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Abstract
A differential search algorithm (DSA) application, which is a metaheuristic inspired by nature, for total field aeromagnetic 
data caused by volcanoes over a 2D dipping dyke is presented. Inversion of the total magnetic anomalies was performed by 
adding the background level in addition to the parameters of the dyke model (e.g., dip angle, the depth to the top, half-width, 
the distance from the origin to the reference point, and amplitude coefficient), which are often tried to be estimated in the 
literature studies. In synthetic dyke models, the efficiency of the DSA in parameter estimation of theoretically generated 
magnetic anomalies that do not contain noise and contain random noise at different levels has been demonstrated. Firstly, in 
the synthetic dyke model, the efficiency of the DSA in parameter estimation of theoretically generated noise-free magnetic 
anomaly is demonstrated. Additionally, different levels of random noise were added to the same synthetic model anomaly 
to test the performance of the algorithm in case the data contained noise. The results of the inversion show that the model 
parameters estimated from the DSA agree well with the correct ones. This fit was also statistically checked by calculating 
the probability density function. In the real case, the inversion approach was then used to interpret five prominent total aero-
magnetic anomalies over the well-known Kula volcanic field located in western Türkiye. The depths and widths of these 
magmatic bodies lying underneath these volcanic cones are about 450 m and 470 m, respectively.
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Introduction

For many years, potential field methods, such as magnetic, 
gravity, and spontaneous potential (SP), have been frequently 
used to model and analyze subsurface geology (for example, 
mineral, ore, geothermal, oil, and natural gas explorations). 
Among these potential field methods, the magnetic survey 
is widely used to estimate geometric parameters of simple 
models (defined with depth, thickness, and shape) causing 
anomalies. Simple models for magnetic surveys can be in 
the form of a sphere, dyke, thin plate, or fault. Among these 
models, the dyke model is usually used in magnetic surveys 

(e.g., Srivastava and Agarwal 2010; Abdelrahman et al. 
2012; Essa and El-Hussein 2017; Biswas et al. 2017).

The parameters of a buried two-dimensional (2D) 
inclined dyke structure are generally described with depth 
(D), half-width (W), the dip angle (δ), distance from the ori-
gin (x 0), and amplitude coefficient (P). Some or all of these 
parameters have been used to estimate using different evalu-
ation methods, such as Fourier transforms (Bhimasankaram 
et al. 1978), integration nomograms (Atchuta Rao and Ram 
Babu 1981, Kara 1997), the midpoint (Murty 1985), Hil-
bert transform (Mohan et al. 1982; Ram Babu and Atchuta 
Rao 1991), automated numerical (Keating and Pilkington 
2004), semi-automatic (Cooper 2012), and Euler deconvo-
lution (Reid et al. 1990). In addition to these methods, we 
can also list modular neural-network inversion (Al-Garni 
2015), non-linear constrained inversion (Beiki and Pedersen 
2012), and derivative-based inversion methods (e.g., Gauss-
Newton, steepest descent, and Levenberg-Marquardt; Mar-
quardt 1963, Won 1981, Tarantola 2005, Pujol 2007, Essa 
and El-Hussein 2017).

Edited by Prof. Ali Gholami (ASSOCIATE EDITOR) / Prof. 
Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF).

 *	 Şenol Özyalın 
	 senol.ozyalin@deu.edu.tr

1	 Department of Geophysical Engineering, Engineering 
Faculty, Dokuz Eylul University, 35160 İzmir, Türkiye

http://orcid.org/0000-0002-1401-9453
http://crossmark.crossref.org/dialog/?doi=10.1007/s11600-022-00975-5&domain=pdf


1204	 Acta Geophysica (2023) 71:1203–1224

1 3

The inversion process in the modeling of potential field 
data is an ill-posed and non-unique problem that requires 
appropriate constraints and additional priory knowledge 
for an accurate inverse solution (Li and Oldenburg 1996; 
Barbosa and Silva 1997). Traditionally, derivative-based 
inversion methods are widely used to estimate the param-
eters that require initial model parameters from geological 
information. The success of traditional inversion techniques 
depends on the accuracy of the geological prior information 
used to obtain a truthful solution. These traditional inver-
sion methods have computationally fast convergence, which 
may fall into local minimums, instead of global minimums. 
This may diverge the solution from the real model with an 
incorrect initial guess selection of the parameters, which 
is due to searching for the optimum solution around the 
initial model. The inversion process continues iteratively 
until the error energy is minimized between the observed 
and predicted anomaly. Such shortcomings are the disad-
vantages of conventional inversion methods. However, the 
minimum-structure (Occam’s) approach is widely used for 
the inversion of transient electromagnetic and direct current 
resistivity curves. It deals with the ill-posedness and non-
uniqueness of the inverse problem very well. This method 
does not depend on the initial model. The advantage of the 
Occam algorithm over the traditional inversion algorithm 
Marquardt is that the inversion result is not dependent on 
the number of layers used and the initial model (Constable 
et al. 1987; Spies and Macnae 1997; Chen 1999; Farqu-
harson 2008). In addition to these methods, enhanced local 
wavenumber (ELW) method was used in Canada and Egypt 
to determine the horizontal position and depth of the 2D 
dyke type magnetic structure without any prior knowledge 
(Salem et al. 2005). To determine the lateral boundaries of 
buried magnetic ancient remains, derivative methods such 
as the horizontal gradient magnitude (TF-hgm), the tilt angle 
horizontal gradient magnitude (THDR), the vertical gradi-
ent magnitude (TF-vgm), the balanced horizontal gradi-
ent magnitude (TDX), and finally the balanced horizontal 
gradient magnitude scaled by the analytic signal (TDXAS) 
were used (Stampolidis and Tsokas 2012). In the Eppelbaum 
2015 study, quantitative interpretation of the magnetic data 
obtained on the thick bed model was performed.

Recent developments in computer technology have 
allowed the solution of complex geophysical problems with 
big datasets and provided a faster computation in the inver-
sion process of subsurface modeling. This development also 
produced innovative metaheuristic inversion (MI) methods 
that are preferred to the traditional derivative-based inver-
sion methods. MI methods, inspired by nature and modeling 
on the individual or social behavior developed by living 
beings to solve a particular problem, are very successful in 
solving numerical optimization problems. The basis of MI 
methods is based on the social swarm (herd, superorganism) 

model. Every living being in the swarm needs accommoda-
tion, nutrition to survive and reproduction to continue its 
generation (epoch). To meet these basic needs, they form 
groups by socializing and using the collective problem-solv-
ing skills of these groups. Socialization behaviors observed 
in living things (i.e., insects) are divided into three groups. 
They are Eusocial, parasocial and subsocial insects, respec-
tively. Eusocial creatures are divided into three subgroups: 
overlap of generations (mothers live with their offspring for 
a period), cooperative brood care (females can care for off-
spring that do not belong to them), and reproductive division 
of labor (some members of a group leave more offspring 
than others). Honey bees, ants, termites, yellow jacket wasps 
and hornets can be given as examples of this group and are 
reproduced from a single queen their colonies have. Paraso-
cial species are groups of sisters in which colonies consist of 
individuals of the same generation and often nest together. 
Although prosocial creatures have basic criteria such as 
cohabitation and reproduction, they do not raise their off-
spring together. Most of the living beings are in this group, 
and parasocial species live alone for most of their liveslife. 
Some neotropical orchid bees and Euglossa spp are exam-
ples of this species. The subsocial species is a subtype of the 
Parasocial species. Female insects in this group take care of 
their offspring for a long time to ensure the survival of the 
offspring. The European rove beetle and Bledius spectabi-
lis are examples of this species (Otis 2004). Ants, termites 
and bees in the group of live colonies (e.g., swarm, held, 
superorganism) are produced by a single queen. During this 
reproduction, every living thing has its own genetic char-
acteristics and they continue their generation at the end of 
natural selection. These living beings, which live in swarms, 
greatly improve their ability to overcome difficulties to sur-
vive and continue their generation. Numerical optimization 
algorithms are developed by observing the problem solv-
ing skills of these creatures based on swarm intelligence. 
Many researchers, for example, modeled the bees' foraging 
for food, ants' communication, and the cuckoo's joint care of 
their offspring, and developed inverse solution algorithms in 
reference to that living being's name.

Such well-known metaheuristic examples used for 
parameter estimation of geophysical anomalies are genetic 
algorithms (GA), differential evolution algorithm (DE), ant 
colony optimization (ACO), artificial bee colony (ABC), dif-
ferential search algorithm (DSA), particle swarm optimiza-
tion (PSO), cuckoo search algorithm (CSA) and simulated 
annealing (SA) algorithm. Specifically, these metaheuristic 
methods have been widely utilized by many researchers in 
gravity and magnetic modeling (Biswas and Acharya 2016; 
Ekinci et al. 2016, 2017, 2019, 2021; Balkaya et al. 2017; 
Biswas et al. 2017; Kaftan 2017; Essa and El-Hussein 2017; 
Gobashy et al. 2020; Di et al. 2020; Anderson et al. 2020).



1205Acta Geophysica (2023) 71:1203–1224	

1 3

The GA is an MI algorithm that uses an optimization 
method originating from the laws of genetics. The basic 
principles of genetic algorithms were first proposed by Hol-
land (1975). The GA is generally an inversion method that 
models the evolution mechanism based on gene exchange 
in living beings. In this method, individuals of a population 
are shown as chromosomes and a series of genetic processes 
are applied. Each individual in the superorganism system has 
different genetic characteristics.

The DE is a population-based MI technique developed 
by Storn and Price (1995), based on genetic algorithms in 
terms of its operation and operators. Similarly, the DE and 
its derivatives are evolution-based algorithms. Crossover, 
mutation and selection operators in the GA are also used in 
the DE. This feature is the result of basic genetic processes. 
Unlike the GA, each operator is not applied sequentially to 
the entire population. Chromosomes are handled one by one 
and a new individual is obtained using the other three ran-
domly selected chromosomes. By comparing the fitness of 
the new chromosome obtained using the previous chromo-
some, the new individual with better fitness is transferred to 
the next population. Thus, a selection operator is also used.

The basis of the ACO algorithm is based on the strategy 
of finding the shortest path between the ants' food sources 
and the colony while searching for food. As it is known, ants 
can secrete pheromone, which is a chemical substance used 
as a means of communication among themselves. Ants mark 
the way between the colony and the food source with the 
substance they secrete from their bodies. There is a relation-
ship between the pheromone concentration released and the 
amount of food. In other words, an increase in the amount of 
secretion indicates an increase in the amount of food. From 
here, it is possible to say that the path with a more concen-
trated pheromone is the path to the food source with more 
food. The ACO algorithm is inspired by the behavior of real 
ant colonies. It was first introduced by Marco Dorigo (1992) 
and is based on the ants' strategy of finding the shortest path 
between the food source and the colony.

The ABC algorithm, developed by Karaboğa (2005), 
is an optimization algorithm created by mathematically 
modeling the unique intelligent behavior used by honey 
bee swarms when searching for food sources. Honey bees 
in nature share information such as the direction, distance 
and nectar amount of the food source they find through the 
dances they perform inside the hive. The bees that leave the 
hive in search of food initially make random exploration. 
Because of the small amount of food in the source they find, 
they begin to look for new sources or turn to other sources 
according to the information they receive from the bees. 
According to the type of work to be done in a natural bee 
colony, there is a division of labor among the bees and they 
can organize themselves. In the algorithm, a random solu-
tion is assumed to correspond to a nectar source. There are 

three types of bees in the ABC algorithm: employed bees, 
onlooker bees, and scout bees. Worker bees are tasked with 
bringing the food collected from predetermined sources to 
the hive. Another task is to share the location and quality 
information of the source they go with other bees in the hive. 
Onlooker bees wait in the hive and watch the worker bees. 
According to the information received by these bees, they 
are onlooker bees that turn to new sources. However, scout 
bees are bees that search for resources randomly.

The CSA is a population-based MI technique designed 
and developed by Yang and Deb (2009), inspired by the 
breeding behavior of cuckoos. The basis of the algorithm is 
brood parasitism. Cuckoos, acting like a parasite, lay eggs in 
the nests of other creatures other than their own. The cuckoo 
throws eggs with a high probability of hatching from the 
eggs belonging to the real nest owner creatures in the nest 
where they spawn. However, if the owner of the nest recog-
nizes the egg of the cuckoo, it throws the egg or distributes 
it to rebuild the nest, or it shows the behavior of leaving the 
nest. However, if the owner of the nest cannot recognize the 
eggs, he sits on the eggs of the cuckoo like his own eggs and 
waits for the hatchlings to hatch. The advantage of cuckoos 
in this process is that their eggs hatch before the eggs of the 
nesting owner. The baby cuckoo tends to throw other eggs 
from the nest.

The PSO is a population-based optimization algorithm 
based on swarm intelligence developed by Kenedy and Eber-
hart (1995) by observing the social behavior of bird and 
fish swarms. PSO is based on social information sharing 
between individuals. Each individual is called a particle, 
and the population of particles is called a superorganism 
(swarm). It has been observed that the random movements 
of living beings acting in groups in a superorganism, in situ-
ations such as food and security, enable them to reach their 
goals more easily. The individuals forming the superorgan-
ism have individual and sürü memories. The basis of the 
PSO method is to use these memories to solve a problem. 
Individuals are thought to have an individual memory that 
uses the experiences gained from their random behavior. In 
solving such a problem, social memory is necessary so that 
the best solution that the superorganism can achieve, the 
individual who has not yet reached that solution, can ben-
efit from it. By sharing information between individuals, a 
superorganism follows the individual with the best position 
in the superorganism while it is foraging or fleeing from 
a predator. While doing this, each individual updates their 
own position, their own speed and position according to the 
most successful individual by benefiting from their previous 
experience. This approach to velocity is random. Most of the 
time, individuals in the herd are in a better position in their 
new movements than in the previous position. The solution 
process of the problem continues until the goal is reached. 
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The search process is done by the number of generations 
(iteration, epoch) as in algorithms such as GA, DE.

The DSA inversion method is a swarm-intelligence based 
differential improvement algorithm. It is one of the promis-
ing techniques in solving complex numerical problems. DSA 
has only two control parameters and is not overly sensitive to 
the initial values ​​of its control parameters. This increases the 
usability of DSA. Unlike Differential Evolution Algorithms, 
it contains only one distinct pattern different from the target 
pattern; that is, a candidate uses only two solutions to gener-
ate a solution. This allows DSA to work with a much smaller 
population sizes compared to very powerful algorithms such 
as DE/rand/1/bin (Civicioglu 2012). Classical PSO can be 
easily fitted to local solutions from time to time. Developed 
by Omran and Clerc (2011), PSO2011 is a complex PSO 
algorithm that contains different ideas from the results of 
researchers who have been using the PSO algorithm for 
years. It is not easily attached to local solutions like classi-
cal PSO, and its problem solving skills are very developed.

The MI method provides an advantage, over the tradi-
tional methods, such as allowing various search parameter 
space, whereas the parameters selected in the traditional 
methods must be close to the true solution. As in the DSA 
method, when using the meta-heuristics we mentioned 
above, a certain model (such as, sphere, cylinder) must be 
selected. In traditional derivative-based inverse solutions, it 
is necessary to take the derivative according to the unknown 
parameters. Difficulties may be encountered in deriving the 
complex relationships of some structures. An initial value 
is required for each parameter. In contrast, there is no obli-
gation to assume a differentiation in meta-heuristics. The 
advantage of the method is to determine a large-parameter 
search space, not a single value for each parameter, when 
starting the solution. Perhaps a disadvantage of the method 
is the need for a countless number of forward modeling as 
the number of unknown parameters increases. By its nature, 
it increases in the number of iterations.

The DSA is an effective and novel swarm-based 
metaheuristic algorithm proposed by Civicioğlu (2012) for 
solving geocentric Cartesian to geodetic coordinate conver-
sion problems. There are few studies in the literature using 
the DSA in geophysical surveys such as Rayleigh wave dis-
persion curve inversion for near-surface S-wave velocity 
profiles, inversion for parameter estimation from horizontal 
loop electromagnetic (HLEM) data, and, inverse modeling 
for interpreting magnetic anomalies, application of the DSA 
method to total magnetic anomalies collected from mining 
areas (Song et al. 2014; Alkan and Balkaya 2018; Balkaya 
and Kaftan 2021). However, this method has not been 
applied to the total magnetic anomalies of volcanic fields. 
But research on the determination of the structural features 
of Aegean region using magnetic anomalies is quite limited 
in the literature and should still consider structural features 

of the area in detail. Therefore, researchers have carried out 
different geophysical studies and used different evaluation 
methods to reveal general structure of the region. Some of 
these studies can be given as Ateş et al. (1999) emphasized 
in their study on aeromagnetic anomalies that the north-
west of the region is more intensive than the south. Dolmaz 
et al. (2005) used magnetic data to reveal the Curie point 
depth and showed that CPD values ranged from 9 to 20 km. 
Bilim (2007) revealed the tectonic lines in the region. Bilim 
et al. (2016) computed the CPD and heat flow values for the 
Menderes Massif (MM). Erbek (2021) showed the location 
of the boundaries and the vertical-horizontal dimensions of 
the causative bodies in Aegean Region using magnetic data.

In this paper, the DSA application on total magnetic 
anomalies acquired in a volcanic area is demonstrated to 
characterize the form of dyke-shaped magnetic intrusions 
in the crust. Specifically, the applicability and efficiency of 
the technique have been examined. Additionally, an inver-
sion was used to estimate the background level (C) along 
with the frequently used parameters of the dyke model (δ, 
H, W, D, and P). To do these, the DSA was: 1) applied to the 
inversion of noise-free total magnetic anomalies on a syn-
thetically generated, inclined, thick-dyke model, 2) tested the 
performance of the algorithm on a noise-added total mag-
netic anomaly of the model, and 3) applied to total aeromag-
netic anomalies acquired in the Kula volcanic area where 
is located at the NE of Aegean region of Türkiye (Fig. 1).

Kula volcanic geopark area

As Türkiye's first geopark, declared by UNESCO, is located 
in western Türkiye and is famous with extinct volcanoes, 
fairy chimneys, thermal water resources, and 80 small basal-
tic cinder cones associated with lava flows (Fig. 1). This 
area is surrounded by human and domesticated animal foot-
prints dating from Pre-Neolithic times and hots antique set-
tlements, which have been in use since Roman times. This 
volcanic area is in the northern part of Menderes massif, 
and it is a part of the geological young (Pleistocene and 
Holocene) volcano areas (Sözbilir 2002).

Geology and tectonic settings

The Kula volcanic region has a well-preserved record of the 
effects of crustal extension during Late Tertiary. This exten-
sion led to the structural juxtaposition of ductile-deformed 
mid-crustal rocks against brittle deformed supracrustal rocks 
in features known as the Menderes Metamorphic core com-
plex, which includes gneiss, schist, and marble (Candan 
et al. 2001). The northern Menderes Massif is considered 
as a homogeneous area of low magnetization, with local 
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anomalies related to the influence of interspersed magmatic 
bodies and shallow basins (Ozer and Polat 2017a). How-
ever, both the northern and western borders of Massif are 
the weak magnetic and ultramafic areas that are replaced 
by highly magnetized magmatic complexes (Gessner et al. 
2016; Ozer and Polat 2017b).

The volcanic eruptions have been described in three 
phases; mass of basalt, numerous conical hills of scoriae, 
and ashes. These volcanoes are named Kula, Sandal, and 
Kaplan. The oldest Kula volcano is a plateau basalt with 
more than one main lava flows covering approximately 
330–400 km2. This plateau overlies the Late Miocene-Pli-
ocene sedimentary succession. Meanwhile, the underlying, 
poorly indurated sediments underwent rapid erosion. Parts 
of the first-period plateau basalts were uplifted and partly 
eroded, while other parts were covered by younger lavas, 
tephra, and sediments. The youngest volcanic activity of the 
Kula area represents the beginning of second plateau forma-
tion (again the lava flows) along the main fault systems. The 
existence of a large volume of plateau basalts indicates rapid 
uplift of mantle material (Tokçaer et al. 2005).

Differential search algorithm (DSA)

The DSA is an effective population-based evolution-
ary metaheuristic that was proposed and developed by 
Civicioğlu (2012) to solve optimization problems in geodesy. 

The fundamental motivation of DSA is based on the migra-
tory behavior of organisms moving away from a habitats 
with a low food supply capacity. This algorithm was mainly 
inspired by the migration of living beings that includes 
superorganisms such as many bird species, fire ants, honey 
bees, and monarch butterflies (Civicioğlu 2012). A superor-
ganism (swarm) moves from a habitat with a low capacity 
for food resources to a greater food capacity. The individu-
als who make up the superorganism are called organisms. 
The movement of a superorganism can be described by a 
Brownian-like random-walk model (Civicioğlu 2012; Tri-
anni et al. 2011). Throughout the year, the productivity of 
food areas in nature changes depending on seasonal cli-
mate changes, which decrease vital resources such as water 
resources and pastures. For this reason, many species show 
seasonal migration behavior throughout the year (Civicioğlu 
2012). This migration enables living beings to move to 
food areas where more efficient natural resources are found 
(Şekercioğlu 2007). The migrating beings form a superor-
ganism, containing many individuals, and test whether some 
randomly selected positions are temporarily suitable for a 
new habitat. If the new-fruitful habitat, named a stopover 
site, can meet the needs of the superorganism, which settles 
in the new region for a period, then repeats the same behav-
ior toward more fruitful habitats. The meaning of stopover 
site in the algorithm corresponds to the best solution in each 
iteration, as in other MI methods. The basis of DSA method 
stems from the assumption that a population has random 

Fig. 1   Geological map of the Kula volcanic area (Tokçaer 2005)
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solutions in a problem corresponding to an artificial superor-
ganism migrating to the global minimum value. A summary 
of the inversion steps can be seen in the Appendix.

A superorganism consists of artificial organisms. The 
position of each individual in the artificial organism is ran-
domly initiated. These positions are defined as Xi. Here, Xi, 
depending on the dimension of problem under consideration, 
is defined as xij and has dimension Np x D, where i = {1, 2, 
…, Np}, j = {1, 2, …, D}. Here, Np denotes the maximum 
number of populations and D depicts the size of optimiza-
tion problem. In metaheuristic algorithms, the performance 
of algorithm depends on the control parameters and has a 
significant effect on the solution. The algorithm starts by 
specifying user-defined parameters (Np and G). Here, G 
denotes epoch (iteration, generation). In the algorithm, apart 
from the user-defined parameters control parameter, there 
are two control parameters (e.g., p1, p2) that describe the 
individual perturbation of members in finding more produc-
tive areas.

As in other population-based metaheuristic algorithms, 
an artificial organism can be randomly created within the 
user-specified lower and upper parameter limits by the fol-
lowing equation:

where randi,j is a uniformly distributed random num-
ber between 0 and 1, xj

low (low = {L1,L2,…,LD}) and xj
up 

(up = {U1,U2,…,UD}) represents the lower and upper limits 
of jth dimension of respective problems.

The search process for finding the stopover site loca-
tion is carried out by a Brownian-like random walk model. 
In this stage, the randomly chosen artificial organisms 
move toward the donor targets. At every stage of reloca-
tion, the locations of the individuals are located through 
random shuffling. The displacement size of superorganism 
is controlled by a scale value, which can be produced by 
gamma, normal, or lognormal random number generator and 
donor = [Xr1, G|random_shuffling], where r1 ∈ (1, 2, 3,…, Np) and 
r1 ≠ i are the integers randomly determined.

The location of fertile stopover site is randomly generated 
from the artificial organisms in the current population and is 
described by a stopover vector (si,G). The stopover location 
can be identified with the following equation:

In the algorithm, the elements of a stopover site that 
goes beyond the lower and upper limits determined in the 
search space are randomly distributed into the search space, 
as explained in Eq. (1). To conduct the search process that 
provides the determination of this stopover site, the trial vec-
tor can be defined by the equation given below:

(1)xi,j = xlow
j

+ randi,j ×
(

x
up

j
− xlow

j

)

,

(2)si,G = Xi,G + scale ×
(

donor − Xi,G

)

.

where s*i, j,G indicates the trial vector of the jth particle in 
the ith dimension at the Gth generation (epoch) and randi,j 
is an integer number of either 0 or 1.

The process of determining the population that will sur-
vive in the next generation, defined by the following equa-
tion, is based on logical conditions and the selection process 
is made between a stopover site and the artificial organism 
population (Civicioglu 2012). According to the logical rule 
defined, if the trial vector provides an objective function 
equal to or smaller than that of the target vector, the location 
of the target vector is changed. Or else, the location of target 
vector within the habitat is preserved. DSA completes the 
selection process by applying the rule of greed and continues 
to search for more fruitful areas in the next generation.

where f(Xi,G) and f(s*
i,G) symbolize the currently best stopo-

ver site and the assessments of the newly explored stopover 
site. If the stopover site is not efficient enough in terms of 
food, in other words, until the global minimum is reached, 
the search process continues with Eq. 3, and otherwise, the 
search process is stopped. The objective function used in 
the selection process is defined by the following equation:

where RMS corresponds to the Root Mean Square Error, N 
is the number of data, dobs, and dcal denote the observed and 
predicted magnetic data, respectively, and k indicates the 
observations, where (k = {1, 2, …, N}). The RMS is figured 
by the strategy which is considered as the misfit between the 
observed and predicted anomalies.

The basis of algorithm is based on the renewal of these 
two coefficients in a random process with a scale factor (SF) 
defined by the user in each generation. Civicioğlu (2012) 
defined the scale factor used in determining both control 
parameters from the results of test study to determine the 
most appropriate starting values as 0.3 (p1 = p2 = SF x 
rand1,2, SF = 0.3), and accordingly, both control parameter 
range from 0 to 0.3. Here, rand1 and rand2 are two uniformly 
random numbers ranging from 0 to 1.

Alkan and Balkaya (2018) conducted a detailed parameter 
tuning study to determine these control parameters in the 
estimation of model parameters of HLEM anomalies and 
defined the scale factor used during the calculation of initial 

(3)S∗
i,j,G

=

{

Si,j,G
Xi,j,G

if

{

randi,j = 0

randi,j = 1
,

(4)Xi,G+1 =

{

Si,G
Xi,G

if

{

f
(

S∗
i,G

)

≤ f
(

Xi,G

)

otherwise
,

(5)RMS =

√

√

√

√
1

N

N
∑

k=1

(dobs
k

− dcal
k
)
2
,
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values of control parameters (p1 = SF1 x rand1, p2 = SF2 x 
rand2, SF1 = 1, and SF2 = 5).

Balkaya and Kaftan (2021) used both initial values sug-
gested above in the magnetic optimization problem. They 
compared to define whether there was an influence on the 
algorithm convergence rate. In the magnetic optimization 
problem, they revealed that the performance of DSA is quite 
good with the initial control parameters suggested by Alkan 
and Balkaya (2018). Starting from this point, the initial con-
trol parameters suggested by Alkan and Balkaya (2018) were 
used to estimate the parameters of magnetic anomalies.

Formulation of the magnetic anomaly

The 2D dyke model is generally used to evaluate magnetic 
anomalies. In this study, the magnetic anomaly value of 
thick, dipping dyke model defined by Venkata Raju (2003) 
at any point (xi) on a profile on the surface can be defined by 
the following equation:

where Q is the index parameter and P is the amplitude coef-
ficient. H and W are the depth to the top of dyke and the half-
width of dayk, respectively. D is the distance of origin (O) 
from the reference point (R). M and C denote a linear region 
of the slope and background levels, respectively. P and Q 
are given in Eqs. (7) and (8) for the total component (ΔT):

The magnetic profile is along the x-axis, making an angle 
(α) from the magnetic north and the y-axis is along the strike 
of mass. I0 and T are the inclination and intensity of Earth’s 
magnetic fields, respectively. α and J0 are the declination 
and inclination of the resulting magnetization (J). Here, α 
is the profile azimuth. The magnetic susceptibility contrast 
between the mass and medium is defined as I1 and J1, the 
effective inclination of induced and resultant field, respec-
tively, where tanI1 = tanI0/cosα and tanJ1 = tanJ0/cosα. The 
dip angle of thick dyke is denoted by δ and ranges between 
0° and 180°. β is equal to sin (δ) for the dayk model and β is 
equal to cos (δ) for vertical fault. J0 = I0, J1 = I1 and a = α for 
induced magnetization.

(6)
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(8)Q = I1 + J1 − � − 90.

Noise‑free synthetic anomaly

A 2D dyke-shaped model was designed synthetically for 
the noise-free case to test the efficiency and success of the 
DSA method. The theoretical total magnetic anomaly was 
generated along the 1200 m profile length and with the sam-
pling intervals of 25 m using the equation defined in Eq. 1. 
for a thick dyke, where H = 100 m; W = 80 m; D = 650 m; 
δ = 60°; C = 2500 nT and M = 0. Other parameters in com-
puting the anomaly, P, I0 and α were set to 779 nT, 56°, and 
0°, respectively.

DSA starts the optimization process by generating a 
random initial model using user-defined minimum and 
maximum limits of the estimation parameters. The evalu-
ation process of magnetic anomaly is terminated using 40 
independent solutions and a different initial model with the 
same parameter space boundaries each time. Finally, among 
these solution sets, the best parameter set with the lowest 
RMS value in the objective function is assigned as the best 
solution set. The population size (Np) is 100 individuals. A 
comparison of the predicted and observed magnetic anoma-
lies without noise according to the best solution outcomes 
obtained from 40 independent solutions is shown in Fig. 2.

Actual and estimated parameter values are given in 
Fig.  2a. Figure  2b shows the variation of error energy 
according to the number of generations; on the other hand, 
Fig. 2c–h shows the variation of obtained model parameters 
in the number of generations. The red dashed lines in the fig-
ure represent the exact parameters and the black dashed lines 
indicate the half-standard deviation limits in epoch num-
ber. The black dashed lines show the spread of 100 organ-
isms in each epoch for each model parameter. Although 
the spread was high at low epoch numbers, it was observed 
that the spread range was reduced at high epoch numbers. 
This means that the relevant model parameter is an indi-
cation of the increase in solution quality. Additionally, the 
epoch axis was defined as the logarithmic axes to better see 
the change in energy error and model parameters at lower 
epoch numbers. Statistical values (worst, mean, std) of the 
obtained parameters and RMS results are presented in detail 
in Table 1. Moreover, Table 1 illustrates the best-estimated 
model parameters of DSA in different epochs and the search 
space bounds used during optimization. As shown in Table 1 
and Fig. 2, it is observed that all model parameter values 
stabilize after approximately 50 generations. Although the 
RMS value was 293 in the initial solution, it was 0.3 in 50 
generations and very close to zero in the last generation. 
According to the change in RMS error values, increasing 
the epoch size to more than 50 epochs does not have much 
effect on the solution.

One method for the statistical interpretation of obtained 
data is also a relative frequency histogram. The relative 
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frequency distribution, also called probability histograms, 
is important for the statistical representation of certain 
outcomes occurring within a given population and the 

number of times they occur. Relative frequency distribu-
tions of all parameter results belonging to the noise-free 
synthetic model obtained from the DSA are denoted in 

Fig. 2   a The comparison of the theoretical and predicted anomalies, b Changes in the error energy with the epoch, and c–h present changing of 
model parameters at each epoch

Table 1   Results of the DSA 
both noise-free and noisy 
synthetic total magnetic 
anomaly for thick dyke

Model parameters δ [°] H [m] W [m] D [m] P [nT] C [nT] RMS

True model 60 100 80 650 779 2500
Search spaces 0:90 1:300 1:300 100:1100 50:5000 50:5000
Noise-free case 60.00 100.00 80.00 650.00 779.00 2500.00 0.00
Noisy case with std of ± 10 nT 59.51 99.30 77.74 648.70 792.02 2497.83 9.19
Noisy case with std of ± 20 nT 59.50 98.83 82.62 647.43 760.74 2489.54 19.37
Noisy case with std of ± 30 nT 58.96 98.39 69.99 652.57 865.89 2489.33 26.59
Percent relative error
 Noisy case with std of ± 10 nT 0.82 0.70 2.83 0.20 1.67 0.09
 Noisy case with std of ± 20 nT 0.83 1.17 3.28 0.24 2.34 0.42
 Noisy case with std of ± 30 nT 1.73 1.61 12.51 0.40 11.15 0.43
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Fig. 3. To prepare these histograms, first, the best solution 
among 40 independent solutions was determined. A data set 
(400 × 100) containing the solutions of 100 organisms over 
400 epochs of each model parameter in the best solution was 
used. It is important to prepare the frequency distribution 
for each model parameter. This is because it gives us valu-
able information about the quality of solution and is used in 
the interpretation phase. The histograms prepared for each 
parameter are displayed between the minimum and maxi-
mum limits of parameters, and the best real parameter values 
obtained from the solution are also shown on the histograms. 
The concentration of parameter estimates in a narrow area in 
histograms indicates a good resolution. In contrast, it shows 
that the margin of error increases in case the boundaries of 
field are widened. In Figs. 3a, d, f, we can see that the rela-
tive frequency distributions of δ, D, and C are symmetrical. 
It is clearly observed that the dip angle is grouped at 60 
degrees with 85%, the distance of origin at 650 m with 90%, 
and finally at 2500 m with 80% of the background level. 
We can also see that the distribution of W spreads slightly 
to the left, while the distribution of amplitude coefficient 
distribution is quite strong and spreads widely to the right. 
Therefore, the half-width of dyke has a comparatively wider 
range compared with other parameters. In other words, the 
uncertainty in the solution of half-width (W) and amplitude 
coefficient (P) of dyke is greater.

Although we obtained successful dyke parameters such 
as δ, H, W, D, P, and C, probability density function (PDF) 
was also applied using dyke parameters with best solutions 
from 40 separate runs to statistically test the reliability of 
the solution.

The statistical function of the PDF is expressed with the 
following relation and the normal distribution is calculated 
using the mean and standard values: 

where μ and σ show mean value and standard deviations 
(std), respectively. If x is discrete data, the sum must be 
f(x) = 1 for all values for which x is defined, otherwise, if x 
is continuous, the integral of f(x) must be one for the interval 
where x is defined, that is, under the curve, the whole area is 
equal to one. Figure 4 shows the confidence interval limits 
of mean parameter values with a probability of 95%. The 
blue line on the figure shows the probability density function 
with a probability of 95%. The red-blue line and the dashed 
black line represent the mean parameter value and the best 
parameter value, respectively. Finally, the colored rectangle 
shapes demonstrate confidence interval levels with a prob-
ability of 95% for the mean parameter value. The meaning of 
density distribution function is that the lower the std values, 
the narrower the parameter range. It is clearly observed that 
the PDF distribution calculated for each parameter obtained 
from the best solution has a very low std. Therefore, the 
solution is placed in a narrow area, and the parameter value 
remains in the safe region. It clearly shows that the param-
eter estimates obtained by DSA are within confidence inter-
vals without any uncertainty.

(9)PDF(x) =
1

�
√

2�

e−(x−�)
2∕2�2

,

Fig. 3   Relative frequency distributions produced by using a solution set containing model parameters obtained the best runs of the DSA belong 
to the noise-free case of the theoretical model
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Noisy synthetic anomaly

To test the performance of algorithm on data containing 
noise, we added random normally distributed noise with 
zero mean and with a std of ± 10, ± 20, ± 30 nT, respec-
tively, onto the magnetic anomaly produced using the model 
parameters of dyke-shaped body shown in Fig. 5. Figure 5a 
shows the theoretically generated magnetic anomalies with-
out noise (red-filled circles) and with added noise (e.g., red 
line, green line, blue line) having a std of ± 10, ± 20, ± 30 nT, 
respectively. Figure 5b shows the variation of error energy 
according to the number of generations and Fig. 5c–h pre-
sents the variation of obtained model parameters. As in the 
noise-free synthetic models, the cross section of which is 
shown in Fig. 2, in the noisy synthetic model, the length 
of profile with 61 measurement points is 1200 m and the 
sampling interval is 20 m.

In Table 1, a comparison of the parameter results obtained 
from the DSA for the theoretically generated noise-free and 
magnetic anomaly cases, including the randomly generated 
noise levels for different standard deviation values is given. 
In the case of noise-free anomaly evaluation, the model 
parameters obtained from DSA were determined to δ = 60°, 
H = 100 m, W = 80 m, D = 650 m, P = 779 nT, and C = 2500 
nT with an error value of RMS = 0.00001. In the case of 
anomaly assessment involving noise (only for std of ± 30 
nT), the model parameters were determined as δ = 58.96°, 
H = 98.39 m, W = 69.99 m, D = 650.57 m, P = 865.89 nT, 
and C = 2490.33 nT with an error value of RMS = 26.59. 
Also, the parameter results for other noise-containing model 
cases are detailed in Table 1. Additionally, true and esti-
mated model parameters are indicated on each subplot. As 

shown in Table 1, it is clearly observed that the RMS error 
values increase as the noise level increases.

Additionally, the amount of error in parameter values of 
dyke (e.g., H, W, C, …) obtained from the DSA solution 
of synthetic models containing noise was calculated. The 
amount of error in the parameters is the difference between 
the actual value of model and its predicted value. This error 
can be expressed as the absolute error (the numerical amount 
of difference between the true value and the predicted value) 
or relative error (absolute error divided by the true value). 
Usually, percentage relative error is used instead of rela-
tive error, which is the relative error multiplied by 100. As 
can be seen from the percent relative error rates for the std 
of ± 30 nT given at the bottom of Table 1, the largest error 
values are observed in the amplitude coefficient (P) and half-
width (W) of the dyke. While the amplitude coefficient and 
half-width error values are 11.15% and 12.51%, respectively, 
they are below 2% in other variables (e.g., δ, H, D, C). While 
the lower rate of noise did not affect the model parameter 
solutions, higher rates of noise, particularly over std of 20 nT 
percent, significantly affected it. According to the change 
in the objective function values corresponding to the RMS 
error values shown in Fig. 5b, the solution shows a rapid 
convergence for noisy synthetic data after the 100th epoch. 
In other words, increasing the epoch size to more than 100 
epochs does not have much effect on the solution. In the 
application, Emax was fixed at 100 epochs.

The evaluation process of magnetic anomaly is applied 40 
times using a different initial model for each run. Among the 
results, the PDF distributions with a 95% confidence interval 
for each variable of the best model solution with a minimum 
RMS error value are shown in Fig. 6. According to the PDF 

Fig. 4   Figure denotes PDF analyses of the best model parameter values obtained in 40 separate runs in case noise-free magnetic data example
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distributions shown in Fig. 6, we observe that the solution of 
each variable is within the confidence interval. In Fig. 6d, it 
is clearly observed that the value of the distance of origin is 
close to the mean value, while the remaining variables are 
close to the confidence interval limits.

The aeromagnetic data of the Kula region

The aeromagnetic anomaly map which was used in the con-
text of study was adopted from (MTA 1962). The Interna-
tional Geomagnetic Reference Field (IGRF) values were 
eliminated from the data used in this study. It was flown at a 
terrain clearance of 150 m with the flight lines at about 1 km 
intervals (Fig. 7a). One of the most obvious aeromagnetic 
anomalies in western Türkiye is related to the Kula volcan-
ics. Aeromagnetic anomalies are very distinctive and these 

are easily correlated with the basaltic rocks of region having 
magnitudes up to 3000 nT. It can be distinguished that the 
positive anomaly enclosures are over the first and second 
phases of volcanic cones. The location of volcanoes can be 
observed better on this map. The first phase plateau basalts 
and lava flows of first and second phases of volcanic cones 
are free of magnetic signatures. The five prominent positive 
magnetic anomaly enclosures are shown in Fig. 7a. These 
are Kula-Divlit (KUV), Kula-East (KUEV), Sandal-Divlit 
(SAV), Selendi (SEV), and Kaplan-Divlit (KAV), respec-
tively. These anomalies were evaluated with the DSA algo-
rithm and their models were presented. On the figures, cross 
sections were taken in the SW–NE direction of KUEV and 
KAV, while SAV and SEV are in the S–N direction. Finally, 
the cross section is taken in the W–E direction of the KUV.

To see the regional effect, upward analytic continuations 
were carried out at two levels (H = 1 km and H = 2 km; 

Fig. 5   a The comparison of the theoretical and predicted anomalies, b Changes in the error energy with the epoch, and c–h present changing of 
model parameters at each epoch
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Fig. 6   Relative frequency distributions produced by using a solution set containing model parameters obtained the best runs of the DSA belong 
to the std of ± 30 nT case of the theoretical model

Fig. 7   a Aeromagnetic map of the Kula volcanic region, b upward 
continuation of the aeromagnetic map (H = 1  km), c upward con-
tinuation of the aeromagnetic map (H = 2 km). KUV: Kula Volcano; 

KUEV: Kula-East Volcano; SAV: Sandal Volcano; SEV: Selendi Vol-
cano; KAV: Kaplan Volcano
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Fig. 7b and c). The main magnetic signatures of KAV and 
SEV Divlits as well as the aeromagnetic anomalies at SAV, 
KUV, and KUEV are still very clear in the upward continua-
tion of 1 km (Fig. 7b). However, the effects of KAV and SEV 
are not very obvious clear in the upward analytic continu-
ation of 2 km (Fig. 7c). The main magnetic body is around 
SAV, KUV, and KUEV volcanoes.

Kula‑east (KUEV)

There are signs of secondary eruption features surrounding 
the aeromagnetic anomaly (Fig. 8a). The length of meas-
urement profile is 2800 m, comprising 29 data points with 
an interval of 100 m. The KUEV magnetic anomaly and 
the other four magnetic anomalies were inverted using the 
user-defined control parameters involving p1 = 1, p2 = 5, and 

a number of population (Np) of 100, max epoch (Emax) of 
400. In the evaluation phase, as in the evaluation of noisy 
and noise-free synthetic anomalies, after 40 independent 
runs of DSA were performed, the solution with the low-
est RMS error among these solutions was assigned as the 
best solution. According to the advanced evolutionary 
algorithm of DSA estimated dip angle, depth, half-width, 
distance of origin, amplitude coefficient, and background 
level of the dyke were found as 42.62°, 414.63 m, 472.44 m, 
1465.13 m, 684.99 nT, and 3407.89 nT, with an RMS error 
of 8.88, respectively (Table 2). We observe that the param-
eter changes graphs according to the epoch number flattened 
after the 90th iteration and the parameter values are fixed 
after about 200 epochs.

Looking at the relative frequency distribution in Fig. 9, 
we observe that the clustering rate for all parameters is 
below 70% and the solution parameters are spread over a 

Fig. 8   a The comparison of the observed and predicted anomalies of KUEV, b Changes in the error energy with the epoch, and c–h present 
changing of model parameters at each epoch
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wider area in Table 3. The results for the PDF distribution 
with a 95% confidence interval for the best value of each 
model parameter are shown in Table 4. From this table, it 
is observed that all estimated parameters remain within the 
confidence intervals. Because of these results, it is an indi-
cation that the estimated parameters have good resolution.  

Sandal (SAV)

This is the most outstanding volcanic cone in this region 
belonging to the latest phase of volcanic eruptions. Also, it 
gives the highest magnitude in the range of about 6500 nT 
(Fig. 10a). The length of measurement profile is 2500 m, 

comprising 26 data points with an interval of 100 m. After 
the total magnetic anomaly of SAV in the Sandal district 
has been inverted and interpreted, the estimated parameter 
results are presented in Table 2. These estimated parameters 
were found to as δ = 26.71°, H = 403.72 m, W = 476.23 m, 
D = 1405.03 m, P = 2323.45 nT, and C = 2411.12 nT, with 
an RMS error of 39.86. It can be seen that the graph of 
estimated parameter change according to the number of 
epochs has been flattened from 30th epoch until last epoch 
(in Fig. 10b).

According to the relative frequency histograms shown 
in Figs. 11a, d, it can be observed that the δ, D parameter 
solutions are clustered in a narrow area and have a relative 
frequency value of over 80%. Because the distribution is 

Table 2   Statistical analyses of 
the best model parameter values 
resulted from 40 independent 
runs of the DSA for each model 
parameter of five anomalies

Statistics δ [°] H [m] W [m] D [m] P [nT] C [nT] RMS

KUEV
Search spaces 0:90 50:1000 50:1500 500:2500 100:2000 500:4000 8.88
 The best 42.62 414.63 472.44 1465.13 684.99 3408.89
 Min 39.99 413.94 218.31 1446.83 683.07 3286.34
 Max 42.63 640.28 473.45 1465.31 2000.00 3408.93
 Mean 42.53 422.21 464.84 1464.89 721.81 3404.69
 Std. Dev 0.42 35.95 40.21 2.91 207.71 19.55

SAV
Search spaces 0:90 100:1000 50:1500 1000:3000 100:3000 2000:4000 39.86
 The best 26.71 403.72 476.23 1405.03 2323.45 2411.12
 Min 26.71 191.40 476.23 1405.03 1680.29 2000.00
 Max 76.71 403.74 821.33 1996.84 2323.56 2411.28
 Mean 29.21 393.09 493.49 1434.62 2291.29 2390.56
 Std. Dev 11.04 46.93 76.17 130.63 141.96 90.74

KUV
Search spaces 0:90 50:1000 50:1500 500:2500 100:2000 500:4000 18.66
 The best 52.34 371.99 499.99 1763.71 712.00 3291.45
 Min 52.34 274.84 499.98 1763.70 668.00 2899.52
 Max 90.00 371.99 1097.04 2476.02 712.00 3291.52
 Mean 53.28 369.54 514.92 1781.52 710.87 3281.66
 Std. Dev 5.96 15.36 94.40 112.63 6.95 61.97

KAV
Search spaces 0:90 100:1000 50:1500 1000:3000 100:1000 2500:4000 9.92
 The best 60.99 706.44 436.19 2308.00 562.49 3434.74
 Min 0.00 324.95 420.59 1163.17 284.08 3119.40
 Max 90.00 721.97 1500.00 2826.86 593.25 3434.98
 Mean 64.53 660.26 556.17 2370.11 519.70 3413.45
 Std. Dev 15.28 98.59 257.46 279.23 91.17 55.86

SEV
Search spaces 0:90 100:1000 50:1500 300:1800 50:1500 500:5000 10.78
 The best 33.95 452.59 456.11 1087.40 955.70 3082.23
 Min 0.00 286.59 361.30 705.15 790.90 2616.15
 Max 82.92 587.67 973.05 1800.00 1500.00 3082.43
 Mean 40.79 425.51 558.56 1192.77 937.97 955.70
 Std. Dev 21.02 68.58 204.11 295.38 110.81 178.12
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clustered in a narrow area and the frequency value is high 
(e.g., roughly 90% of D and δ), it is an indication that the 
obtained parameter results have good resolution. We observe 
that the remaining estimated parameters are between 60 and 
70% in Table 3. For the interpretation of obtained param-
eters, the PDF is calculated and presented in Table 4. As 
shown in Table 4, the best value of each parameter is within 
the 95% confidence interval, indicating that the solution is 
good.

Kula (KUV)

Kula-Divlit (KUV) is one of the main volcanic cones of 
region belonging to last phase of volcanic eruptions (Ozer 
and Polat 2017b). It is just NE of the town of Kula. The 
length of measurement profile is 3000 m, comprising 31 data 
points with an interval of 100 m (Fig. 12a).

The analysis results obtained from DSA method are 
shown in Table 2. The estimated model parameters (e.g., 

δ, H, W, D, P, and C) are δ = 52.34°, H = 371.99  m, 
W = 499.99  m, D = 1763.45  m, P = 712.00 nT, and 
C = 3291.45 nT, with RMS error of 18.66, respectively 
(Table 2). As can be seen in Fig. 12b, it is observed that 
the change graphs of parameter according to epoch number 
flatten after 60th iteration and the parameter values are fixed 
after about 100 epochs.

Relative frequency histograms were prepared for KUV, 
SEV, and KAV. However, these histograms are not shown 
due to the increased number of figures presented in the 
study. Peak relative frequency values are given in Table 4. 
According to the relative frequency histograms, it can be 
observed that the δ, D, and C parameter solutions are clus-
tered in a narrow area and have a relative frequency value of 
over 70%. Because the distribution is clustered in a narrow 
area and the frequency value is high (e.g., roughly 85% of D 
and δ of 78%) in Table 3, it is an indication that the obtained 
parameter results have good resolution. The other param-
eters, especially H, P, and W, have relatively lower resolu-
tion due to their wider dispersion and below 70%. For the 

Fig. 9   Relative frequency distributions produced by using a solution set containing model parameters obtained the best runs of the DSA belong 
to the magnetic anomaly of KUEV

Table 3   Peak relative frequency 
distributions of all model 
parameter results belonging 
to the five real data obtained 
from the DSA and min, max, 
mean and std values for each 
parameter

Bold values indicate maximum frequency values of parameters at magnetic anomalies

Parameters Peak relative frequency distributions (%)

Magnetic anomalies Statistics

KUEV SAV KUV KAV SEV Min Max Mean Std. dev

δ 66.11 87.03 74.11 63.83 66.07 63.83 87.03 71.43 8.55
H 40.79 66.72 58.80 39.26 48.57 39.26 66.72 50.83 10.54
W 45.72 76.47 66.67 38.98 57.46 38.98 76.47 57.06 13.60
D 44.91 88.29 83.97 71.58 62.12 44.91 88.29 70.17 15.64
P 41.75 66.09 59.29 37.79 43.66 37.79 66.09 49.72 10.97
C 60.77 68.97 70.79 56.02 60.00 56.02 70.79 63.31 5.63
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interpretation of obtained parameters, the PDF is calculated 
and presented in Table 4. As shown in Table 4, the best value 
of each parameter is within the 95% confidence interval, 
indicating that the solution is good. This result suggests that 
the main sub-volcanic body is not reached the surface, and 
the resulting extensive lava flows may have been connected 
by thin feeder dykes with main sub-volcanic body.

Kaplan (KAV)

This volcanic cone is at the western end of Kula volcanic 
region placed on the eastern side. There are two volcanic 
eruption centers over this volcano. The amplitude of this 
anomaly is about 4000 nT. The extension of this anomaly 
can be followed in the WSW direction.

The length of measurement profile is 3300 m, compris-
ing 34 data points with an interval of 100 m (Fig. 12c). The 
total magnetic anomaly of KAV in Kaplan district, located 
in the westernmost part of study area, was interpreted and 
the estimated parameter results are presented in Table 2. 
These estimated parameters were found to δ = 60.99°, 
H = 706.44 m, W = 436.11 m, D = 2308.00 m, P = 562.49 

nT, and C = 3474.74 nT, with an RMS error of 9.92. It can be 
seen that the graph of estimated parameter change according 
to the number of epochs has been flattened from 55th epoch 
until last epoch (in Fig. 12d).

When relative frequency histograms of these evaluation 
results are examined, it was observed that the dip angle and 
distance of origin are roughly around 60%, while the remain-
ing parameters are spread between 40 and 60% (in Table 3). 
Simultaneously, the subplots show that the solutions for all 
parameters are more widely spread. As shown in Table 4, 
except for δ and D, the others are just outside the 95% con-
fidence interval. It can be said that the PDF distribution and 
the relative frequency distribution are compatible.

Selendi (SEV)

There is no obvious sign of a volcanic cone, but there is a 
compelling aeromagnetic anomaly at a magnitude of about 
4520 nT. This magmatic body has probably unreached 
the surface therefore there is no cinder cone. This mag-
matic intrusion is probably caused by the bend in course 
of ancient river. The length of measurement profile is 

Table 4   Statistical analyses of 
the best model parameter values 
resulted from 40 independent 
runs of the DSA and lower 
and upper bounds obtained 
from PDFs at 95% confidence 
intervals for each model 
parameter of five anomalies

Bold values indicate model parameters that are outside of 95% confidence intervals

Statistics δ [°] H [m] W [m] D [m] P [nT] C [nT]

KUEV
 The best 42.62 414.63 472.44 1465.13 684.99 3408.89
 Mean 42.53 422.21 464.84 1464.49 721.81 3404.69
 Lower bound 42.39 410.71 451.98 1463.56 655.38 3398.44
 Upper bound 42.66 433.71 477.69 1465.42 788.24 3410.95

SAV
 The best 26.71 403.72 476.23 1405.03 2323.45 2411.12
 Mean 29.21 393.09 493.49 1434.62 2291.29 2390.56
 Lower bound 25.68 378.08 469.13 1392.85 2245.89 2361.54
 Upper bound 32.74 408.09 517.85 1476.40 2336.69 2419.59

KUV
 The best 52.34 371.99 499.99 1763.71 712.00 3291.45
 Mean 53.28 369.54 514.92 1781.52 710.87 3281.66
 Lower bound 51.37 364.63 484.73 1745.50 708.65 3261.84
 Upper bound 55.18 374.45 545.11 1817.54 713.09 3301.48

KAV
 The best 60.99 706.44 436.19 2308.00 562.49 3434.74
 Mean 64.53 660.26 556.17 2370.11 519.70 3413.45
 Lower bound 59.65 628.73 473.83 2280.81 490.55 3395.58
 Upper bound 69.42 691.79 638.51 2459.42 548.86 3431.31

SEV
 The best 33.95 452.59 456.11 1087.40 955.70 3082.23
 Mean 40.79 425.51 558.56 1192.77 937.97 2984.04
 Lower bound 34.07 403.58 493.28 1098.30 902.53 2927.08
 Upper bound 47.51 447.44 623.83 1287.23 973.41 3041.00
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Fig. 10   a The comparison of the observed and predicted anomalies of SAV, b Changes in the error energy with the epoch, and c–h present 
changing of model parameters at each epoch

Fig. 11   Relative frequency distributions produced by using a solution set containing model parameters obtained the best runs of the DSA belong 
to the magnetic anomaly of SAV
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2200 m, comprising 23 data points with an interval of 100 m 
(Fig. 12e).

The total magnetic anomaly of the SEV in the Selendi 
region, located in the northernmost part of study area, was 
interpreted and the estimated parameter results are pre-
sented in Table 2. These estimated parameters were found 
as δ = 33.95°, H = 452.59 m, W = 456.11 m, D = 1087.40 m, 
P = 955.70 nT, and C = 3082.23 nT, with an RMS error of 
10.78. It can be seen that the graph of the estimated param-
eter change according to the number of epochs has been flat-
tened from the 70th epoch until the last epoch (in Fig. 12f). 
According to the relative frequency histograms of these 
evaluation results, we observe that dip angle and distance of 
origin are roughly around 70%, while the remaining param-
eters are spread between 40 and 60% in Table 3. Simultane-
ously, the subplots show that the solutions for all parameters 

are more widely spread. As shown in Table 4, except for the 
amplitude coefficient (P), the others are just outside the 95% 
confidence interval. It can be said that the PDF distribution 
and the relative frequency distribution are compatible.

Results

To test the efficiency of DSA algorithm, which is one of 
the innovative metaheuristic optimization method, inversion 
operations were carried out first on the theoretical model 
without noise and then on the theoretical models with dif-
ferent noise levels. Then, an inverse modeling study was 
applied to real field data. The five obvious magnetic anoma-
lies of Kula volcanoes were solved with this algorithm. 40 
independent runs were performed to ensure neutrality and 

Fig. 12   a The comparison of the observed and predicted anomalies 
of KUV; b Changes in the error energy of KUV with the epoch;  
c the comparison of the observed and predicted anomalies of KAV;  

d Changes in the error energy of KAV with the epoch; e the compari-
son of the observed and predicted anomalies of SEV; f Changes in the 
error energy of SEV with the epoch
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to determine the accuracy and efficiency of the results from 
the inversion. The results of synthetic anomaly demonstrated 
that the acquired 2D dipping dayk model parameters were 
close to the actual values for both cases.

Aeromagnetic data for the Kula volcanic field were inte-
grated to describe the state of subsurface structures of area. 
They commonly display marked magnetic anomaly contrast 
in accordance with the surrounding rocks, which are com-
posed of sedimentary and metamorphic rocks. While all of 
the model parameter values of the KUEV, SAV, and KUV 
anomalies remain within the 95% confidence interval, it is 
seen that some of the model parameter values of KAV and 
SEV anomalies are just outside the 95% confidence interval 
but very close to the bounds. According to the results of the 
PDFs, the fact that most of the parameters are within a nar-
row confidence interval is an indicator of the effectiveness of 
the method. According to the results of the upward continu-
ation made, it was shown that the main source causing the 
magnetic anomaly was located in the south of study area. 
Although the KAV and the SEV are not obvious because of 
upward continuation, three positive anomalies, namely the 
SAV, the KUV, and the KUEV volcanoes, are evident in the 
southern part of study area.

The depths of dyke model can be listed as 371.99 m, 
414.63 m, 403.72 m, 452.59 m, and 706.44 m for the five 
areas (e.g., KUV, KUEV, SAV, SEV, and KAV, respec-
tively). Except for the KAV magnetic anomaly, the others 
are close to each other in Table 5. The minimum, maximum, 
mean, and std of the estimated depths for the five areas were 
371.99 m, 706.44 m, 469.87 m, and 121.06 m, respectively. 
This result suggests that the main sub-volcanic body is not 
reached the surface, and that the resulting extensive lava 
flow may have been connected by thin feeder dykes with the 
main sub-volcanic body.

We investigated the relative frequency distribution in the 
estimated parameter solutions and found 58.80%, 40.79%, 
66.72%, 48.57%, and 39.26% for the depths of dyke to upper 
surface, respectively. The minimum, maximum, mean, and 
std of values of the relative frequency distributions for 
the estimated depths of anomalies are 39.26%, 66.72% m, 
50.83%, and 10.54%, respectively.

While the depth values of KUV, KUEV, and SAV anoma-
lies remain within the 95% confidence interval, it is seen that 
the depths of KAV and SEV anomalies are just outside the 
95% confidence interval but very close to the bounds.

Secondly, we can list the half-width as 499.99  m, 
472.44 m, 476.23 m, 456.11 m, and 436.19 m. The half-
width values are very close to each other. The minimum, 
maximum, mean, and std of the estimated depths were 
436.19 m, 499.99 m, 468.19 m, and 21.28 m, respectively. 
We also investigated the relative frequency distribution 
in the estimated parameter solutions and found 66.67%, 
45.72%, 76.47%, 57.46%, and 39.98% for the half-width of 
dyke, respectively. Among these values, the best relative 
frequency value (e.g., 76.47%) belongs to the SAV data. The 
average relative frequency value of 6 estimated parameters 
of all field data is 60.42%.

The amplitude coefficient of SAV data draws attention 
compared with the others. From this viewpoint, we can say 
that the susceptibility contrast is high compared to the sur-
rounding rocks, which are sedimentary and metamorphic 
rocks. When the base levels are averaged, it can be said that 
the mean value for the region is roughly 2323 nT.

Conclusions

The applicability and efficiency of DSA technique are 
convincing for its application to total magnetic anoma-
lies acquired in a volcanic area. Both synthetic model and 
field data evaluation results as well as statistical test results 
revealed the success of model parameter estimations. Out-
comes showed that potential field methods were successful 
in imaging underground structures by resembling Kula vol-
canoes to dyke-shaped structures.

The 2D structural model obtained from the cross section 
data of this study is credible as a first input for the subse-
quent analysis and can be improved by performing 3D mod-
eling studies in future. Research that covers model parameter 
estimations for magnetic anomalies and drilling information 
is not widely available. For this reason, the parameter results 
estimated with the help of DSA technique can be further 
enhanced by new geophysical research, and compared with 

Table 5   The best model 
parameter values belonging to 
the five real data

Parameters Best model parameter values of magnetic anomalies

KUEV SAV KUV KAV SEV

Dip angle δ [°] 42.62 26.71 52.34 60.99 33.95
Depth H [m] 414.63 403.72 371.99 706.44 452.59
Half-width W [m] 472.44 476.23 499.99 436.19 456.11
Distance from the origin D [m] 1465.13 1405.03 1763.71 2308.00 1087.40
Amplitude coefficient P [nT] 684.99 2323.45 712.00 562.49 955.70
Background level C [nT] 3408.89 2411.12 3291.45 3434.74 3082.23
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parameter results of any other study. The usage of map data 
can also be considered instead of cross sections.

As a result, it is worth mentioning that the technique 
used in this study is recommended to interpret the magnetic 
anomalies in volcanic areas and to characterize the form of 
dyke-shaped magnetic intrusions in the crust. This work is 
constituted as a contribution to this knowledge of the DSA 
algorithm.

Appendix. Inversion steps

Step (1) Set user-defined and control parameters: setting Np, 
G, p1, p2, and threshold (t_hold)

In this stage, setting of control parameters such as the 
number of superorganisms (Np), generation (G), and con-
trol parameters (p1, p2) are defined ( p1 = p2 = SF x rand1,2, 
SF = 0.3).

Step (2) Initialize the artificial organism: calculating xi,j 
using Eq. (1)

This step shows that the initial position of organism in 
search space is randomly generated using the equation 
xi,j = xlow

j
+ randi,j ×

(

x
up

j
− xlow

j

)

 , where randi,j is a uni-
formly distributed random number between 0 and 1, xj

low and 
xj

up represent the lower and upper limits of organism 
location.

Step (3) Random shuffling superorganism and determin-
ing scale value: determining donor targets and scale value

In this stage, randomly selected individuals of the super-
organism identified in the previous stage are determined by 
the scale factor, the degree of movement toward the donor's 
targets to discover the stopover site. The size of change in 
positions of members of superorganism is controlled by the 
scale value, which can be produced by gamma, normal, or 
lognormal random number generator. The values of scale 
are given by the equation Scale = randg (2 x rand1) x rand2 
x rand3, where rand1, rand2, and rand3 are uniformly dis-
tributed random numbers between 0 and 1. The randg is a 
random number generator.

Step (4) Determine the stopover site: calculating Si,G 
using Eq. (2)

At this stage, the stopover sites are determined by the 
Brownian-like random-walk model. Randomly chosen 
organisms move toward targets represented by the donor. 
The equation si,G = Xi,G + scale ×

(

donor − Xi,G

)

 is used to 
find the stopover site, where donor = Xrandom_shiffling.

Step (5) Check the bounds of stopover site: Check 
xj

low ≤ Sj ≤ xj
up

xj
low and xj

up represent the lower and upper limits of 
organism location. It is checked whether the location of each 
organism in the stopover site remains within the predefined 

search space. If it falls outside, locations are drawn to these 
limits.

Step (6) Determine the trial vector: calculating S∗
i,j,k

 using 
Eq. (3)

If the new stopover site is better than the current location, 
superorganism moves to the new stopover site. This new 
stopover  s i te  i s  ident i f ied  by the  equat ion 

S∗
i,j,G

=

{

Si,j,G
Xi,j,G

if

{

randi,j = 0

randi,j = 1
.

Step (7) Choose the next generation: calculating Xi,G+1 
using Eq. (4)

At this stage, if the trial vector provides an error value 
which is equal or less than the target vector, it changes the 
target vector in the next epoch. Otherwise, its current posi-
tion is retained. This target vector is identified by the equa-

tion Xi,G+1 =

{

Si,G
Xi,G

if

{

f
(

S∗
i,G

)

≤ f
(

Xi,G

)

otherwise
.

Step (8) Data misfit: calculating RMS using Eq. (5)
In iterative inversion methods, it is important to stop the 

iterative process at an optimal number of iterations. The 
stopping criteria for terminating iteration in MI methods are 
based on the misfit between the observed data and the pre-
dicted data. At this stage, the data misfit is made with the 
equation RMS =

�

1

N

∑N

k=1
(dobs

k
− dcal

k
)
2.

Step (9) Stopping criteria:
If this data misfit is equal or greater than the threshold 

value or the epoch number less than the predefined max 
epoch number (Gmax), the loop between steps (3) and (9) 
continues. Otherwise, the algorithm is terminated.
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