 2016). The limi-
tation of suitable surface water resources and the increas-
ing demand for water consumption has led people to use 
groundwater resources (Khazaz et al. 2015). On the other 
hand, in recent years due to successive droughts and cli-
mate change in different regions of the globe, the GPMs in 
these regions have undergone significant changes. Therefore, 
estimating and simulating the process of GPMs drawdown 
is very important, and has been studied by various research-
ers in recent years. For example, Chelsea and Wan (2013), 

Edited by Dr. Michael Nones (CO-EDITOR-IN-CHIEF).

 * Mohammad Reza Khaleghi 
 drmrkhaleghi@gmail.com

 * Mohsen Najarchi 
 m-najarchi@iau-arak.ac.ir

1 Department of Water Engineering, Arak Branch, Islamic 
Azad University, Arak, Iran

2 Department of Range and Watershed Management, 
Torbat-e-Jam Branch, Islamic Azad University, Torbat-e-Jam, 
Iran

3 Department of Water Engineering, Faculty of Civil 
Engineering, Arak Branch, Islamic Azad University, Arak, 
Iran

4  Department of Natural Resources and Environmental 
Sciences, Arak Branch, Islamic Azad University, Arak, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-023-01050-3&domain=pdf
http://orcid.org/0000-0003-3611-3755


420 Acta Geophysica (2024) 72:419–432

1 3

Nofal et al. (2015), Priyanka and Mahesha (2015), Naghibi 
et al. (2017a, b), Vaheddoost and Aksoy (2018), Azari et al. 
(2021), and Zarafshan et al. (2022), conducted field and ana-
lytical studies on quantitative and qualitative parameters of 
groundwater.

To know the status of groundwater resources, it is nec-
essary to make an accurate prediction of the fluctuations in 
the level of these resources. This prediction and modeling 
of the behavior of aquifers are not easily possible due to 
the complexities of these systems. Therefore, due to the 
many problems of modeling aquifers with mathematical 
models, computer models have been used by researchers 
to predict the water level in aquifers. On the other hand, 
computer models have provided a tool for managing water 
resources (Gualbert and Essink 2001), and nowadays, the 
use of software mathematical models for monitoring and 
managing groundwater has developed significantly (Cho 
et al. 2011; Wu et al. 2014; Gholami et al. 2018; Nadiri 
et al. 2018). In the meantime, by using simulation soft-
ware, conditions similar to what exists in nature can be 
created. In this context, one of the effective and fast meth-
ods of studying how to move, check the balance, and man-
age the use of groundwater is indirect methods of study, 
that is, the use of computer models. These models simu-
late the natural conditions of the aquifers with a series 
of mathematical relationships. If a model is accurate, it 
can be used to predict the state of water resources in the 
future and examine the impact of applied management 
conditions. It should be noted that artificial intelligence 
and soft computing methods can model various nonlinear 
and complex problems, which have recently been widely 
used to estimate and simulate the flow of salty water into 
freshwater aquifers (Coppola et al. 2003; Nourani et al. 
2008; Karthikeyan et al. 2013; Hamed et al. 2015; Agarwal 
and Garg 2016; Naghibi et al. 2017a, b; Azari et al. 2021; 
Gandhi and Patel 2022; Zarafshan et al. 2022). For exam-
ple, Lallahem et al. (2005) evaluated the GPMs changes 
using an artificial neural network (ANN) and concluded 
that ANN has a good performance in GPMs estimation. 
Ioannis (2005) used the ANN model with the backpropa-
gation (BP) algorithm and Levenberg–Marquardt (LM) 
algorithm to estimate the GPMs. They concluded that the 
ANN model can provide an acceptable estimate for future 
GPMs using limited data. Krishna (2008) used ANN to 
model groundwater in the coastal city of Kakinada in India 
and concluded that this model provides the best prediction 
with the error BP algorithm and LM algorithm. Rakh-
shandehroo et al. (2017) and Azari et al. (2021) deter-
mined the parameters of the unlimited groundwater table 
using ANN. They used the BP algorithm to train the ANN 
model. Roshni et al. (2019) estimated the fluctuations of 
GPMs in composite aquifers by feed-forward ANN and a 
hybrid model of Violet-ANN. By examining the results of 

numerical models, they stated that the combined model 
simulated the objective function values with better accu-
racy. Moreover, GIS is one of the most practical tools in 
decision-making and has caused many people in various 
fields to use it as a powerful tool (Sahour et al. 2020). 
Thapa et al. (2017) used multi-influencing factors (MIF) 
and GIS to analyze potential zones in the Birbhum district, 
West Bengal.

On the one hand, due to the large extraction of ground-
water tables, the modeling of quantitative and qualitative 
parameters of these sources of drinking water supply is very 
important. On the other hand, artificial intelligence tech-
niques and numerical models have acceptable accuracy. In 
addition, the high speed of calculations and reduction of 
laboratory costs and field studies are other advantages of 
using numerical methods. Also, recently numerical models 
have been widely used to simulate various problems and 
their popularity is increasing day by day.

In the Arak catchment basin, due to the low surface cur-
rents, the main source of water supply for the region is the 
groundwater, which is fed from the alluvial and limestone 
aquifers of the Arak plain. Observation of the 10-year unit 
hydrograph of Arak plain showed that the GPMs has a draw-
down of about 6 m during this period. Therefore, it is very 
important to control what is taken from the aquifer. In gen-
eral, the effective factors in the fluctuations of the GPMs 
include the type of transmissivity of aquifer formations, 
GPMs drawdown, topography (the height of the well site 
on the level of the watershed), the groundwater exploita-
tion values in the maximum operating radius of the well and 
the distance from water resources (Brunner and Kinzelbach 
2005; Zhang 2001).

In recent years, the Arak Plain watershed has become 
one of the critical plains due to the drawdown in the fluc-
tuations of groundwater level, the increase in population, 
and also the land use changes (transformation of pastures 
into agricultural lands). Identification and zoning of GPMs 
is an important and necessary step in the comprehensive 
management of the Arak plain watershed. According to the 
review of the conducted studies, so far no comprehensive 
study has been conducted in connection with the zoning 
of GPMs in the Arak plain watershed. Also, performing 
the modeling process is challenging due to the complexity 
of the controlling factors and the need for various inputs. 
Therefore, it is necessary to carry out the present research 
to evaluate and manage this watershed to prevent and 
reduce the damages caused by the decrease in the volume 
of groundwater. This study aims to use the multivariate 
regression (MLR) method and ANN to estimate GPMs 
fluctuations and compare the performance and efficiency 
of these two methods in simulating GPMs fluctuations in 
the Arak plain. Therefore, the purpose of this research is 
the quantitative interpretation of the Arak plain aquifer 
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system. In this study, the recharging and discharge status 
of the Arak Plain aquifer is investigated. This leads to the 
long-term management of the aquifer and makes appropri-
ate decisions by the planners.

Methods and materials

Study area

The studied area is located in the central province of Arak, 
which has a semi-arid climate, an average annual rainfall 
of 280 mm, and a temperature of 18 °C (Ghadimi 2015). 
The Arak aquifer is located between the Arak Mountains 
in the south and Miqan playa in the north of Arak and 
is fed by the two rivers Qara Kahriz and Aman Abad in 
the south and east of Arak city. These rivers pass through 
agricultural lands and various industries on their way. Qara 
Kahriz River in Arak plain is affected by urban sewage 
and industrial effluents. The Amanabad River also passes 
through the Arak garbage dump in the Amanabad plain. 
Geologically, the area is located in the Sanandaj-Sirjan 
zone, which contains poorly metamorphosed rocks, includ-
ing Jurassic shale, sandstone, and slate, as well as Creta-
ceous crystallized limestone (Ghadimi et al. 2016). The 
bottom rock of the aquifer is Cretaceous crystallized lime-
stone (Fig. 1). The Arak plain between the Arak Moun-
tains in the south and Miqan playa in the north has drink-
ing water wells that have been affected by the calcareous 
composition of the highlands and the salty layers of the 
Miqan playa (Ghadimi et al. 2015).

Methodology

Due to the lack of comprehensive quantitative and qualita-
tive information about water resources is limited in Iran, 
it important to use different methods and models to esti-
mate the quantitative and qualitative parameters of water 
resources. In this research, GIS software version 10.3 was 
used to prepare quantitative groundwater potential maps 
(GPMs) of the studied areas. Also, the MLR method was 
used to provide a linear model to estimate the average depth 
of the groundwater aquifer in the Arak plain. For this pur-
pose, the average GPMs in the Arak plain, as a dependent 
variable, and the factors of water transmissivity of the aqui-
fer formations, altitude, average precipitation of the region, 
the amount of evaporation, and the distance from the water 
resources are considered as independent variables and MLR 
analysis is done in SPSS software environment. It is done 
to present a linear model. In the next step, the presented 
model was evaluated and evaluated by applying it in places 
where its statistics and information were not used to present 
the model, and finally, by applying this model in the GIS 
environment, the GPMs for the study area will be prepared.

Effective factors in the GPMs drawdown

In this part of the study, the values of the annual drawdown 
of the GPMs were used as the output of the ANN and the 
effective factors in the fluctuation of the water table depth 
were used as the inputs of the network in the modeling pro-
cess. The input factors of the network or the effective fac-
tors in the fluctuations of the GPMs include groundwater 

Fig. 1  The studied area in Markazi Province
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exploitation values, depth of the water table, transmissiv-
ity of aquifer formations, topography (slope and height), 
location in the watershed, distance from water resources 
(recharging the water table), annual precipitation, annual 
evaporation and distance from industries and residential 
centers. Therefore, it was estimated as follows for the outlet 
and inlet study wells of the network. Therefore, for the study 
wells, the outlet and inlets of the network were estimated as 
follows.

Groundwater depth

Based on the observation statistics of the groundwater depth 
in the study wells, the values of the average groundwater 
depth were determined. Then, by using the data of the aver-
age groundwater depth and also the interpolation capabilities 
of the GIS, the spatial distribution of the annual average 
groundwater depth in the Arak plain was obtained.

Transmissivity of aquifer formation

According to Wei et al. (1990), GPMs is very sensitive to 
transmissivity (Wei et al. 1990). Therefore, it is one of the 
most important hydrodynamic parameters of the ground-
water. Based on the data from Markazi Regional Water 
Authority (MRWA) and pumping tests in the study wells, 
the transmissivity of aquifer formation has been determined 
in the location of each of the study wells (MRWA). Then, 
the GPMs of the average transmissivity of aquifer formation 
in the Arak plain were prepared based on the figures deter-
mined in the wells and the determination of homogeneous 
levels, using geological and hydrogeological GPMs by the 
MRWA. Transmissivity values ranged from 2013 to 11,675 
 m2/day for the studied wells.

Groundwater exploitation values 

Determining the amount of groundwater exploitation values 
is one of the most important and difficult inputs. It is dif-
ficult to access accurate information about exploitation val-
ues, especially regarding agricultural wells in Iran, because 
these wells do not have smart contours. For this purpose, the 
data of all rural and urban drinking water wells and indus-
trial wells were obtained from the MRWA, and their annual 
groundwater exploitation values were determined.

Annual precipitation and evaporation

To estimate the spatial distribution of precipitation and 
evaporation at the study level, the statistics of normal val-
ues of precipitation (rain gauge, climatology, and synoptic 
station) and annual evaporation (evapotranspiration station) 
in thirty years were used in the GIS environment. In this 

regard, we have used the interpolation technique in the GIS 
environment and a GPMs or raster layer of average annual 
precipitation and evaporation was prepared.

Topography

The 10 m contour lines of topographic GPMs have been used 
to prepare a 10 m digital height model, and slope map and 
determine the location of the well on the watershed level.

Distances from water resources

All the rivers and lakes of the study area were investigated 
based on topographical maps and satellite images, and a map 
of the distance from water resources was prepared in the GIS 
environment.

Distances from manufacturers and settlement areas

An information bank of the province's industries has been 
prepared and checked on satellite images. Residential areas 
were also prepared based on topographical maps with a scale 
of 25,000 and checked using satellite images. Then, distance 
maps from manufacturers and settlement areas were pre-
pared in a GIS environment.

Modeling stage

Presenting the model with the MLR method

Statistical analyses were done using SPSS software in a 
step-by-step manner. The average GPMs drawdown was 
considered a dependent variable and the factors influencing 
it were considered independent variables. In the next step, 
the accuracy and efficiency of the presented model were 
evaluated in the places of Arak Plain where the statistics 
and information were not used to present the model, and the 
estimated values, which included the average GPMs draw-
down value for that place, were reported with the average 
values. They were compared by the TAMAB (80 percent 
of the data were used to train the model and 20 percent of 
the data were used to test the model). With this method, a 
linear model was presented, which requires average values 
of surface water drawdown, such statistics are available only 
in the range of hydrometric stations, and on the other hand, 
by removing this factor, the resulting linear model is not 
significant. Therefore, a nonlinear model based on the two 
factors of transmissivity of aquifer formations and distance 
from water resources was presented to estimate the average 
GPMs drawdown, and the effectiveness of this nonlinear 
model was evaluated.
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Prediction of GPMs drawdown by using ANNs

Simulating the groundwater system is not easily possible due 
to the complexities of these systems. This is while ANNs as 
black box models with their high capabilities are very suitable 
for modeling complex and nonlinear systems. Therefore, due 
to the many problems of modeling aquifers with mathematical 
models, ANNs have been used by researchers to predict the 
GPMs in aquifers.

For the modeling process, different ANNs were used to 
reach an optimal network to estimate the annual drawdown in 
GPMs. In this regard, the drawdown values were considered 
as output and all effective factors as network input. An exam-
ple of the input and output data of the ANNs is presented in 
Table 1. At first, the data were normalized and then randomly 
generated. In the next step, the data were divided into three 
categories: training data (65% of data), validation data (10% 
of data), and test or validation data (25% of data). Also, to 
evaluate network inputs and determine the main factors of the 
GPMs drawdown, a correlation analysis between inputs and 
outputs was done.

Performance evaluation of the models

To evaluate the efficiency of the used methods, error indices 
and correlation between the estimated and observed values 
have been used in the training and testing stages. Also, the 
observed values of GPMs drawdown in study wells were 
superimposed on the simulated annual GPMs and the accu-
racy of the simulated and the observed GPMs drawdown val-
ues was compared and investigated. The performance of the 
two methods was evaluated by comparing the predicted GPMs 
drawdown with the recorded rates on the testing subset using 
the mean squared error (MSE), the coefficient of determination 
(R sqr), and the mean absolute error (MAE), and Nash–Sut-
cliffe coefficient (NSE) in the simulation.

(1)MSE =

∑
(Qi −

∧

Qi)

n

where Qi is the observed value, Q̂i is the simulated value, 
Qi is the mean of the observed data, Q̃i is the mean of the 
simulated data, and n is the number of data points. These cri-
teria were used to evaluate the ANN performance in GPMs 
drawdown modeling because the inputs and output data were 
parametric (quantitative) variables since these criteria are 
common in model performance evaluation (Gholami et al. 
2018). The optimum model is the model that produces the 
highest R squared and NSE and the lowest NRMSE values.

Mapping of GPMs drawdown by coupling ANN 
and GIS

To prepare the average GPMs, the optimal method for mode-
ling and mapping the average GPMs drawdown will be used. 
The use of GIS along with the optimal method provides a 
good basis to support the modeling of average GPMs draw-
down (Solomatine and Ostfeld 2008). First, the quantitative 
values of the model parameters, including the transmissivity 
of the aquifer formation, the groundwater exploitation values 
in the maximum operational radius of the well, the distance 
from the water resources, and the topography (site height) 
are evaluated using data, GPMs and digital layers in the GIS 
environment. Then, the modeling process is done to simulate 
the average GPMs drawdown. Then, the tested and optimal 
model is selected to predict the average GPMs drawdown in 
the studied plain. Then, the raster layers of model inputs are 
prepared and combined with a one-kilometer pixel overlap 
analysis. The model inputs in the GIS environment and the 
average GPMs drawdown depth are estimated using the best-
tested model for the entire plain. Finally, the average GPMs 
drawdown of the plain is prepared using GIS.

Results

The results of the MLR method

As mentioned, the MLR method was used to provide the 
model to estimate the average drawdown of groundwater. 
The results of using the MLR method to present the model 
were presented in the form of a linear model (Table 1).
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,

Table 1  The results of running the linear model with the MLR 
method (R2 = 0.632)

Model Sum of 
squares error 
(SSE)

df Mean abso-
lute error 
(MAE)

F Sig.

Residual error 
(RE)

1.525 3 0.5084
1.168 24 0.0486 10.45 0.000
2.693 27
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In the study area of Arak plain, 800 wells with GPMs 
records have been identified be investigated. A summary 
of the characteristics and the study position of the current 
research is presented in Tables 2 and 3. Table 2 shows a sum-
mary of the hydrological characteristics of the Arak plain.

Also, to determine the optimal inputs and to determine 
the main factors of GPMs drawdown in the study area, the 
correlation analysis between the inputs and outputs of the 
network has been used, and their correlation coefficients are 
presented in Table 4.

As can be seen, several factors affect the changes in the 
GPMs, such as groundwater exploitation values, the trans-
missivity of aquifer formations, annual precipitation and 
evaporation values, altitude of the place, and distance from 
water resources. Also, based on the correlation coefficient, 
the most important factors include the transmissivity of aqui-
fer formations (0.74), height (0.56), groundwater exploita-
tion values (0.47), and distance from water resources (0.41). 
Regarding the transmissivity variable  (m2.day−1), there is 
a direct relationship between the transmissivity of aquifer 
formations and the depth of the water table. Also, this rela-
tionship is a direct relationship regarding the variables of 
location height (meters), annual evaporation, distance from 
water resources, and annual exploitation, and an inverse 
relationship regarding the variable of annual precipitation.

The direct relationship between the transmissivity of 
aquifer formations and the depth of the water table means 
that the higher the transmissivity of the aquifer forma-
tions, the greater the GPMs due to the higher possibility 
of exploitation with a higher pumping flow rate (Nordqvist 
et al. 2008). Precipitation, as one of the main factors of natu-
ral nutrition of underground water tables, has a significant 
and weak inverse relationship with the water table depth 
values (Doll et al. 2014). Evaporation due to the reduc-
tion of surface water resources has a significant and weak 
direct relationship with the water table depth values in the 
region (Naghibi et al. 2017a, b). Regarding the altitude vari-
able, Gholami et al. 2018) studies indicate that low-altitude 
areas, due to their high ability to absorb water, have a high 
GPMs and less drawdown due to harvesting. According to 

the results, lower elevations have more groundwater poten-
tial than higher elevations and the water table is higher in 
them. One of the reasons for this is the creation of more 
runoff at higher altitudes and the recharging and infiltra-
tion of groundwater at lower altitudes, which is based on 
the results of Davoudi Moghadam et al. (2015), Arabameri 
et al. (2019) and Rahmati et al. (2018). The slope parameter 
showed that in lower slopes due to the decrease in the runoff, 
the amount of underground water potential is higher, which 
is the result of more water recharge in these areas, and it is 
consistent with the results of Lee et al. (2012 and 2019) and 
Golkarian and Rahmati (2018).

Also, by moving away from waterways, the amount of 
groundwater potential in the studied area has decreased, 
which shows the connection between groundwater and 
waterways (Haqizadeh et al. 2017; Naghibi et al. 2017a, b). 
Concerning the distance from water resources, Sahour et al. 
(2020) stated that the shorter this distance is, the fluctuations 
of the GPMs also decrease because the drawdown caused by 
harvesting is compensated through river recharging.

Table 2  A summary of the hydrological characteristics of Arak plain

Characteristic Value

Altitude (meters) 1700
Area (square kilometers) 3400
Slope 8
Average temperature (Celsius) 13.8
Normal annual precipitation (mm) 280
Mean humidity (percent) 46
Mean values of evaporation (mm) 1535.6
Climate (Demartin classification) Semi-dry cold

Table 3  Characteristics of Arak aquifer (Mohammadi Ghaleni et  al. 
2011)

Characteristic Value

Aquifer type Unconfined
The area of the plain (square kilometers) 3392.7
Operating status Banned
The number of deep wells 1458
The number of semi-deep wells 1554
Total discharge (million cubic meters) 702.35
Drinking water consumption (million cubic meters) 76.424
Agricultural consumption (million cubic meters) 612.390
Industry consumption (million cubic meters) 13.534
Average water depth (meters) 27
Average annual water level drawdown (meters) 0.46
Average reserve ratio (percentage) 0.03
Aquifer area (square kilometer) 1946

Table 4  Correlation coefficients (Pearson) between the GPMs and the 
parameters affecting the GPMs

Factor Correlation 
(Pearson) with the 
GPMs

Sig. (P value)

Transmissivity 0.74 0.000
Annual exploitation 0.47 0.000
Annual rainfall −0.005 0.002
Annual evaporation 0.18 0.000
Height 0.56 0.000
Slope 0.06 0.003
Distance from water resources 0.41 0.00
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The contour lines of the groundwater of the Arak aqui-
fer in 2015 are drawn in Fig. 2. As shown in Fig. 2, the 
depth of GPMs in the central part of Arak is lower than 
in other parts. This is related to the lower height of the 
center of the plain compared to the surrounding area of 
the Arak plain.

Spatiotemporal changes of GPMs in the study area

Most observation wells in the Arak aquifer have a draw-
down between 0 and 5 m. On average, in 62% of the area 
of the Arak aquifer, the GPMs are between zero and 3 m, 
in 22% between 3 and 6 m, in 8% between 6 and 9 m, in 
7% between 9 and 12 m and in 0.6% it has a drawdown 
between 12 and 15 m. Figure 3 presents the time changes 
of the GPMs of the Arak aquifer in a sample well.

The trend of time changes in the GPMs in the study 
area

The annual average level of the GPMs in one of the sample 
wells is plotted in Fig. 2 and a line has been fitted on it to 
determine the trend of changes in the level of the GPMs. 
In the equation of the fitted line, y represents the GPMs in 
meters, x is time in years or months, and R2 (the coefficient 
of determination) represents the percentage of total changes 
that are determined by the linear relationship between the 
GPMs and time.

The negative slope of the fitted line (a negative sign of 
the x coefficient) indicates the drawdown in the GPMs in the 
sample wells. The GPMs of the Arak aquifer have decreased 
over time, but due to the smaller coefficient of x in these 
wells, the intensity of the decrease in the wells of the Arak 
plain has not been so severe. The high coefficient of determi-
nation in the fitted lines on the changes of the GPMs in Arak 
Plain indicates the existence of a linear relationship between 
the fluctuations of the GPMs with time and its strong tem-
poral structure.

The results of the ANN application

The simulation of groundwater systems is far different from 
resurfacing water due to the complexities of these systems. 
This situation is especially evident in the optimization of 
these systems. In the present research, the GPMs for the 
studied plain was estimated based on secondary data, obser-
vation wells, and the ANN model. It should be noted that 
84 months of observation values were used for training arti-
ficial intelligence models and 41 months for testing. The 
results showed that the ANN model had a high ability in 
simulating the GPMs in the training (R sqr = 0.96) and test-
ing or validation stages (R sqr = 0.85). In this regard, the 
average GPMs in 800 piezometric wells were estimated and 
considered as the output of the system. Also, the factors 
of transmissivity of aquifer formations, GPMs drawdown, Fig. 2  Map of the depth of underground water in the Arak plain

Fig. 3  Time changes of the 
GPMs of Arak aquifer in a 
sample well
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topography (height of the well site on the level of the water-
shed), annual evaporation values, groundwater exploitation 
values in the maximum operating radius of the well, and 
distance from water resources were considered as system 
inputs. System training, verification, and testing were done 
in the environment of Neurosolution software. The ANN 
evaluation results are presented in Table 5, which shows the 
error values in the training phase. Based on this, acceptable 
results were observed in the training phase. Also, the trans-
missivity of aquifer formations, GPMs drawdown, topog-
raphy (the height of the well site on the level of the water-
shed), the groundwater exploitation values at the maximum 
operating radius of the well, and the distance from water 
resources are the most important inputs or effective factors 
in the amount of GPMs drawdown. In the end, using the 
tested system and the raster layers of the mentioned inputs in 
the GIS environment, zoning the GPMs drawdown was pre-
pared and its accuracy was evaluated and confirmed by com-
paring the estimated values and observations of the GPMs 
(R sqr = 0.96). Digital GPMs of these factors were prepared 
in the GIS environment, which is presented in Figs. 4 and 5.  

The performance evaluation results of the ANN model 
in simulating the GPMs in the training phase are presented 
in Table 5. The correlation between observed and simulated 
data (R) for optimal model input is equal to 0.96.

The results showed that the effective factors in the GPMs 
and the best inputs in simulating the GPMs include the trans-
missivity of aquifer formations, GPMs drawdown, topog-
raphy (the height of the well site on the level of the water-
shed), the groundwater exploitation values at the maximum 
operating radius of the well and the distance from water 
resources. The performance evaluation results of the ANN 
method in simulating the drawdown of GPMs in the test or 
validation stage are presented in Table 5 and Fig. 5. Table 5 
shows the error of the training phase, and according to them, 
good results were obtained in the training phase. In such 
a way, regarding the estimation of the GPMs drawdown 
index, the ANN model has acceptable efficiency and accu-
racy (R = 0.96). Such results are consistent with the results of 
other researchers (Nourani et al. 2008; Naghibi et al. 2017a, 
b; Sahour et al. 2020). Also, in the training phase, especially 
in simulating the GPMs, the methods used have acceptable 
efficiency based on statistical criteria (R squared, NSE, and 
NRMSD), so that having the least error in similar values 

constructed had the highest agreement between observed 
and simulated values (Table 5). The results of the validation 
or test phase (Table 5) also showed that based on the NSE, 
NRMSD, and R-squared indices, the ANN model method 
is an effective method for simulating the depth of the water 
table. Figures 5, 6 and 7 show the results of the comparison 
between the simulated values and the observed values of 
the table depth in the test phase, which shows the efficiency 
of the ANN method between the simulated values and the 
observed values. Then, the estimated depth values of the 
ANN method for the entire surface were presented in the 
GIS environment as a GPMs of the annual depth values of 
the water table (Fig. 8). To evaluate the efficiency of the 
method used and the accuracy of the obtained results, the 
annual observation figures of the GPMs in the study wells 
are overlapped on the mentioned GPMs. The comparison of 
the GPMs of water table depth values with observed depth 
values indicates the accuracy of the results and the efficiency 
of the methodology used (R sqr = 0.96).

The purpose of this study is to evaluate the GPMs in 
places without data and to make its results available to the 
public. At this stage, GIS capabilities were used to monitor 
the results of the ANN model as a raster layer of the GPMs, 
and the results are presented in Fig. 7. A comparison of 
observed values with areas of estimated GPMs shows the 
high performance of the ANN model (Krishna et al. 2008; 
Agarwal and Garg 2016).

Discussion

Two methods of MLR and ANN were used with the same 
data to simulate GPMs drawdown in Arak plain. The results 
obtained from both methods indicate that the transmissivity 
of aquifer formations, GPMs drawdown, topography (the 
height of the well site on the level of the watershed), the 
groundwater exploitation values at the maximum operating 
radius of the well, and the distance from water resources 
are the most important inputs or factors. They are effective 
in lowering the groundwater table of the Arak plain. There-
fore, the mentioned parameters were considered as inputs 
for simulating the drawdown of the GPMs by MLR models 
and ANN. Kamasi et al. (2016) considered rainfall, tempera-
ture, and river discharge as factors affecting the GPMs of 

Table 5  Performance of the 
two models in the training 
and testing stages of GPMs 
modeling

NSE: Nash–Sutcliffe efficiency. NRMSD: Normalized root-mean-squared deviation. R squared: Coefficient 
of determination

NSE NRMSD R squared

Training Testing Training Testing Training Testing

ANN 0.95 0.8 0.01 0.5 0.96 0.85
MLR 0.82 0.43 0.41 0.83 0.82 0.71
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the Silakhor plain aquifer. Naghibi et al. (2017a, b) empha-
sized on higher importance of altitude, TWI, slope angle, 
and slope aspect in groundwater assessment. The review of 
scientific literature indicates the growing trend of research in 
the field of various effective factors in the zoning of GPMs 
(Rahmati et al. 2016; Naghibi et al. 2017a, b; Rakhshan-
dehroo et al. 2017; Azari et al. 2021; Gandhi and Patel 2022; 
Zarafshan et al. 2022). The results of Rahmati et al. (2016) 
showed that altitude, drainage, density, lithology, and land 
use had the highest importance in the zoning of GPMs. A 
comparison of these studies indicates that the importance of 
each of the effective variables is a function of implemented 
indicators and methods and hydrological, and geological 
characteristics of the destination aquifer.

The average drawdown of the GPMs in the wells of Arak 
is 3.38 m and the highest drawdown is 15.33 m and the 
annual drawdown is 2.19 m. Akbari et al. (2009) reported 

the average drawdown in the GPMs in the Mashhad plain of 
about 0.6 m, which is less than the drawdown in the Arak 
plain. This drawdown is due to several important factors. 
The first and most important reason is the indiscriminate 
extraction of the groundwater resources of the Arak aquifer 
and the second reason is the occurrence of recent droughts 
in the region.

Evaluating the efficiency of linear models with the MLR 
method showed that the maximum correlation between the 
estimated values and the observed values does not exceed 
0.62. Instead, using the same data to evaluate the efficiency 
of the ANN, the correlation between the estimated values is 
0.68. Therefore, the efficiency and accuracy of the ANN in 
the simulation of GPMs drawdown are more than the MLR 
method.

According to Table 5, in each of the MLR and ANN mod-
els separately, the accuracy of simulating the parameters 

Fig. 4  Transmissivity map of aquifer formations in the study area (square meters per day)
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Fig. 5  Hydraulic conductivity map of aquifer formations in the study area (meters per day)

Fig. 6  Scatter diagram of 
measured and simulated data of 
GPMs using ANN model
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of the GPMs was in the model with a hyperbolic tangent 
sigmoid transfer function; so that NRMSD and NSE had 
the lowest value and R-squared index had the highest 
value. Therefore, the optimal model for estimating GPMs 

parameters is ANN with a hyperbolic tangent sigmoid trans-
fer function. Alipour (2012) predicted the GPMs of North 
Mahyar plain using the ANN model and fuzzy inference 
system. The optimal learning algorithm was obtained based 

Fig. 7  Results of GPMs simula-
tion using ANN and MLR

Fig. 8  Map of annual GPMs values
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on the least mean squared error of Levenberg–Marquardt. 
The transfer function of the hidden layer and the output of 
the sigmoid and linear logarithms were obtained. Sreekanth 
et al. (2009) tested the evaluation of ANN models such as 
the LM algorithm in predicting the groundwater level in 
the Maheshwaram watershed in Hyderabad state, India. 
The results showed that the model is completely consistent 
with reality and the obtained data have acceptable accuracy 
and certainty (R2 = 0.93, RMSE = 4.50). Keykhosravi et al. 
(2019) used the perceptron and radial base ANN model to 
predict the dust of the Sabzevar cement factory. The results 
indicated a higher accuracy of the perceptron ANN model 
than the radial basis model in predicting the amount of dust.

Also, as seen in diagrams 4 to 6, the highest overlap with 
the measured values of the GPMs parameter is related to 
the ANN model. In the ANN model, the BP algorithm is 
used for training. This method usually gives relatively good 
results for prediction, but its problem is getting stuck in the 
local optimum and slow speed in reaching the answer.

As it is clear in Table 5, a high value of the correlation 
coefficient was obtained, which indicates the closeness of 
the predicted values with the measured data and the ability 
and high accuracy of the relationships between the input 
and output variables. These results show the acceptable 
accuracy of the ANN and the good and efficient learning 
of the network using the desired training algorithm and the 
data provided to the network. According to the conducted 
research, the result of using the ANN model in simulating 
and predicting the average water drawdown can be prop-
erly and optimally evaluated and its sufficient ability, in this 
case, can be confirmed. The results of research by Nourani 
et al. (2008), Gholami and Ghomi (2013), Agarwal and Garg 
(2016), Gholami et al. (2018), and Sahour et al. (2020) also 
indicate the high efficiency of the ANN in estimating and 
simulating groundwater parameters. The approach of this 
research was ANN with a multi-layer perceptron structure 
with the Levenberg–Marquardt algorithm. The results of 
past research also indicate the high efficiency of the ANN in 
estimating and simulating groundwater parameters (Gholami 
and Ghomi 2013).

Conclusion

In recent years, with the increasing population and indus-
trial development, the use of underground water resources 
has multiplied. With the continuation of this practice, the 
level of underground water has draw-downed day by day. 
Therefore, identifying these resources and using them opti-
mally means a sustainable and permanent harvest of this 
God-given wealth.

Groundwater modeling with the help of the ANN model 
has a special position due to the ability to learn by example 

and without the need for equations governing the phenom-
enon. The present study was conducted to simulate the 
parameters of the GPMs of Arak plain using MLR models 
and ANN in the environment of GIS software and finally 
compare their results with the measured data. At first, based 
on the results of the calculation of the correlation coefficient, 
the highest correlation coefficient of the average drawdown 
of groundwater is related to the parameters of the transmis-
sivity of aquifer formations, GPMs drawdown, topogra-
phy (height of the well site on the level of the watershed), 
groundwater exploitation values at the maximum radius of 
the well and the distance from water resources. Therefore, 
the mentioned parameters were considered as input for simu-
lating the average drawdown of the GPMs. Next, the results 
obtained from the ANN model showed that the accuracy 
of simulating GPMs parameters is the ANN with sigmoid 
tangent transfer function.

Modeling and simulating GPMs drawdown through 
ANN has a special place due to its ability to learn by pro-
viding examples without the need for equations governing 
the phenomenon. ANNs are one of the most useful models 
in predicting and modeling complex hydrogeological and 
hydrological issues. By choosing the right type and num-
ber of input factors and using the right and compatible type 
of ANN and its proper calibration, it can be said that this 
technique is a very effective and suitable tool for estimating 
GPMs drawdown in the Arak plain.

In general, it can be stated that the ANN can extract the 
law governing the data, even the confusing data. This fea-
ture of ANNs can be considered one of the most promi-
nent features of this technique compared to other methods. 
By choosing the right type of learning technique, the right 
number of neurons and hidden layer, the right type and the 
number of input factors, as well as its proper calibration, it 
can be said that this technique is a very effective and suitable 
tool for estimating GPMs drawdown in the Arak plain. Also, 
this model can be useful for facilitating the development and 
implementation of quantitative and qualitative strategies for 
groundwater and it is a step in making management deci-
sions to improve the groundwater of watersheds.

The results of both methods indicate that factors such 
as the transmissivity of aquifer formations, GPMs draw-
down, topography (the height of the well site on the level of 
the watershed), the groundwater exploitation values at the 
maximum operating radius of the well, and the distance from 
water resources are the main factors of groundwater loss. 
But the effectiveness of ANN in estimating groundwater loss 
is higher than the MLR method.

The results of this research showed that the ANN model 
with a backpropagation algorithm has the highest network 
efficiency, the lowest percentage of error, and a high ability 
in predicting the time of hydrogeological phenomena. As a 
result, this model can accurately predict the underground 
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water level in the studied area and avoid spending more time 
and money to dig more piezometers. From the point of view 
of methodology, this research can solve many problems in 
predicting the time of underground water level in aquifers. 
The results of the ANN model showed the high power of 
this nonlinear method in estimating the desired parameter. 
The approach of this research was an ANN with a multi-
layered perceptron structure. Therefore, by using ANN, we 
can estimate the GPMs drawdown or even other quantitative 
and qualitative water parameters in places without statistics 
and use them for optimal management of water resources.
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