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Abstract
Practical information can be drawn from rainfall for making long-term water resources management plans, taking flood 
mitigation measures, and even establishing proper irrigation systems. Given that a large amount of data with high resolution 
is required for physical modeling, this study proposes a new standalone sequential minimal optimization (SMO) regression 
model and develops its ensembles using Dagging (DA), random committee (RC), and additive regression (AR) models (i.e., 
DA-SMO, RC-SMO, and AR-SMO) for rainfall prediction. First, 30-year monthly data derived from the year 1988 to 2018 
including evaporation, maximum and minimum temperatures, maximum and minimum relative humidity rates, sunshine 
hours, and wind speed as input and rainfall as the output were acquired from a synoptic station in Kermanshah, Iran. Next, 
based on the Pearson correlation coefficient (r-value) between input and output variables, different input scenarios were 
formed. Then, the dataset was separated into three subsets: development (1988–2008), calibration (2009–2010), and valida-
tion (2011–2018). Finally, the performance of the developed algorithms was validated using different visual (scatterplot and 
boxplot) and quantitative (percentage of BIAS, root mean square error, Nash–Sutcliffe efficiency, and mean absolute error) 
metrics. The results revealed that minimum relative humidity had the greatest effect on rainfall prediction. The most effec-
tive input scenario featured all the input variables except for wind speed. Our findings indicated that the DA-SMO ensemble 
algorithm outperformed other algorithms.
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Introduction

Accurate rainfall prediction leads to not only better preven-
tion of disasters in the event of flood, but also proper man-
agement of water, agricultural and aquatic ecosystems, and 
drought. While low rainfall results in drought, heavy rain-
fall increases the probability of landslides, floods, and other 
natural disasters. It is expected that the recent rise in the 
concentration of atmospheric carbon dioxide and the con-
sequent increase in the global temperature will have a sub-
stantial impact on the rainfall pattern on local, regional, and 
global scales (Wang et al. 2013; Adefisan 2018; Zhu et al. 

2022a,b). Since rainfall patterns are highly chaotic, the level 
of uncertainty in its prediction increases. Therefore, early 
warning systems should enjoy greater accuracy so that risks 
to life and property can be reduced, if not averted. Rainfall 
occurrences mainly depend on several meteorological vari-
ables including evaporation, maximum relative humidity, 
minimum relative humidity, maximum temperature, mini-
mum temperature, sunshine hours, and wind speed (Zhao 
et al. 2021a,b).

Near real-time rainfall prediction is generally done 
through physical/numerical models, which are developed 
based on dynamical equations. These models facilitate 
acquiring extensive information about time and space (Toth 
et al. 2000; Liu et al. 2022a, b). Nevertheless, requiring a 
significant amount of data with high resolution for physical/
numerical modeling and their time-consuming implemen-
tation are the major drawbacks of the mentioned models. 
To overcome these obstacles, attempts have been made 
to develop statistical formulae in conjunction with statis-
tical models for a more efficient rainfall prediction based 
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on historical data. The autoregressive time-series predic-
tion methods like autoregressive integrated moving aver-
age (ARIMA) and multiple linear regression (MLR), which 
have been applied to many different fields of study (Delleur 
and Kavvas 1978; Yevjevich 1987; Zhang et al. 2019a, b, 
2022; Osouli et al. 2022). However, these models are not 
robust or flexible enough to predict complicated and chaotic 
phenomena like rainfall.

So far, different types of machine learning (ML) mod-
els have drawn the attention of many researchers around 
the world. These models enjoy the following advantages: 
nonlinear structure, ability to model nonlinear phenomena, 
requiring small input datasets, user-friendliness, and ability 
to find a relationship between input and output variables to 
predict the target variable (Elbaz et al. 2019, 2020; Khos-
ravi et al. 2021, 2022a,b; Liu et al. 2020). Artificial neural 
networks (ANN) are derived from the pioneering ML mod-
els whose applicability to rainfall forecasting is not much 
prevalent (e.g., Luk et al. 2000; Aksoy and Dahamsheh 
2009; Samantaray et al. 2020, among others), although they 
have been found relevant to fields of geoscience (Ghumman 
et al. 2011; Oyebode and Stretch, 2019; Kadam et al. 2019). 
Generally, ANN model has low generalization power and 
low convergence speed (Aksoy and Dahamsheh 2009; Wang 
et al. 2021; Quan et al. 2022). To overcome these shortcom-
ings, ANN have been integrated with fuzzy logic to develop 
neuro-fuzzy interface systems (ANFISs). Although ANFIS 
benefits from both ANN and fuzzy logic and has higher per-
formance and generalization power, determining the weights 
of membership functions is still a challenging task in these 
cases. Other alternatives such as support vector machine 
(SVM) (Nhu et al. 2019), gene expression programming 
(GEP) (Sheikh Khozani et al. 2017), and extreme learning 
machine (ELM) (Atiquzzaman and Kandasamy 2018; Zhao 
et al. 2021a, b, c; Wang et al. 2022) have also been applied 
in recent years.

Recently, to enhance the prediction accuracy of the mod-
els through data pre- or post-processing approaches, ML 
ensemble algorithms have been developed by integrating two 
or more types of models (e.g., Zhang et al. 2019a, b; Xie 
et al. 2021a, b) to increase the modeling performance, thus 
benefiting from multiple advantages of two model types at 
the same time. An ensemble predictive model was developed 
by Sivapragasam et al. (2001) for one-day-ahead forecasting 
using SVM and singular spectrum analysis models. They 
employed singular spectrum analysis in order to disinte-
grate rainfall data for training SVM through a supervised 
approach. The authors argued that the ensemble algorithm 
of the singular spectrum analysis-SVM model could outper-
form nonlinear prediction methods. Similarly, Chau and Wu 
(2010) revealed the higher predictive power of the singular 
spectrum analysis-SVM than the traditional ANN model. 
Wu et al. (2010) reported that particle swarm optimization 

(PSO) as a metaheuristic algorithm could enhance the per-
formance of the standalone SVM model. While most of 
the neuron-based algorithms suffer from inadequate accu-
racy in determining the weights of membership functions, 
metaheuristic algorithms are able to determine accurate 
weights automatically. Kisi and Shiri (2011) examined 
the efficiency of the ensemble-based wavelet-GEP algo-
rithm in predicting daily rainfall and compared it with a 
hybrid wavelet-neuro-fuzzy method in terms of predictive 
power. The performance of the wavelet-GEP was reported 
better than that of the neuro-fuzzy method. Yaseen et al. 
(2019) used a hybrid ANFIS model with three metaheuris-
tic algorithms, namely PSO, genetic algorithm (GA), and 
differential evolution (DE), for monthly rainfall prediction. 
Finally, the performance of the hybrid ANFIS model was 
compared with that of the standalone ANFIS model. The 
results revealed that all the hybrid models outperformed the 
standalone model.

All in all, these studies have illustrated the necessity of 
using hybrid models for precise forecasting of long-term 
rainfall. However, despite their complicated structures, 
these models are of higher accuracy than standalone mod-
els in most cases. Accordingly, there is an ongoing effort to 
increase their modeling accuracy and reduce their complex-
ity. Ridwan et al. (2021) compared Bayesian linear regres-
sion (BLR), boosted decision tree regression (BDTR), deci-
sion forest regression (DFR), and neural network regression 
(NNR) in terms of rainfall prediction accuracy in Malaysia. 
They found that monthly dataset facilitated higher predic-
tion accuracy than daily and weekly datasets and revealed 
that BDTR model had favorable performance in most cases.

In recent years, advanced ML models in combination 
with sequential minimal optimization (SMO) have success-
fully been applied for regression and classification purposes 
in different fields of science. For example, Hashmi et al. 
(2015) compared model tree with SMO in terms of predict-
ing the minimum surface roughness value and indicated the 
high predictive power of both algorithms. Gao et al. (2019) 
successfully employed SMO algorithm for designing energy-
efficient residential buildings.

In this paper, standalone SMO algorithms as well as three 
new hybrid models developed through effective integration 
of additive regression (AR), Dagging (DA), and random 
committee (RC) algorithms (i.e., AR-SMO, DA-SMO, and 
RC-SMO) are presented for rainfall prediction. As stated 
in the literature review, although there are many applicable 
models for rainfall prediction, most of them are classified 
as traditional with high uncertainty in performance. In the 
present study, authors tried to boost the accuracy of new 
ML models through hybridization and apply them to rainfall 
prediction. In addition, they intend to explore what types of 
input variable among hydrometeorological data are effec-
tive in rainfall prediction and what input scenario has the 
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highest flexibility. To the best of our knowledge, this is the 
first time that these types of hybrid algorithms have been 
applied to hydrology, especially for rainfall prediction. Other 
new aspects of the current study are: (a) investigating the 
effectiveness of each input variable (about 7 input variables) 
in the result, and (b) finding an appropriate input scenario.

Case study

Kermanshah synoptic station with an elevation of 1318 m 
at latitude of 34° 21' N and a longitude of 47° 9' E in Ker-
manshah province, west of Iran (Fig. 1), was considered as 
our case study. The mean annual rainfall of 450 mm was 
recorded by this station located in a mountainous area, and 
the corresponding long-term hydrometeorological infor-
mation was achieved. The wind that blows from the west 
and carries humidity from the Mediterranean and Atlantic 
Oceans is the main source of rainfalls and snow-falls during 
spring and winter, respectively, while the wind blowing in 
the summer is hot.

Methodology

The methodological framework of the current study is pre-
sented in Fig. 2.

Dataset collection

Thirty-year monthly data from January 1988 to Decem-
ber 2018 including evaporation (Eva), maximum relative 
humidity (MARH), minimum relative humidity (MIRH), 

maximum temperature (MAT), minimum temperature 
(MIT), sunshine hours (SSH), wind speed (WS), and rainfall 
were recorded from Kermanshah synoptic station by Ker-
manshah Regional Water Authority. Rainfall was determined 
as the target variable, while the remaining variables were 
incorporated into the model for estimating the rainfall. The 
whole data were divided into three groups: 70% of the data 
from January 1988 to December 2008 used for model build-
ing; 15% from January 2009 to December 2010 for model 
calibration; and the remaining 15% from January 2011 to 
December 2018 for model validation. Statistical analysis of 
the development, calibration, and validation datasets is given 
in Table 1.

Input scenarios

R-value between the input variables and rainfall (as out-
put) was calculated to construct different input scenarios 
for variables and investigate their effectiveness in rainfall 
modeling. The r-value pie-chart between input and out-
put variables is shown in Fig. 3. The r-value shows that 
all input variables, except WS, contribute to high rainfall 
prediction power.

Seven different input scenarios were built based on the 
r-value. First, the variable with the highest r-value (i.e., 
MIRH) was considered as a single input scenario. Then, the 
potential variable with the next highest correlation value was 
added to the first input for building the input combination 
number 2. Each variable was added in a stepwise approach 
to the previous scenario and this approach continued until 
the variable with the lowest r-value (i.e., WS) was added.

Fig. 1  The location of the Kermanshah synoptic station
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To achieve the most effective input scenario, all the input 
scenarios were fed as input into the rainfall model. Then, 
the results were compared and the scenario with the high-
est r-value was determined as the optimum input scenario 
(Table 2).

Optimum weights

Obtaining the optimum weight of each parameter in the 
model is a crucial phase in the modeling process, which can 
significantly enhance the predictive power of a model. This 
step was taken in the Waikato Environment for Knowledge 

Analysis (WEKA 3.9) software using the trial-and-error 
method. First, default values were considered, and then, the 
models were developed. Next, based on the achieved results, 
higher and lower values were applied until the optimal value 
was determined for the model. The lowest RMSE value was 
considered as a criterion in this step to determine the opti-
mum values for the models.

Fig. 2  A basic flow chart of the 
current study

Table 1  Descriptive statistics for training, calibration, and validation

St. D standard deviation

Variables Development dataset Calibration dataset Validation dataset

Min Max Mean St.  D Min Max Mean St. D Min Max Mean St. D

Eva 13.04 0.10 5.28 3.75 8.84 0.56 3.43 2.51 12.69 0.47 4.85 3.56
MARH 95.48 20.65 61.26 22.89 87.00 27.45 61.19 22.20 91.84 24.33 61.85 21.85
MIRH 71.03 7.03 28.96 17.24 53.74 7.61 27.02 14.95 70.87 6.55 27.44 15.21
SSH 12.79 2.84 8.34 2.73 11.84 4.29 8.09 2.26 12.60 2.80 8.20 2.43
MAT 38.26 0.22 21.56 10.98 37.57 6.05 22.53 9.99 38.55 4.02 22.59 10.51
MIT 24.82  − 10.84 8.12 8.25 21.25  − 3.65 9.06 7.53 23.23  − 3.79 8.90 7.86
WS 5.37 0.27 2.81 0.98 3.95 0.69 2.15 0.77 3.79 0.58 2.04 0.68
Rainfall 171.50 0.00 34.65 40.70 85.00 0.00 26.69 25.15 143.00 0.00 26.86 27.07



1779Acta Geophysica (2023) 71:1775–1786 

1 3

Description of the models

Sequential minimal optimization (SMO) regression 
algorithm

SMO algorithm is one of the well-known function algo-
rithms that was first invented by Platt (1988) at Microsoft 
Research Center. This iterative algorithm is developed for 
solving optimization problems, e.g., in quadratic program-
ming, which is a popular weakness of the SVM algorithm. 
Generally, the need for quadratic programming arises during 
the training of the SVM algorithm, and SMO algorithm is 
an alternative to QP methods, which are sophisticated and 
need expensive third-party QP solvers. SMO, on the other 
hand, can divide such problems into smaller parts, called 
sub-problems. The main advantage of these sub-problems 
is that they can be analytically solved. Of note, the SMO 
algorithm implements SVM for regression problems. Hence, 
the parameters can be learned using various algorithms. 
The algorithm is selected by setting the reg-optimizer as 
the most popular algorithm. Consider a binary classifica-
tion with a dataset (x1, y1), …, (xn, yn), where xi is an input 
vector and yi ∈ {− 1, + 1} is a binary label corresponding to 
it. A soft-margin SVM is trained by solving QP, which is 
explained in a dual form as follows:

subject to:

where C is an SVM hyperparameter and K(xi, xj) is the ker-
nel function, both supplied by the user; and the variables �i 
are Lagrange multipliers.

Random committee (RC)

An ensemble-based model developed by combining more 
than two artificial intelligence techniques is called Commit-
tee Machines (CMs). CMs enjoy flexibility in modeling and 
know-how in resolving the deficiencies currently witnessed 
in the respective standalone model (Ghiasi-Freez et al. 2012; 
Chen et al. 2022; Yin et al. 2022a, b). The RC model is a 
kind of CM learning technique applied for addressing clas-
sification and regression issues and is considered to be an 
effective ensemble model (Niranjan et al. 2017). The RC 
model is able to develop hybridized randomizable base 
regressors or classifiers, each functioning based on the same 
data. However, a specific random seed is utilized and the 
final model response is obtained by averaging the estima-
tions made by each standalone model (Witten and Frank 
2005).

Disjoint aggregating (Dagging)

Developed by Ting and Witten (1997), the disjoint aggregat-
ing (Dagging) approach works on a proportionate stratified 
sampling scheme, dividing a dataset into a series of strati-
fied folds in such a way that one individual learner manages 
a specific fold (Chen et al. 2020). Dagging is considered a 
robust tool for improving the accuracy of the weak single 
models in which a series of weak regressors are coupled 
using the voting rule for calculating the output of the model 
(Pham et al. 2020). The Dagging model can be established 
as follows: (i) The training dataset is split into a suite of "L" 
subsets; (ii) everyone should have "K" samples, and each 
sample belongs to only one subset; (iii) a regression model 
is developed for each subset, and in total, "L" regression 
models are obtained; and (iv) based on the comparison of the 
results from each regression model, the model with enough 
votes is selected for the Dagging algorithm (Chen and Li 
2020).

(1)Max

n
∑

i=1

�i − 0.5

n
∑

i=1

n
∑

j=1

yiyiK(xi, xj)�i�i,

(2)0 ≤ �i ≤ C, for i = 1, 2, ..., n,

(3)
n
∑

i=1

yi�i = 0,
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Fig. 3  Importance of input variables in terms of Pearson correlation 
coefficient

Table 2  Input variable scenarios

No Different input scenarios

1 MIRH
2 MIRH, MARH
3 MIRH, MARH, MAT
4 MIRH, MARH, MAT, MIT
5 MIRH, MARH, MAT, MIT, SSH
6 MIRH, MARH, MAT, MIT, SSH, Eva
7 MIRH, MARH, MAT, MIT, SSH, Eva, WS
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Additive regression (AR)

AR model was introduced by Stone (1985). From a math-
ematical point of view, "Y" and explanatory "xi" variables 
should be linked through a suite of nonparametric regression 
functions "fi", which are in turn defined to be a regression 
function of the independent variables "xi". Consequently, 
each independent variable "xi" contributes to the final model 
in the form of  (fi  (xi)) compared to the linear form (λi  xi) 
used in the MLR model (Xu et al. 2017). The AR is a gen-
eral (potentially nonlinear) regression model that includes 
linear regression as a special case. Suppose that variable 
Yi(i = 1, 2,… , n) is a function of unrestricted functions 
fj(j = 1, 2,… , p), which are determined by the input vari-
ables Xi1,Xi2 … ,Xip , respectively. The AR model is evalu-
ated based on the following equation (Xu and Lin 2017; Tian 
et al. 2021a, b):

where fj
(

Xij

)

 is a nonparametric function fit to the data. 
The random error term 

(

�i

)

 has zero mean and variance of 
�
2 . More AR details can be found in the study of Cui et al. 

(2010).

Evaluation and comparison of the models

RMSE, percentage of bias (PBIAS), Nash–Sutcliffe effi-
ciency (NSE), and mean absolute error (MAE) are computed 
as follows (Legates et al. 1999; Moriasi et al. 2007a, b):

where QObs is the observed rainfall, QPre is the predicted rain-
fall, MeanQObs is the mean of measured rainfall values, and 
N is the number of data samples (the number of test datasets). 
The lower the RMSE and MAE values, the higher the model 
performance. NSE ranges between −∞ and 1, and the model 
with NSE = 1 is ideal. NSE is classified as unsatisfactory, 

(4)Yi =

p
∑

j=1

fj
(

Xij

)

+ �i, �i ∼ iid
(

0, �2
)

,

(5)RMSE =

√

√

√

√
1

N

i=N
∑
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(QPre − QObs)2,

(6)MAE =
1

N

N
∑

i=1

|

|

|

QPre − QObs|
|

|

,

(7)NSE = 1 −

∑N

i=1
(QPre − QObs)2

∑N

i=1
(QObs −Mean QObs)2

,

(8)PBIAS =

�

∑N

I=1

�

QPre − QObs
�

∑N

i=1
QPre

�

∗ 100,

acceptable, satisfactory, good, and very good performance 
for NSE ≤ 0.4, 0.40 < NSE ≤ 0.50, 0.50 < NSE ≤ 0.65, 
0.65 < NSE ≤ 0.75, and 0.75 < NSE ≤ 1.00, respectively 
(Moriasi et al. 2007a, b). PBIAS can be used for model 
performance classification similar to NSE, and it shows the 
overall model underestimation or overestimation. Negative 
PBAISA indicates the model overestimation, while positive 
PBIAS represents underestimation (Legates and Mccabe 
1999).

Results

Most effective input scenario

Based on the results provided in Fig. 4, the input scenario 
(6) composed of the variables MIRH, MARH, MAT, MIT, 
SSH, and Eva had the highest r-values at both training and 
validation phases and showcased the most effective variables 
in rainfall prediction. Hence, the developed models were 
tested using the input scenario (6), the performance of which 
is discussed in the following section. 

Model evaluation

After calibrating and validating the developed models, the 
performance of the models was evaluated using the test data. 
The observed versus estimated rainfall values by different 
models are visualized as time-varying and scatter plots in 
Fig. 5. It was observed that the standalone models predicted 
rainfall with an  R2 of 0.568 and were less accurate than other 
models. In contrast, the estimated rainfall values obtained 
by all the developed ensemble models (DA-, RC-, and AR-
based models) were much closer to the measured values with 
 R2 of 0.739, 0.735, and 0.738. It was demonstrated that the 
DA algorithm was much more robust and had higher predic-
tive power than RC and AR models.

It is observed that the DA-SMO and AR-SMO are able to 
predict the median rainfall  (Q50) much closer to the meas-
ured rainfall values (Fig. 6). The first quartile  (Q25) of all the 
developed models, except for the standalone SMO model, 
is close to the measured  Q25 of the rainfall values, while the 
estimated values of the third quartile  (Q75) for all the devel-
oped models are higher than the measured  Q75 of rainfall 
values. The SMO is inaccurate in estimating the minimum 
and maximum rates of rainfall. However, the ensemble DA-
SMO is the most accurate model in estimating minimum and 
maximum rainfall rates, indicating the predictive power of 
the ensemble models.

In terms of the error metrics (Table 3) (i.e., RMSE and 
MAE), the SMO model had the lowest predictive power 
(RMSE = 22.61 mm, MAE = 13.98 mm). All the ensemble 
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models decreased the error occurring in the standalone mod-
els. It was observed that DA-, AR-, and RC-based SMO 
models decreased RMSE (MAE) of the standalone SMO 
by 21.1% (12.6%), 20.7% (11.8%), and 21.7% (13.0%), 
respectively. In terms of the NSE metric and based on the 
findings of Moriasi et al. (2007a, b), SMO with the NSE 
of 0.57 has a satisfactory performance (0.5 < NSE ≤ 0.65), 
while three ensemble-based models have a good perfor-
mance (0.65 < NSE ≤ 0.75). The PBIAS indicator shows that 
all the models are classified as having good performance 
(10% < PBIAS ≤ 15%) based on the findings of Moriasi et al. 
(2007a, b). Moreover, the PBIAS values for all the devel-
oped models are negative, indicating the overestimation of 
rainfall values.

Discussion

Choosing the best input variables is a difficult task in esti-
mating rainfall. A number of studies rely on nonlinear meth-
ods such as gamma test in order to determine appropriate 
predictors in rainfall estimation (Ahmadi et al. 2015). How-
ever, the results of the present study indicate that employing 
a linear methodology by incorporating the correlation coef-
ficient can also be a promising means to choose the input 
variables. It should be noted that while only a single com-
bination for input is selected automatically in a nonlinear 
method, we constructed and examined different combina-
tions for input variables in this article. This matter helped 
identify the input combination with the highest effective-
ness and, at the same time, determine the impact of each 
input variable on the final results. The findings of the present 

Fig. 4  Determination of the 
most effective input scenario: 
(a) development phase, and  
(b) validation phase
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Fig. 5  Line-graphs and scatter plots for predicted vs. measured rainfall values during the validation phase
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paper are supported by Khosravi et al. (2020a), who found 
the linear Pearson correlation coefficient effective in finding 
the best input variables for prediction models.

Due to the diversity in structure and complexity of the 
algorithms, DM models in various forms produce different 
results when employed for rainfall estimation. According 
to the findings of the present paper, the developed hybrid 
models, which are of nonlinear pattern in nature, had higher 
accuracy in modeling rainfall events than ML models in the 
standalone mode. In addition, the hybrid algorithms were 
more flexible than the latter. These findings support some 
research studies conducted previously, in which hybrid mod-
els were employed in order to simulate nonlinear hydrologi-
cal processes, proving the superiority of hybrid models as 
they decreased both bias and variance (Hong et al. 2018; 
Jiang et al. 2021; Zuo et al. 2020; Ebrahimi et al. 2022). 
Another notable merit of hybrid models is that they can 
tackle the problem of over-fitting in regression modeling 
(Chen et al. 2020). For instance, among such studies, Bui 
et al. (2020) concluded that hybrid models functioning based 
on bagging (BA) (e.g., BA-random forest (RF), BA-M5P, 
BA-random tree (RT), and BA-reduced error pruning tree 
(REPT)) would enhance the capability of individual models 

for predicting the indices of water quality. In addition, the 
study conducted by Khosravi et al. (2020b) found the BA-
based models superior to the individual M5P, RF, and 
REPT when adopted for bedload transport rate modeling. 
In the field of landslide susceptibility mapping, Nguyen 
et al. (2019) observed that hybrid models performing on the 
basis of BA and DA would achieve better results than the 
alternating decision trees. Furthermore, the findings of Chen 
et al. (2020) indicated that hybrid J48 Decision Trees estab-
lished based on BA and DA outperformed the standalone 
J48 model for the mapping of groundwater spring potential. 
All in all, BA- and DA-based hybrid models have proven 
viably satisfactory and reliable for prediction purposes. The 
results of the present paper further prove the robustness of 
some other hybrid models that are introduced as promising 
algorithms for modeling with prediction purposes.

As mentioned earlier, the main reasons behind the lower 
prediction performance of ML models with regard to natural 
phenomena like flood, drought, etc., lie in high non-linearity, 
stochastic process, and complexity of the occurrence of pre-
cipitation (e.g., Sánchez-Monedero et al. 2014; Hashim et al. 
2016). As a result, natural phenomena prediction, particu-
larly rainfall forecasting, continues to be subject to uncer-
tainty. Furthermore, relevant studies have considered the 
strong correlation between rainfall and cloud information. 
For this purpose, total perceptible water, equivalent potential 
temperature, humidity, wind speed, wind direction, convec-
tive available potential energy, and convective inhibition 
have been introduced as a reliable combination for input. It 
can be concluded that some missing data of the mentioned 
parameters are the major reason for uncertainty with regard 
to the results of the present research.

Fig. 6  Box plot of the measured 
and predicted rainfall values

Table 3  Performance evaluation of the models based on quantitative 
metrics

RMSE (mm) MAE (mm) NSE PBIAS%

SMO 22.61 0.67 0.570  − 13.00
AR-SMO 18.92 0.81 0.703  − 11.94
DA-SMO 17.73 0.81 0.730  − 11.86
RC-SMO 18.80 0.79 0.705  − 11.73
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It is suggested that future studies apply the proposed 
hybrid models to other hydrological fields such as water 
quality. Moreover, AR, DA, and RC algorithms can be uti-
lized as ensemble learners in order to develop hybrid models 
using other ML techniques, e.g., decision trees and rule-
based, lazy-based, and neuron-based algorithms, in different 
fields of geoscience.

Conclusion

Rainfall is one of the main components of hydrologic cycle 
that has a significant impact on the infiltration process, flood 
occurrences, soil erosion rate, water resources management, 
and irrigation system. Therefore, rainfall prediction is one 
of the hot topics today in the fields of hydrology and water 
resources management. Given that rainfall is highly stochas-
tic and chaotic in behavior, it is not an easy task to predict 
it. The current study proposed standalone SMO models and 
three new ensemble-based algorithms of DA-SMO, AR-
SMO, and RC-SMO for rainfall prediction in Kermanshah 
synoptic station, Iran. Moreover, different input scenarios 
were investigated to explore the effectiveness of different 
input combinations in the result. The main achievements 
drawn from the findings of this study can be summarized 
as follows:

1. Minimum relative humidity had the highest effect on 
rainfall prediction, followed by maximum temperature, 
relative humidity, minimum temperature, sunshine 
hours, evaporation, and wind speed.

2. Wind speed attenuated the predictive power of a model; 
in the present study, an input scenario featuring all input 
variables, except wind speed, was identified as the most 
effective scenario in rainfall estimation.

3. DA, AR, and RC algorithms enhanced the performance 
of the standalone SMO algorithm by about 12.8, 20.7%, 
and 21.7%, respectively, based on the RMSE metric.

4. While the standalone SMO algorithm had a satisfactory 
performance, ensemble models were of good perfor-
mance in terms of NSE metric.

5. DA-SMO ensemble model outperformed other models, 
followed by RC-SMO, AR-SMO and standalone SMO 
models.

6. All of the developed models in the current study tended 
to overestimate the rainfall amount.

7. Hybrid algorithms were more accurate than the stan-
dalone model in capturing extreme values. The differ-
ent machine learning algorithms explored in the current 
study are applicable to mountainous areas in Iran and 
may potentially yield accurate rainfall predictions for 
other mountainous regions in the world.
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