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Abstract
Distributed acoustic sensing (DAS) technology is a novel technology applied in vertical seismic profile (VSP) exploration, 
which has many advantages, such as low cost, high precision, strong tolerance to harsh acquisition environment. However, 
the field DAS-VSP data are often disturbed by complex background noise and coupling noise with strong energy, affecting 
the quality of seismic data seriously. Therefore, we develop a time–frequency analysis method based on low-rank and sparse 
matrix decomposition (LSMD) and data position points distribution maps (DPM) to separate signals from noise. We adopt 
Multisynchrosqueezing Transform to construct the approximate ideal time–frequency representation of DAS data, which 
reduces the difficulty of signal to noise separation and avoids the loss of some effective information to a certain extent. The 
LSMD is performed to separate the signal component and noise component preliminarily. In addition, combined with the 
separated low-rank matrix and sparse matrix, we propose the DPM to improve the accuracy of signal component extraction 
and the recovery ability of the method for weak signals through the joint analysis of the maps in time domain and frequency 
domain. Both synthetic and field experiments show that the proposed method can suppress coupling noise and background 
noise and recover weak energy signals in DAS VSP data effectively.

Keywords  Distributed acoustic sensing (DAS) · Vertical seismic profile (VSP) · Time–frequency analysis · Noise 
suppression

Introduction

Distributed acoustic sensing (DAS) technology is a new 
technology that uses optical fiber as acoustic signal sen-
sor (Hartog et al. 2014; Olofsson and Martine 2017). The 

operating principle of sensor system is to measure the acous-
tic field variation along the optical fiber by transmitting laser 
pulses into the fiber and receiving Rayleigh Backscatter nat-
urally generated from the fiber. The acoustic signal is cou-
pled to the fiber by friction or pressure, causing the dynamic 
strain changes along the cable. These strain changes lead to 
the small displacement of the scattering elements, which 
leads to the variations of the relative phase of the backscat-
tered photons (Frignet and Hartog 2014; Yu et al. 2018). 
Through the phase demodulation technology, DAS system 
can restore the external vibration signal sensed by optical 
fiber (Madsen et al. 2013; Parker et al. 2014).

For the DAS technology in borehole seismic data acquisi-
tion, optical fiber can be used not only as a sensor for seismic 
waves but also as a transmission medium for signals (Daley 
et al. 2013). Compared with the conventional vertical seis-
mic profile (VSP) data acquisition technology using down-
hole geophones, DAS has some prominent advantages (Mes-
tayer et al. 2011; Mateeva et al. 2014; Daley et al. 2016): 
(1) The cost of DAS equipment is much lower than that of 
conventional three-component geophone, and its acquisition 
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and construction cost is also lower; (2) the DAS equipment 
can achieve high density acquisition, the minimum sampling 
interval can reach 0.25 m, which can present the high resolu-
tion data, and its one-time acquisition can achieve full well 
coverage; (3) the optical fiber sensor of DAS also has many 
advantages, such as anti-electromagnetic interference, good 
concealment, and corrosion resistance. However, due to 
some technical limitations, DAS technology also has some 
shortcomings. Owing to the strong azimuth response for the 
optical fiber cable of DAS, it is relatively difficult to real-
ize multi-component observation (Zhang et al. 2020). Even 
though there have been corresponding improvement tech-
nologies (Ning and Sava 2018) in recent years, the actual 
observation needs to be verified. Affected by many factors, 
such as acquisition, layout, demodulation technology, and 
cable noise, the signal-to-noise ratio (SNR) of DAS data 
is relatively low compared with conventional VSP record. 
When the fiber cable is not closely contacted with the well-
bore, the coupling between the fiber and the formation is 
poor, resulting in strong coupling noise (Constantinou et al. 
2016; Correa et al. 2017).

The acquired DAS VSP seismic data contain some strong 
coupling noise and some background noise (Bakku et al. 
2014; Binder et al. 2020), which reduce the quality of data, 
so we need to eliminate these interference (Dong et al. 
2019). In order to extract the features of effective signal con-
veniently and remove the noise completely, we choose to 
transform DAS data into time–frequency domain for analysis 
and processing.

Time frequency analysis (TFA) is an effective method to 
analyze time-varying non-stationary signals (Pons-Llinares 
et al. 2015; Yu et al. 2017). It maps the time-series sig-
nal from one-dimensional time axis into two-dimensional 
time–frequency (TF) plane, and comprehensively reflects the 
joint characteristics of time and frequency domain of signals 
(Yang et al. 2014). Traditional time frequency analysis meth-
ods include short-time Fourier transform (STFT) (Meignen 
and Pham 2018), wavelet transform (WT) (Cai et al. 2001), 
empirical mode decomposition (EMD) (Gómez and Velis 
2016; Chen et al. 2017), and so on. Although these tradi-
tional TFA methods have some effect on signal processing, 
they also have various defects, such as Heisenberg uncer-
tainty principle, unexpected cross terms and mode alias-
ing (Thakur and Wu 2011; Yu et al. 2019). These defects 
seriously interfere with the description of signal features, 
and it is difficult to accurately identify effective informa-
tion. In order to approach the ideal time frequency analysis 
(ITFA) gradually, many advanced TFA methods have been 
proposed, for instance, the variational mode decomposition 
(VMD) (Liu et al. 2016; Liu and Duan 2020), reassignment 
method (RM) (Auger and Flandrin 1995; Auger et al. 2013), 
synchrosqueezing transform (SST) (Daubechies et al. 2011; 
Huang et al. 2016). Among them, SST method can not only 

improve the resolution of TF result, but also allow signal 
reconstruction. In this paper, we adopt a time–frequency 
analysis method based on SST, called Multisynchrosqueez-
ing Transform (Yu et al. 2019). A more precise frequency-
reassignment operator can be obtained by applying multi-
ple SST operations iteratively. It makes the TF results more 
concentrated and approach the ITFA result in a stepwise 
manner. Moreover, it can reconstruct signals, near perfectly, 
and is very suitable for the processing and analysis of non-
stationary signals.

The DAS seismic signal we processed is a relatively com-
plex non-stationary time-varying signal, and a more ideal 
time–frequency representation can be more conducive to 
our understanding and extraction of signal features. DAS 
seismic data contain strong coupling noise and some non-
negligible background noise interference, and its SNR is 
lower than that of conventional VSP data. It is difficult to 
remove the coupling noise with strong energy by some con-
ventional time–frequency domain filtering methods, because 
of the frequency band overlap between the coupling noise 
and effective signal. In addition, except for direct wave, the 
other effective reflected signals are relatively weak, which 
is not conducive to being retained. Therefore, we choose the 
MSST method which can approximately achieve the ITFA 
effect to analyze the DAS seismic data in time–frequency 
domain. Through the time–frequency features of DAS data 
constructed by MSST, we can better observe the data, dis-
cover the potential feature structure of it, and facilitate the 
separation and extraction of features.

The time–frequency domain characteristics of the effec-
tive signal and coupling noise of DAS data are obvious and 
easy to distinguish under the MSST transform. The feature 
representation with energy compaction is more convenient 
for us to extract the effective components, and the algo-
rithm can realize signal reconstruction. In the process of 
time–frequency feature extraction, in order to extract effec-
tive features more accurately, this paper establishes a suit-
able MSST time–frequency feature domain and decomposes 
the feature matrix into low-rank matrix (LM) and sparse 
matrix (SM), so as to make the feature extraction more con-
venient and clear. Meanwhile, the data position points of 
the decomposed LM and SM are statistically analyzed, and 
their data position points distribution maps (DPM) in time 
and frequency domain are obtained respectively. Combined 
with the feature of DPM, we realize the accurate extraction 
of effective signals and the reservation of weak signals. In 
this paper, we establish a denoising method through low-
rank and sparse matrix decomposition (LSMD) and DPM 
analysis under the MSST feature domain (LS-DPM-MSST), 
which can remove coupling noise and extract weak effective 
signal, at the same time, we reduce the background noise by 
using low-rank constraint on the data. In the following part, 
the basic principle of the time–frequency analysis method 
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MSST and the specific process of the proposed method for 
VSP data denoising are introduced in detail. The proposed 
method is compared with some traditional methods to verify 
the feasibility and superiority of the method in synthetic and 
real data processing.

Basic theory of LS‑DPM‑MSST

Basic principles of MSST

The MSST is based on short-time Fourier transform (STFT) 
framework. The STFT of a function s ∈ L2(R) with respect to 
the real and even window g ∈ L2(R) is defined by:

where the window g(u) compactly supports in [−Δt,Δt] , t , u 
denote the time variable, w denotes the frequency variable, 
( Δt denotes a minimum time). Though the TFA results of 
STFT are relatively blurry, it can be concentrated in a com-
pact region around the instantaneous frequency (IF) trajec-
tories of each mode by the SST operation, and the results of 
SST are clearer. The SST employs a frequency-reassignment 
operator to gather the spread TF coefficients, which can be 
expressed as:

where � represents the reassigned frequency, ŵ(t,w) is the 
instantaneous frequency estimation of STFT, and it can be 
expressed as:

In order to get a much sharper TF representation, the 
MSST method applies multiple SST operations iteratively, 
so that the energy of TF analysis results is gradually concen-
trated, and the estimated result of IF is closer to true IF, so 
as to approximate the ITFA in a stepwise manner. Thus, the 
MSST (Yu et al. 2019) can be formulated as:

where N is the iteration number such that N ≥ 2.
Considering that MSST only reassigns TF coefficients 

in frequency direction, and there is no information leakage, 
theoretically, MSST allows perfect signal reconstruction. 
The original signal can be perfectly recovered via:

(1)G(t,w) = ∫
+∞

−∞

g(u − t)s(u)e−iw(u−t)du,

(2)Ts(t, �) = ∫
∞

−∞

G(t,w)�(� − ŵ(t,w))dw,

(3)ŵ(t,w) = �tG(t,w)∕iG(t,w).

(4)
T
[N]
s

(t, �) =∫
∞

−∞

T
[N−1]
s

(t,w)�(� − ŵ(t,w))dw

=∫
∞

−∞

G(t,w)�(� − ŵ
[N](t,w))dw,

where g(0) is the value of window function g(t) at time 0.

Discrete MSST

For discrete data s[l], l = 0, 1,… , L − 1 , the discrete STFT 
can be expressed as:

where L is the number of samples, h is a discrete time vari-
able, and m is a discrete frequency variable. Similarly, dis-
crete MSST can be described as:

where � denotes a discrete frequency variable, M is the num-
ber of frequency samples, m = 0, 1,… ,M − 1.

DAS VSP data processing based on LS‑DPM‑MSST

The concentrated TF representation of MSST can address 
various signal components and extract weak effective signal 
in a better way, and the DAS-VSP seismic data are observed 
and processed in the time–frequency characteristic domain 
under MSST transform in this paper. Through the high-reso-
lution MSST method, we can observe the difference between 
signals and coupling noise in time–frequency domain more 
clearly and intuitively. As shown in Fig. 1, (a) and (b) are 
the seismic trace without noise and trace with coupling noise 
of DAS seismic data in time domain respectively, (c) and 
(d) are their time–frequency domain representation results 
through MSST in an appropriate window function. It is 
found that the frequency bandwidth of effective signals is 
wide and the energy distribution is more like the dot- or cir-
cle-shaped aggregate distribution; the frequency bandwidth 
of coupling noise is narrow, and the energy distribution 
presents the obvious straight line-like characteristic along 
the time axis. The TF results also contain some background 
noise and high frequency random noise. We can reduce the 
impact of this part of noise by constraining the frequency 
dimension of TF results, also it can reduce the redundancy 
of data and the computational complexity.

Ideally, we hope to extract only the effective signal compo-
nents from the time–frequency feature map and reject the noise 
components. Although the TFA results based on MSST have 

(5)s(t) = (2�g(0))−1 ∫
∞

−∞

T [N]
s

(t,w)dw,

(6)G[h,m] =

L−1∑

l=0

g[l − h]s[l]e−i(2�∕L)m[l−h],

(7)

T
[N]
s

[h, �] =

M−1∑

m=0

T
[N−1]
s

[h,m]�[� − ŵ[h,m]]

=

M−1∑

m=0

G[h,m]�[� − ŵ
[N][h,m]],
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achieved a very concentrated TF representation in Fig. 2a, and 
we can observe obvious characteristics difference, it still needs 
some means to distinguish the effective signals and the noise. 
We utilize LSMD to complete the first separation for seismic 
data in time–frequency domain, and the obtained time–fre-
quency representation of LM and SM is shown in Fig. 2b, c. 
For the data decomposition, we suppose that the seismic data 
matrix D is the superposition of a low-rank component and a 
sparse component. Under some suitable assumptions, it is pos-
sible to recover both the low-rank and the sparse components 

exactly by simply minimizing a weighted combination of the 
nuclear norm and of the L1 norm. This procedure is shown in 
Eq. (8), where ‖ ⋅ ‖∗ represents the nuclear norm of a matrix, 
‖ ⋅ ‖1 represents the L1 norm of a matrix. Solving this convex 
optimization problem, we can get the LM LM and SM SM.

(8)
min ‖

‖LM
‖
‖∗ + �‖‖SM

‖
‖1

s.t.D = LM + SM

Fig. 1   a, b the seismic trace 
without noise and trace with 
coupling noise of DAS seismic 
data in time domain respec-
tively, c, d their corresponding 
representation results in time–
frequency domain by MSST in 
the form of DMP

Fig. 2   a the time–frequency representation of noisy DAS seismic 
data by MSST, b, c are the LM and the SM of the noisy data by 
LSMD. They are all the time–frequency representations in the form 
of DMP. The red arrows indicate the relatively obvious effective sig-

nals and coupling noise. Some obvious effective signal components 
and most of the coupling noise components are marked in (b), and 
part of the signal components are marked in (c)
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The decomposed LM contains some effective signal 
components and most of the coupling noise components, 
while SM contains most of the effective signal components 
(especially weak effective signal), and a small number of 
possible coupling noise components (as shown in Fig. 2b, 
c). Next, we complete further signal component extraction 
and remove the coupling noise part on LM and SM. It can 
be seen that since the retention of coupling noise is mostly 
on LM, the noise elimination is mainly completed in it. Most 
of the weak effective signals are retained on SM, so the pres-
ervation and recovery of the weak signals is the focus in this 
part. The two parts are different in emphasis and processing 
degree.

To further deal with LM and SM, we set up DPM to 
assist the data processing. The DMP can be obtained 
by recording the point positions of data which are pro-
cessed by the hard threshold function in the matrix. The 
time–frequency diagrams in Figs. 1 and 2 are presented 
in the form of DPM. This representation can more clearly 
observe the time–frequency domain position distribution 
of data points, which is convenient for us to find feature 
information. Then, by accumulating all the location points 
in the time and frequency direction of the DPM, their fre-
quency domain DPM (F-DPM) and time domain DPM 
(T-DPM) can be obtained (as shown in Fig. 3). The val-
ues of F-DPM and T-DPM reflect the distribution of data 
locations to a certain extent. By observing the F-DPM of 

LM, we can determine the frequency range of the coupling 
noise. According to the T-DPM of SM and LM, we can 
also roughly determine the time domain distribution range 
of the signals and then combine with F-DPM to determine 
the frequency distribution of the signals. Through empiri-
cal analysis and the numerical criteria determination, we 
can choose which distributions are needed and which are 
not. Given the distinct separation of signal and noise in 
the F-DPM and T-DPM, respectively, the effective signal 
components can be manually extracted from the F-DPM 
and T-DPM after smoothing.

We constrain the data rank to suppress the background 
noise. The LSMD method we selected is GreGoDec, which 
is proposed by Zhou and Tao (2013) based on GoDec algo-
rithm. It has better robustness to noise and faster conver-
gence speed and is suitable for processing DAS records 
with large amount of data. And the low-rank constraint 
solution is completed via nuclear norm minimization 
(Zhou and Zhang 2017) of data. The flow of DAS VSP 
data processing by LS-DPM-MSST method proposed in 
this paper is shown in Fig. 4.

Fig. 3   a, b the DPM of LM in 
time direction and frequency 
direction respectively, and  
c, d the DPM of SM in time 
direction and frequency 
direction, respectively. The 
amplitude in b, d is normalized. 
Some obvious effective signal 
components and coupling noise 
components are marked by red 
arrows
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Experiments and results

Synthetic records

We first test the denoising performance of the proposed 
method by processing the synthetic DAS-VSP data gener-
ated by the forward model. Figure 5 shows a 2-D forward 
geological model, containing four layers with different 
wave velocities, where the abscissa is the horizontal dis-
tance (m), the ordinate is the depth (m), the inverted tri-
angle represents the seismic source, and the vertical black 
line represents the fiber optic sensor. The parameters of the 
forward model are shown in Table 1, and the pure record 
corresponding to it is shown in Fig. 6a. By adding some 

real background noise and coupling noise taken from DAS-
VSP data to the pure record, we can obtain the synthetic 
noisy DAS-VSP record shown in Fig. 6b. In the noisy 

Fig. 4   The flow of DAS VSP 
data processing by LS-DPM-
MSST method

Fig. 5   The forward model 
contains four layers with dif-
ferent wave velocities. The red 
rectangle box on the left marks 
the optical fiber cable. The red 
rectangular box in the top right 
corner marks the seismic source

Table 1   Parameters of the forward model

Parameters Specifications

Wavelet Ricker wavelet
Domain frequency 60 Hz
Trace interval 1 m
Sample interval 1 ms
Propagation model Elastic wave solved 

by finite differences 
method
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record, most of the effective signals are seriously con-
taminated by noise, especially the effective signals with 
weak energy, also the coupling noise with strong energy 
destroys the continuity of events.

We apply the wavelet transform (WT), variational mode 
decomposition (VMD), bandpass filtering (BP) and the pro-
posed method (LS-DPM-MSST) to process the synthetic 
noisy DAS-VSP record, and the denoised results of them are 
shown in Fig. 6c–f successively. Meanwhile, their removed 
noise records between the noisy record and the denoised 
records are shown in Fig. 7a–d. WT is a classical TFA 
method, and it is widely used in seismic data processing 
(Goudarzi and Riahi 2012; Ouadfeul and Aliouane 2014). 
The DAS seismic data are divided into scales through WT, 
and the appropriate threshold at each scale is set to com-
plete the screening of coefficients. The soft threshold func-
tion is selected, and through continuous experimental tests, 
the relatively optimal scale and threshold parameters are 
selected to complete the final denoising processing. VMD is 

an excellent time–frequency transform method developed in 
recent years, and has also been applied to noise suppression 
in seismic data (Liu et al. 2016; Liu and Duan 2020). VMD 
is a nonlinear TFA method that can realize adaptive decom-
position. Compared with the conventional EMD method, 
VMD has a more solid mathematical foundation and can 
avoid the problem of mode mixing to some extent. Through 
many tests, we select the appropriate decomposed modes 
and get a relatively better processing result. BP filtering is a 
classical and effective method in noise suppression for most 
seismic data (Douglas 1997; Ma et al. 2019), it is applied 
to noise elimination for DAS seismic data by appropriate 
frequency band in this part.

From the denoised results, the four methods can suppress 
the background noise, but the proposed method has the best 
suppressing effect, its record is cleaner with least residual 
noise. The denoised result of BP shows the most background 
noise residue, followed by VMD and WT results. For signal 
preservation, the result of WT is difficult to observe the weak 

Fig. 6   Experiment with synthetic records. a the synthetic pure DAS-VSP record obtained by the forward model, and b the synthetic noisy DAS-
VSP record with real background noise and coupling noise. c–f Denoised results by using WT, VMD, BP and LS-DPM-MSST, respectively
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effective signals, and the proposed method can recover the 
effective signals clearly and continuously and keep the weak 
signal effectively compared with VMD and BP. As for the 
coupling noise, the proposed method can suppress the noise 
well, but the other three methods are not ideal, there are still 
many residual noise. From the observation of the LS-DPM-
MSST result, except for a very small part of the coupling 
noise, the rest of the noise is well suppressed, the denoised 
seismic records are very clean, and the weak signals are 
preserved well. From the removed noise records, we can see 
that the WT attenuates the signals seriously while eliminat-
ing the noise. There are more residues of effective events 
in the WT removed noise record, and the weak events loss 
is obvious. There are also obvious down-going direct event 
residues in removed noise record of VMD. Although there 
is no significant effective signals loss in the BP removed 
noise record, it contains only background noise and almost 
no coupling noise in the record, so it can be seen that BP 
has a weak inhibitory effect on coupling noise. Basically, no 
significant loss of effective events are seen in the removed 
noise record of LS-DPM-MSST, and it contains most of the 
background noise and coupling noise.

Field records

To show the effectiveness of the proposed method, we fur-
ther applied it to denoise a field DAS-VSP record. Figure 8a 
presents a field DAS-VSP data from the Tarim region of 
Xinjiang in western China, which the abscissa is the trace 

number of seismic data and the ordinate is the trace sample 
numbers. The sample interval of the DAS system is 1 ms, 
and the trace sample is 6000. It can be seen from the field 
data that the down-going direct events and weak up-going 
events are seriously contaminated by the background noise 
and coupling noise. From the denoised results (shown in 
Fig. 8b–e) of the field data, we can discover that the cou-
pling noise and background noise are effectively suppressed 
by the proposed method, and the effective events become 
more continuous. The quality of the field data is obviously 
improved. The other three methods (WT, VMD, and BP) 
have limited ability to suppress the coupling noise, and the 
energy loss of the effective signals is large, which destroys 
the continuity of the events.

Conclusions

We design a denoising method, LS-MP-MSST, based on 
ITFA-like to eliminate the coupling noise and background 
noise of DAS-VSP data. The method can determine the fea-
ture components of the effective signal by comprehensively 
analyzing the DPM of the LM and SM in the time and fre-
quency domain, and completes a more accurate effective 
information extraction. Both synthetic and field examples 
show that the proposed method has obvious effect in sup-
pressing coupling noise and background noise, and can 
reduce the leakage of effective information and recover weak 
effective signals.

Fig. 7   Removed noise records. a–d Removed noise by using WT, VMD, BP and LS-DPM-MSST, respectively
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