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Abstract
Rock physics templates (RPT) and modeling contribute significantly to accurately and fast characterization of hydrocarbon 
reservoirs. This study strives to characterize lithology and pore fluid saturation for a carbonate reservoir in southwest Iran 
using RPT by well-logging data in a zone with a thickness of almost 100 m. To discriminate lithology, Greenberg–Castagna 
and Gardner models were applied. Also, velocity ratio—Gamma-ray (GR) and density—GR templates were implemented 
to investigate more. Results show that the researched zone’s lithology consists of a considerable amount of limestone, fol-
lowed by dolomite, and a small amount of shale, without sandstone, which matches excellently with the lithology column 
and geophysical logs. For fluid discrimination, two different rock physical directions were impalement. Firstly, the rock 
physics model of the study area was built through Xu and Payne’s model. Then, velocity ratio—acoustic impedance template 
(VP/VS–AI) was applied to modeled data scaled with resistivity and porosity and then successfully validated with oil and 
water saturation. Findings show that PRT organizes data concerning similar features (here, aspect ratio), causing easy, fast, 
and more accurate analysis, and fluid content in the study includes oil and water, which the figure for oil is much more. In 
different oil and water saturation, non-modeled data were investigated through VP/VS − VS, VS − VP, and shear impudence 
(SI)—AI template supported by pore-pressure (PP) information to further research fluid distribution and its effect in the 
second direction. Regarding the rock physical analysis, the main reason for the decrease in seismic velocities and impedances 
is high pore pressure due to high oil saturation.

Keywords  Rock physics · Greenberg and Castagna model · Gardner model · Lithology identification · Fluid 
discrimination · Carbonate reservoir

Introduction

Lithology

Reservoir characterization supplies geologists and petroleum 
engineers with valuable information on various rock and 
fluid properties playing an important role in managing and 

developing all stages of a hydrocarbon reservoir (Cross et al. 
2022). Understanding lithology correctly can be advanta-
geous to forecasting the volume of hydrocarbon in place and 
lessening uncertainty over reservoir characterization, for it 
is directly connected to porosity and permeability (Mondal 
and Singh 2022). There is a wide range of methods for lithol-
ogy identification, one of which is utilizing coring samples 
and laboratory measurements such as microscopic image 
analysis (i.e., thin section) or other analyses like CT scans 
of cores and electron microscope (SEM) (Cao et al. 2022; 
Temizel et al. 2022). Extensive research has long been per-
formed through well-logging data to distinguish lithology 
(Das and Chatterjee 2018; Islam et al. 2021), which recently 
using tools such as nuclear magnetic resonance (NMR) very 
much considered (Singh and Ojha 2022). Seismic analysis 
and seismic inversion are commonly used to determine 
lithology (Fawad et al. 2021; Radwan et al. 2022). Artificial 
intelligence (AI) methods have recently played a significant 
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role in determining lithology (Taheri et al. 2022). A myr-
iad of AI approaches was employed, which support vector 
machines (SVM), convolutional neural networks (CNNs), 
and deep learning (DL) methods are the most commonly 
used (Deng et al. 2017; Wang et al. 2022a, b; Xu et al. 2022). 
This point must be mentioned that in AI methods, informa-
tion such as core, well–logging data, images, and seismic 
data are employed as data sets for input data. Electrofacies 
and geostatistics approaches are other techniques used to 
evaluate and identify lithology (Karimian Torghabeh et al. 
2022; Mirhashemi et al. 2022). The mentioned methods are 
more likely to demand a great deal of money or be costly 
in some situations. In order to deal with the problems, rock 
physic techniques (RPT) can provide fast, easy, and accurate 
discrimination for underground projects. Many researches 
utilized PRT to discriminate lithology, some of which are 
listed as follows: (Huang et al. 2021; Hossain et al. 2022; 
Albakr et al. 2022).

Pore fluid saturation

Recognizing pore fluid distribution is a fundamental goal 
in oil and gas studies as it can control some vital param-
eters, such as pore pressure which is crucial in all stages 
of hydrocarbon investigations, especially for gas storage, 
enhanced oil recovery (EOR), and 4D seismic surveys 
(Elyasi et al. 2016; Pang et al. 2019). Various methods have 
been employed to pore fluid distribution in porous media. 
Laboratory test through coring samples is one of these, 
but it takes a lot of time and expenditure, and above all, 
maybe the fluid content of the samples will change due to 
the depth displacement and pressure changes (Wang et al. 
2020). Well-logging information has another way (Das and 
Chatterjee 2018; Teillet et al. 2021). Numerous studies show 
that seismic-based methods were also used extensively to 
discriminate fluids. These methods use the impacts of fluids 
on seismic and elastic features, including velocities (Xu et al. 
2021; Xie et al. 2022), amplitudes using amplitude versus 
offset (AVO), and impedances (Foster et al. 2021; Wang 
et al. 2022a, b), and frequency (Yang and Malcolm 2021; 
Lan et al. 2022).  Other procedures also have been employed, 
such as geostatistics (Di et al. 2021; Grana et al. 2022), dual-
porosity theory (Zhou et al. 2021; Li et al. 2022), elastic 
parameters and rock physics template (Ahmad et al. 2022; 
Abe et al. 2022), and intelligence methods (Chenin and 
Bedle 2022; Ibrahim et al. 2022).

Petroleum engineers and geologists desperately need to 
discriminate lithology and fluid content accurately and fast 
by employing available data and considering all conditions 
as much as possible in different conditions. Previous studies 
have used either very expensive and time-consuming meth-
ods or have high uncertainty. Furthermore, the preceding 
rock physics studies did not pay attention to using multiple 

PRT to reduce uncertainty and increase accuracy in a short 
period and building rock physics modeling to organize and 
classify information for providing a quick look for dis-
crimination. This study attempts to deal with the mentioned 
problems and improve the distinguishing lithology and fluid 
in hydrocarbon reservoirs. For this purpose, multiple rock 
physics templates and modeling were used simultaneously 
to evaluate their performance and cover all needed aspects. 
One of the great advantages of this study is that all results 
are validated through different information, tools, and scales; 
however, the preceding research used merely a few data to 
confirm. As a novel insight, this research uses rock physics 
modeling to engage geological features such as aspect ratio 
(AR) for pore fluid discrimination to transfer scattering data 
to organize with similar properties and validate with various 
parameters because one of the main goals of this study is to 
investigate rock physics patterns as much as possible. The 
research takes a further step and evaluates non-modeling 
data through PRT to discover events in the study area and 
compare them with modeling data.

Geological setting

The study area in southwestern Iran (Fig. 1) is in the Khuz-
estan province near the Abadan plain. A subsection of the 
Alpine–Himalayan belt, the area is considered part of the 
Mesopotamian Basin, next to the Dezful Embayment in the 
Zagros fold-and-thrust Belt (ZFTB). In general, the ZFTB 
has comprised several hydrocarbon reservoir formations, 
mainly carbonate, and different ages ranging from Triassic 
to Tertiary (Kordi 2019).

Two main elements have helped form these formations: 
different faults of this basin and distinct stages of Zagros 
folding dating back to early Cretaceous–late Tertiary. In 
particular, the surveyed region has been formed by the 
superimposition of late Tertiary folding due to Zagros Oro-
gens. Being an Upper Cretaceous (Santonian) carbonate 
formation, the target region approximately has a maximum 
thickness of 100 m on average (AbdollahieFard et al. 2019). 
Stratigraphic studies of the carbonate formation show differ-
ent fossils, namely Benthic, Rotalia, and Planktic foraminif-
era (Afghah 2016). Two shallow and deep facies exist in the 
carbonate formation, extending toward the northwest and 
southeast. However, this study is performed on the deep 
facies considered pelagic sediments (e.g., the inner neritic 
zone). The stratigraphic column of the study area can be 
seen in Fig. 2.

Regarding the geological structure, the study region is 
an anticline covered by alluvium sediments and is clas-
sified into shallow relief (Mehrabi et al. 2020). The anti-
cline is an elongated structure with low-slope ridges and a 
west–northwest–east–southeast orientation. In this structure, 
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the northeastern ridges’ slope is higher than the southeastern 
ones. From a lithological point of view, this carbonate for-
mation comprises wackestone, packstone, gray packstone, 
porous, and partly dolomitic. Also, PVT experiments indi-
cate that this formation is occupied with crude oil whose 
API gravity is almost 23. Other petrophysical properties, 
such as porosity, average water saturation, and shale percent, 
are reported to be 18.2, 20, and 8.5%, respectively.

Materials and methodology

This study aimed to diagnose the lithology and fluids type of 
a carbonate reservoir zone in the west part of Iran. A set of 
raw data obtained by well-logging operations was used. The 
raw data, being in LAS format, included these logs: density 
(RHOB), corrected gamma-ray (CGR), later log deep (LLD), 
porosity, P-wave velocity (VP), S-wave velocity (VS), water 
saturation (SW), oil saturation (SO), and volumes logs includ-
ing the volume of shale, limestone(calcite), and dolomite. Due 
to the availability of each of the log data, none of them were 
empirically estimated. The preceding logs accessibility and 
their units are presented in Table 1. It should be noted that 
P-impedance and S-impedance were, respectively, calculated 
by multiplying P-wave velocity and S-wave velocity by density.

The workflow of this study was comprised of two main 
sections: (1) lithology and (2) saturation, which would be 
clarified further below.

Lithology

Quick‑look identification

Intending to quickly know what kind of rock types there 
exists in the reservoir targets’ zone, the log data of VP, VS, 
and RHOB were imported into RokDoc software, cross-plot-
ted, and compared with two empirical rock physics models, 
Greenberg and Castagna (1992) and Gardner et al. (1974). 
The former combines P-wave and S-wave velocities, and the 
latter connects RHOB to P-wave velocity for lithological 
discrimination. These two models developed through the 
laboratory evaluations of distinct rock types greatly assist 
petrophysicists. The reason for using the empirical models 
was that both seismic data (body waves) and the intrinsic 
rock data of density had been individually involved in the 
models, reflecting any lithology changes.

Rock physics templates

Rock physics models and templates were introduced by 
Ødegaard and Avseth (2004) as a magical methodology for 
forecasting lithology and fluids. These charts, known as 
cross-plots, have been used frequently to connect seismic 
variables with non-seismic to visually detect any irregular-
ities in the reservoirs (Gelinsky 2020). Herein, two cross-
plots were selected and plotted, including VP/VS versus 

Fig. 1   Location map of the zone of interest
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CGR and RHOB versus CGR. Then, an in-depth analysis 
was made on them to find a direct relationship between the 
intrinsic rock data (of RHOB and CGR) and the seismic 
parameters (of VP and VS) for lithological distinguishment 
because multifarious clustering options have been intro-
duced to differentiate shale from limestone, sandstone, and 
dolomite using the cross-plots (Avseth and Mukerji 2002).

Well‑logging analysis

The gamma-ray logs, formation density, and neutron poros-
ity were then used and interpreted to validate the lithology 
differentiations. Being highly impacted by rock characteris-
tics and slightly impacted by fluid characteristics, the logs 
are the finest for lithological delineations (Zhou et al. 2018).

Fig. 2   Sequence stratigraphy of 
the study area (Alavi 2004)

Table 1   The well-logging data used in this survey with their standard units are available

RHOB (g/cm3) CGR (API) LLD (Ω-m) Porosity (fraction) VP (m/s) VS (m/s) SW (fraction) SO (fraction) Volume logs (fraction): 
shale—limestone—dolomite

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Saturation distinguishment

Saturation is one of the most critical data for many reser-
voir engineering calculations (Yang and Wei 2017). P-wave 
velocity (VP) is useful, practical petrophysical data for pore 
fluids detection. There exists adequate evidence that VS 
(S-wave velocity) is highly likely to help identify the fluid 
type (Avseth et al. 2010). Combining S-wave and P-wave 
velocities might help engineers with fluid-type discrimina-
tion (Pang et al. 2019). Acoustic impedance (AI), also called 
P-impedance, is an effective technique for distinguishing 
among pore fluids. The cross-plotting approach has drawn 
too much attention to calculating fluid saturation (Mavko 
et al. 2020). Herein, AI–VP/VS cross-plot, introduced by 
Ødegaard and Avseth (2004), was opted for and used as a 
fluid diagnostic tool. In addition to the two parameters of 
velocity ratio (VP/VS) and P-impedance (AI), resistivity log 
(LLD) variations were also investigated for the zone of inter-
est to infer information about the presence of water or hydro-
carbons. To better organize the velocity ratio data, VP and VS 
velocities were modified using the multiporosity model of 
Xu and Payne (2009). Building Xu and Payne (2009) in this 
case study involves several steps as follows (Fig. 3):

(a)	 Mixing different lithologies by Reuss–Voigt–Hill 
(RVH) average equations to build a solid rock matrix 
(SRM).

(b)	 Adding pore type to SRM through pore aspect ratio 
(AR) from sedimentology analysis utilizing differential 
effective medium (DEM) theory and Kuster and Tok-
söz's (1974) model to make dry rock module (DRM).

(c)	 Mixing fluids using Wood equation (1955).
(d)	 Adding the mixed fluid to DRM using the Gassmann 

equation (1951) to build fluid-saturated rock (FSR).

The mixing law of the Reuss–Voigt–Hill was initially 
used for mixing the minerals present in the solid matrix 
because each component has a different elastic character-
istic that must be taken into account when mixing, so that 

the rock physics model can be built within the boundaries 
according to its performance characteristics (Avseth et al. 
2010). Clay pores (e.g., micron-sized pores filled with bound 
water) were next inserted into the solid matrix by apply-
ing the effective differential medium (DEM) model (Xu and 
Payne 2009). To consider the pores’ diameter when estimat-
ing VP, VS, and density, the theory of Kuster and Toksöz 
(1974) was also employed. To do so, the parameter of pore 
aspect ratio, whose values were provided from the sedimen-
tological information of the study zone (see Table 2), was 
applied based on the previous theory.

Using the DEM model, two other micron-sized pores, 
e.g., water-wet and dry (non-bond-water), were inserted into 
the solid matrix system, aiming to calculate the bulk modu-
lus of the dry solid matrix.

The residual water with the hydrocarbons of oil and gas 
was mixed using the suspension model of Wood (1955), and 
then, the VP value for the fluids was estimated (Avseth et al. 
2010). After that, the fluids’ system was added to the dry 
rock system using the Gassmann equation. The objective 
was to measure the bulk modulus for the fluid-saturated rock 
system and observe how the fluid addition would influence 
the seismic properties. Considering pores’ average diam-
eter was found to help particles with similar properties set 
together (Li and Zhang 2018). The intrinsic rock property of 
porosity has established a close relationship to the presence 
or absence of fluids in the reservoir rocks—a high porosity 
in a reservoir is bound to the company of a considerable 
amount of fluids (Qing et al. 2020). Thus, the porosity effect 
on fluids distribution within the zone of interest was sepa-
rately examined in another AI–VP/VS cross-plot scaled with 
the porosity values. The cross-plot was also scaled with oil 
saturation (SO) and water saturation (SW) and analyzed to 

Fig. 3   Workflow for building rock physics model (Xu and Payne 2009) in the study area

Table 2   The aspect ratio for different lithologies in the studied zone

Lithology Limestone (calcite) Dolomite Shale

Aspect ratio (AR) 0.18 0.17 0.08
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correlate the involved parameters to each other, attempting 
to recommend a local rock physics template. A new series of 
cross-plots were designed and closely investigated to verify 
the results obtained from the cross-plots. Avseth et al. (2010) 
suggested two cross-plots: VP/VS versus VS and VP versus VS. 
The higher sensitivity of P-wave velocity to fluid changes 
than S-wave velocity was the reason for choosing the cross-
plots. The popular cross-plot of S-impedance (SI) versus 
P-impedance (AI) was also used to regard the non-seismic 
parameter of density in pore fluid prediction (Avseth et al. 
2010). It should be emphasized that the verification was per-
formed using the well-logging data, not the modeling one, 
and also by applying SO and SW simultaneously.

Results and discussion

Lithology discrimination results

Quick‑look evaluation results

The compressional and shear wave velocities data were plot-
ted versus each other and fitted with Greenberg and Castag-
na’s empirical model (1992) to guess the possible lithology 
in the study zone quickly. The results are shown in Fig. 4, in 
which X-axis represents VS and Y-axis represents VP.

The sandstone line crossed no point on the cross-plot and 
fell at the bottom of the data points, expressing that no sand 

existed in the zone. Many scatter points perfectly matched 
the two lines of limestone and dolomite, showing significant 
lithologies. Only a tiny amount of the data points was fitted 
with the shale line, indicating a low-shale formation. There-
fore, three particular lithology types could be identified based 
on the cross-plot of Greenberg and Castagna (1992) and the 
seismic velocities of VP and VS. Nonetheless, limestone was 
quite recognizable as the dominant lithology. The lithology 
prediction could be justified based on the CGR scale (Fig. 4), 
a reliable indicator of rock mineralogy (Dong et al. 2016). 
The yellow, orange, and red points were identified as shale 
lithology due to being overlaid with Greenberg and Castag-
na’s shale line. The points being of CGR values above 20 API 
designate the presence of marl, shale, or minerals with high 
levels of potassium (K19) and thorium (Th90) because sha-
ley formations commonly release more elevated amounts of 
gamma-ray than the rest of sedimentary rocks (Asquith et al. 
2004). The dark, bright, and pale blue points, which were 
found to be of limestone and dolomite mineralogy, possess 
CGRs below 20 API. Generally, CGRs lower than 20 API 
are attributed to sandstone, limestone, and dolomite (Nazeer 
et al. 2016). However, because Greenberg and Castagna’s 
sand line did not cross any of the points, the CGRs herein 
merely corresponded to limestone and dolomite.

In the previous section, lithology discrimination was 
made only based on the amounts of seismic velocities. The 
experimental model of Gardner et al. (1974) was also uti-
lized to ensure the already-made discrimination. Unlike 

Fig. 4   The cross-plot of VP versus VS fitted with Greenberg and Castagna’s model (1992)
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Greenberg and Castagna’s model (1992), the parameter of 
formation density (RHOB), which is affected by both rock 
and fluid properties, is applied in this model for marking 
out the lithologies. The cross-plot of RHOB versus VP is 
presented in Fig. 5.

The lithology results of this chart were in good agree-
ment with those of Greenberg and Castagna. Similarly, a few 
data points were overlaid with Gardner’s shale line, restat-
ing that a small amount existed. The best line fitted on the 
data was limestone, followed by dolomite as the second-best. 
Observing such behavior dictated that the reservoir zone 
of interest mainly comprised dolomite and limestone. The 
shaley points were of higher RHOB and placed in the range 
of more P-wave velocity, whereas the trend was the opposite 
for dolomite and limestone points, possessing lower VP and 
RHOB. It was probably because of the higher porosity of 
this area, meaning that they could accommodate more fluid 
than the shaley area (Crain 2013).

Rock physics templates findings

The shear and compressional transient time values can be 
utilized for quick-look lithology discrimination based on the 
P-wave to S-wave velocity ratio (VP/VS) (Avseth and Mukerji 
2002). The ratio of VP/VS was hence plotted versus CGR val-
ues (Fig. 5) to differentiate the target zone in terms of lithol-
ogy. Crain’s thumb rules say that VP/VS for shale is higher 

than 1.90, and the figure for limestone is between 1.80 and 
1.95. Dolomite will also be of VP/VS 1.65 to 180. It, for 
sandstone, will range from 1.55 to 1.65. Using the VP/VS and 
CGR values recommended in Crain’s petrophysical hand-
book (Crain 2013) for different lithologies, the reservoir area 
was subdivided into three zones, shale, dolomite, and lime-
stone as follows. Looking at Fig. 6, CGR values higher than 
20 API and VP/VS more than 1.90 show a few shaley points 
highlighted by a black oval. This implies that the target zone 
contains a small amount of shale. CGRs below 20 API may 
also indicate limestone, dolomite, or sandstone since there 
is no exact amount of CGR in the literature to discriminate 
these three lithologies.

We looked at the values of VP/VS as a good lithologi-
cal indicator based on Crain’s rules of thumb. Almost two-
thirds of the points had VP/VS 1.80–1.90, and about one-third 
had VP/VS 1.65–1.80, which were inferred to be limestone 
(red oval) and dolomite (yellow oval), respectively. How-
ever, there were no points VP/VS less than 1.65, indicating 
sandstone. These results, being in good agreement with 
Greenberg and Castagna’s or Gardner’s cross-plots, reas-
sure that limestone is the primary lithology of the target 
zone, whereas sandstone had no contribution whatsoever.

The cross-plot of density (RHOB) with the corrected 
gamma-ray (CGR) was also generated to more accurately 
delineate the various lithologies of the area of interest. 
Choosing this specific cross-plot was to involve RHOB for 

Fig. 5   The cross-plot of RHOB versus VP for the study area is based on Gardner’s model
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better lithology identification. Plotting RHOB versus CGR 
in well AB indicated four clusters (Fig. 7). The first cluster, 
highlighted with a black oval, contains the points with CGRs 
higher than 20 API and densities higher than almost 2.63 g/
cm3. This cluster was named shale because shales have high 
gamma ray and high rigidity—the more the rock rigidity, the 
higher its density. The lithology for the region where CGR is 
lower than 15 API cannot be shale, thanks to the low amount 
of gamma-ray. Plus, since it has already been found that the 
study region is not made of any sand, this area (CGR < 15 
API) should be merely composed of dolomite and limestone. 
The lithology for where density ranged from 2.55 to 2.7 g/
cm3 was guessed to be dolomite (yellow oval) because the 
bulk density of dolomite is more than that of limestone.

And for where density was below 2.55 g/cm3, the lithol-
ogy was selected to be limestone (red oval). Different fluids 
in the target zone might justify the tangible difference in 
the density values. The part with lower densities might be 
occupied with hydrocarbon, and the position with higher 
densities could be filled with water. The green points had 

CGRs 15–20 and were determined to be intercalation of 
shale and limestone (blue oval). When two different deposi-
tional environments are in close spatial proximity, they are 
likely to migrate preferably across the contact and streak 
through each other. It is to be pointed out that all lithologies 
change completely gradually in the study area, and there are 
no certain borders among them. This is due to the similar 
properties of calcite and dolomite (Wei et al. 2020), which 
make up a large percentage of the lithologies.

Well‑logging assessments

So far, well logs have been utilized to have a concise, pre-
cise view of formation characteristics at different depths of 
reservoirs. This study used the CGR, RHOB, and neutron 
well logs to justify the lithology identification. Looking at 
Fig. 8, which depicts the findings of the four preceding well 
logs, it can be viewed that the CGR values recorded versus 
depth laid in the range of nearly 3–34 API, being very low. 
The small area possessing CGR amounts of more than 20 

Fig. 6   The cross-plot of VP/VS against CGR for the study area
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API (2933–2940 m) confirmed the existence of a negligible 
quantity of shale in the survey zone. Although the shaley 
area constituted a minor part of the survey zone, a significant 
part of the zone, CGRs less than 20 API, accounted for a 
carbonate formation, either limestone, dolomite, or a com-
bination of both (2940–3020 m). Such findings were veri-
fied by the position of the density and neutron logs, which 
is the most well-founded indicator of distinct lithologies. 
Limestone was the study zone’s primary lithology since the 
density log had generally laid to the right of the neutron. 
However, the trend was reversed in the first few meters of 
the zone, showing the presence of shale. As far as saturation 
is concerned, the less density, the further the oil saturation. 
At first, where density was so high (shaley zone), it was 
deduced that the shaley zone was filled with water. But then, 
where density decreased gradually, and neutron fell consid-
erably, oil saturation experienced significant growth, reach-
ing its maximum at a depth of 2963 m. The logs of density 
and neutron met each other. Beyond the depth, the former 
saw a progressive decrease, and the latter suffered from a 

significant increase, implying that oil saturation declined and 
water saturation inclined. In conclusion, limestone was the 
primary lithology, whereas there was a minor shale in the 
first part of the studied depth.

Saturation results and sensitivity study of rock 
physics modeling data

As explained in the methodology section, Xu–Payne’s model 
(2009) was utilized to determine saturation in the interest 
zone. Involving geological factors, the rock physics model 
helps provide a more accurate estimate of the unknown data. 
The VP, VS, RHOB, and AI parameters were modeled using 
the preceding rock physics model in this connection. Before 
using the parameters, their compatibility with the real data 
points was investigated via the R-squared (R2) coefficient 
to assure reliability. R2 is a statistical goodness-of-fit index 
showing how well the modeled data match the real data in 
linear regression. R2 values, which generally lie between 
zero and one, are commonly reported percentages from zero 

Fig. 7   The cross-plot of RHOB against CGR for the study area
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to one hundred. In general, the higher R2, the better match 
for the model. As shown in Fig. 9, different values of R2 
were obtained for the four parameters of VP, VS, RHOB, 
and AI.

The proportions of R2 for RHOB and AI were the high-
est and quite similar, at almost 97% and 93%, respectively 
(Fig. 9c–d). This means there is only a slight difference of 
three-to-seven percent between the matched values and the 
observed data regarding density and acoustic impedance. 
Also, while R2 accounted for 88% of VP, this figure was 
slightly lower for VS, at 78% (Fig. 9a, b). In other words, 
there are higher differences between the modeling data 
and the raw data for this data set. The density estimation 
is so good because the total density (the density of the rock 
and fluid) has remained unchanged. The lithology column 
in Fig. 6 is predominantly carbonate, and the fluids are 
mostly oil. So lithological changes, including rock and fluid 
changes, should not have changed much. As for S-wave and 
P-wave velocities, the estimation of compressional wave 
velocity has been better than the shear one. This is because 
VP is more sensitive than VS to porous media contents like 
fluids (Assefa et al. 2003). Thus, impedance (AI) estimation, 

which is the product of the compression wave velocity by 
density, is acceptable.

Modeling data

Due to the high sensitivity of P-wave velocity (VP) and 
P-impedance (AI) to fluid changes (Pang et al. 2019), the 
cross-plot of AI–VP/VS color-coded with a deep resistivity 
log (LLD) was employed to characterize the zone of interest 
in terms of fluid content. To solve the problem of data scat-
tering, the VP/VS was modified using the DEM model and 
used as VP/VS.DEM. As can be seen in Fig. 10a, there is a 
linear relationship between the modified velocity ratio and 
the acoustic impedance.

Low AI and VP/VS values are associated with high resis-
tivity values and vice versa. To justify this trend, two pos-
sible theories are suggested, one of which will be rejected: it 
is due to (1) the existence of any fluid in the pore system and 
(2) the co-existence of two or more fluids. As for theory one, 
it is thought that a high-density rock without any fluid should 
be responsible for high resistivity. A rock system simultane-
ously has a higher resistivity, AI, and VP/VS than fluids. In 

Fig. 8   Well-logging data and lithology column for the study area
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Fig. 10a, where the resistivity is high, the other two (AI and 
VP/VS) are not high but low, meaning that theory No. 1 is 
incorrect. The pore system is occupied with different fluids 
of different densities (theory No. 2). Considering resistiv-
ity values, it can be deduced that when resistivity is high, 
and AI and VP/VS are low, a low-density, low-conductivity 
fluid like oil is filled into the pore system. Also, when AI 
and VP/VS are high and resistivity is low, a high-density, 

high-conductivity liquid like water should exist in the porous 
media. And a mix of water and oil occupies the pore system 
when resistivity, AI, and VP/VS are mean. This is because all 
the parameters are highly correlated; the more density, the 
more AI and VP/VS, and the less resistivity. In the follow-
ing, the color bar of resistivity is substituted with that for 
porosity to verify theory No. 2 is accurate (Fig. 10b), where 
resistivity shows a high value in Fig. 10a and porosity has a 

Fig. 9   Correlations between a VP versus VP. DEM with R2 = 0.88, b VS versus VS. DEM with R2 = 0.78, c RHOB versus RHOB.DEM with 
R2 = 0.96, and d AI versus AI. DEM with R2 = 0.93
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high value in Fig. 10b, proving the presence of a tremendous 
amount of fluid.

On the contrary, high values of VP/VS and AI represent 
low porosity and resistivity, which is to say the rock is 
so dense that it might have no pores or its pore space is 
low. This area is more likely to be occupied with high 
density and conductivity fluid. It is now evident what 
type of fluids is filled into the zone of interest. When a 
porous medium’s porosity increases, its fluids’ volume 
increases. Consequently, the density and the seismic 
velocities decrease (Borgomano et al. 2019). The propa-
gation of seismic waves in a porous medium depends very 
much on the elastic properties of the porous medium and 
its density. Therefore, the denser the rock, the higher the 
seismic velocities and acoustic impedance, and vice versa 
(Boxberg et al. 2015). AI–VP/VS was also plotted with 

known oil saturation (SO) and water saturation (SW) color 
bars (see Fig. 11) to prove the accuracy of what has been 
anticipated so far.

As expected, high oil saturation (Fig. 11b) or low water 
saturation (Fig. 11a) is seen at low values of AI and VP/VS 
exactly where resistivity (Fig. 10a) and porosity (Fig. 10b) 
are high, which conveys good coordination with the previous 
results. To conclude, when porosity and resistivity are high, 
or AI (density) and VP/VS are low, it is expected to have the 
most oil and the least water. VP and VS decrease in a region 
filled with oil because oil has a lower density than water 
and is sensitive to density. As a result of seismic velocities 
and density reduction, acoustic impedance also decreases. 
The concept of acoustic impedance is the acoustic resist-
ance of a porous medium against the propagation of waves 
so that with an increase in density, this resistance increases 
and vice versa. Hence, acoustic impedance decreases due to 

Fig. 10   The cross-plots of VP/VS. DEM versus AI. DEM scaled by a deep resistivity and b porosity

Fig. 11   The cross-plots of VP/VS. DEM versus AI. DEM scaled by a water saturation and b oil saturation
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the lower oil density than in water, where more oil is seen 
(Li and Peng 2017).

Non‑modeling data

The previous section measured fluid distribution using mod-
eling data, fluids resistivity, and rock porosity. It was proven 
that the less AI and VP/VS, the more porosity and fluids of 
high resistivities, like oil. This section aims to estimate fluid 
saturation using non-modeling (well-logging) data and the 
parameter of fluid density. It is related to both VP and VS. 
Considering this in mind, the velocity ratio of VP/VS was 
plotted versus VS at different saturations of oil and water 
(Fig. 12) to find a relationship among them.

In this plot, SO ≥ 0.7 (oil zone) delineated by the little 
triangular black dots demonstrates low values of VS, and 
SW ≥ 0.8 (water zone) specified by the dark blue circular 
dots represents high values of VS. Stated alternatively, water 
saturation (Sw) experiences a gradual upward trend when 
P-wave velocity increases and oil saturation (SO) decreases 
steadily when P-wave velocity proceeds to increase. S-wave 
velocity (VS) is directly and inversely proportional to the 
square root of shear modulus (µ) and density (ρ). Also, oil 
density is much lower than water, and the shear modulus 
is constant. It is thus expected to see a lower VS for the oil 
zone than the water zone; however, this trend is entirely 
reversed in Fig. 12. This behavior may be related to the high 
volume of oil in the study area affecting seismic velocities. 
Lee (2003) reported that when oil saturation increased in a 

hydrocarbon region with relatively high and abnormal pres-
sures, VS would reach its minimum value, whereas it should 
be maximum. Our results, which agree with previous stud-
ies, are shown in Fig. 13, color-coded with oil saturation. 
The highest oil saturation was seen when VS was minimum 
and vice versa.

The cross-plot of S-wave velocity (VS) against P-wave 
velocity (VP) was alternatively used for further confirmation. 
A linear behavior governs VS and VP, as shown in Fig. 14.

Again in this figure, higher oil saturation is achieved at 
lower values of the velocities. In contrast, as previously 
explained, water saturation is achieved at higher velocities 
values due to the high oil pore pressure. This graph signifies 
that where a more compressible, lighter fluid-like oil satu-
rates porous media, it should be expected to have lower VP 
and VS and conversely for water, which is an almost incom-
pressible and heavier fluid. The cross-plot of S-impedance 
(SI) versus P-impedance (PI) was finally investigated to con-
sider the simultaneous impact of the velocities and density 
on pore fluids distribution. As presented in Fig. 14, the oil-
saturated zone (SO ≥ 0.7) can be differentiated by a reduction 
in both acoustic impedances compared to the water-saturated 
zone (SW ≥ 0.8). Oil presence decreases AI and SI, and water 
presence increases AI and SI (Fig. 15). The oil’s lower den-
sity and bulk modulus cause a decrease in the total density 
and VP, leading to a considerable reduction in AI and SI. In 
agreement with other studies (Fawad et al. 2020), the results 
express that different P-wave and S-wave velocities inside a 
reservoir would reflect different fluid saturations.

Fig. 12   The cross-plot of VP/VS against VS was scaled by different oil and water saturation values
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Conclusions

The present investigation indicated that rock physics tem-
plates could yield a proper qualitative characterization of 
lithology in the area under study. Greenberg and Castagna’s 
(1992) and Gardner et al. (1974) empirical rock physics 
models helped identify lithologies quickly. It also confirmed 
that the cross-plots of VP/VS-CGR and RHOB-CGR could 
be used as an alternative tool to rapidly and effectively dif-
ferentiate lithologies, since lithology classifications using 
those yielded broadly similar results to those derived from 
well logs. Limestone and dolomite constituted the primary 
lithology, and shale the minor lithology. On the contrary, the 
target zone was composed of no sand. The shale area had 
higher VP and RHOB than dolomite and limestone, perhaps 
due to less or no fluid. Regarding fluid distribution, it was 
discovered that as P-impedance (AI) and the velocity ratio 
(VP/VS) descended, porosity and fluid saturation with low 
conductivity (high resistivity) ascended. In other words, the 
pay zone was maximally occupied with oil when porosity 
and resistivity were maximum, or VP/VS and AI were mini-
mum. These two seismic factors (VP/VS and AI) were thus 
found to be so powerful for reservoir fluids discrimination 

using the cross-plot analysis. This method could be applied 
more effectively when the theory of DEM corrected the 
velocity ratio of VP/VS. This theory provided conditions 
where most data points were positioned more regularly 
and a linear relationship governed by the cross-plot of AI 
and VP/VS. DEM. It was also understood that when oil pore 
pressure was relatively high, VS values would be minimum 
because a lower VS was seen in the zone of interest where oil 
volume was high, causing an abnormal pressure.

The methods and techniques used in this research have 
some limitations that can be improved in the next studies. 
This research was carried out in an area with moderate 
porosity; the utilized RPT and models do not work in areas 
with high porosity, tight sands, shaly and laminated sands, 
so it is suggested to conduct rock physics analysis in an area 
with the mentioned characteristics and try to build a local 
rock physics model for it that can help in the discrimination 
of fluids and lithology. Additionally, here, we successfully 
applied some RPT in new directions and insights to discrim-
inate pore fluids and lithology with enough data, but in some 
areas, maybe there would not be enough data, especially 
some data such as pore aspect ratio; we suggest that first 
the required data be estimated based on the available data 

Fig. 13   The cross-plot of pore-pressure versus VS scaled by oil saturation
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Fig. 14   The cross-plot of VS against VP is scaled by different oil and water saturation values

Fig. 15   The cross-plot of SI against AI was scaled by different oil and water saturation values
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using artificial intelligence techniques, especially machine 
learning, and then the mathematical relationship between 
the parameters is discovered after the physical rock analysis.
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