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Abstract
Delineating geologic features through the inversion of gravity data is an important goal in a range of geophysical investiga-
tions. However, it is a well-known fact that gravity data inversion has no inherent depth resolution. In order to overcome this 
limitation, different depth weighting approaches have been developed. With the purpose of finding an effective and a more 
convenient way to precisely estimate the depth of the anomalous body, we have tested the most popularly used depth weight-
ing function. Our test showed that it does not properly counteract the decay of the gravity kernel and is strongly dependent 
on the exponent term. To resolve this, we have proposed a new depth weighting function that can easily be automated and 
counteracts the depth dependent natural decay of the gravity kernel more appropriately. Through this, the challenges in trial 
and error selection of the exponent of the old depth weighting function are avoided. The new depth weighing function was 
then implemented to improve a gravity inversion method, which produces compact and sharp images of the subsurface den-
sity distributions. The inversion method is obtained from the minimization of an objective function, which consists of data 
misfit and  L0-norm stabilizing functions, by iteratively reweighted least-squares algorithm. To evaluate the practicality and 
resolution capability of the method, it was tested using a number of synthetic data sets from geometrically complex models 
and real data. The inversion results proved the effectiveness of our method in producing geologically acceptable multiple 
localized bodies with improved depth resolution. This in turn illustrates the applicability of the newly proposed function in 
the inversion of gravity data.

Keywords L0-norm stabilization · Gravity inversion · Depth weighting · Inequality constraint

Edited by Prof. Ivana Vasiljević (ASSOCIATE EDITOR) / Prof. 
Gabriela Fernández Viejo (CO-EDITOR-IN-CHIEF). 

 * Mesay Geletu Gebre 
 mesay.geletu@wku.edu.et

1 College of Natural and Computational Sciences, Physics 
Department, Wolkite University, P.O. Box 07, Wolkite, 
Ethiopia

2 Institute of Geophysics, Space Science and Astronomy, 
Addis Ababa University, Addis Ababa, Ethiopia

Introduction

The main aim of gravity data interpretation in geophysical 
exploration is to estimate the density distribution and geo-
metrical properties (i.e., shape and location) of the causative 
bodies. Toward this, gravity inverse modeling plays the final 
and indispensable role. Solving the gravity inverse modeling 
problem involves reconstruction of the model parameters 
from a set of measurements of the gravity anomaly field. 

The well-known major problems in geophysical inverse 
problem and specifically with gravity inverse modeling are 
the non-uniqueness of the solution, lack of depth resolution, 
and insatiability of the process (Al-Chalabi 1971; Silva et al. 
2002). The standard technique to solve such an ill-posed 
problem, according to the regularization theory (Tikhonov 
et al. 2013; Zhdanov 2015), is a minimization of a general 
objective function. The objective function includes two 
parts where the trade-off between them is controlled by a 
regularization parameter: a data fidelity or misfit functional 
which measures how well the predicted data reproduce the 
observed data and stabilizing functional that stabilize the 
solution.

The choice of the stabilizing functional, in potential field 
inversion procedures, depends on the desired model features 
that are to be recovered. Several types of stabilizing func-
tions have been developed and implemented in potential filed 
inversion, which mainly fell into two categories. The first 
category belongs to smooth stabilizing functions which use 
 L2 -norm of the model or gradient of the model parameters 
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(e.g., Li and Oldenburg 1996, 1998; Pilkington 1997; Bou-
langer and Chouteau 2001; Cella and Fedi 2012). Despite 
the popularity and the good stability of such methods, the 
resulting solutions are typically characterized by smooth 
features especially blurred boundaries (Farquharson 2008; 
Rezaie et al. 2016). Consequently, these methods have dif-
ficulties in recovering blocky structures or non-smooth dis-
tributions that have sharp boundaries or abrupt changes in 
physical properties (Sun and Li 2014; Utsugi 2019).

The second group of the stabilizing functions belongs to a 
non-smooth stabilizer that uses  L1 or  L0-norm directly on the 
model or on the gradient of the model parameters. In contrast 
to  L2 –norm smooth stabilizers the non-smooth stabilizers 
produce focused and sharp images of the subsurface. Numer-
ous non-smooth stabilizers have been proposed and imple-
mented in geophysical inversion algorithms, for instance, min-
imum gradient support functional (Portniaguine and Zhdanov 
1999), total variation stabilizer (Bertete-Aguirre et al. 2002), 
exponential stabilizer (Zhao et al. 2016), adjustable exponen-
tial stabilizer (Hu et al. 2019), zero-order minimum entropy 
stabilizer (Rezaie 2019), and a sigmoid stabilizing function 
(Rezaie 2020). Particularly, the  L0-norm stabilizing functional 
proposed by Last and Kubik (1983), named as compactness 
constraint, and its generalization the minimum support sta-
bilizer (Portniaguine and Zhdanov 1999; Zhdanov 2002) is 
a well-known non-smooth stabilizer. Relying on the pioneer 
work of Last and Kubik (1983) this  L0-norm stabilizing func-
tional has been borrowed and applied by a large number of 
researchers in various inversion methods, while constantly 
enhancing its efficiency and practicality. For example, in 
gravity inversion (Lewi 1997; Rezaie et al. 2016; Feng et al., 
2020), for magnetic inversion (Stocco et al. 2009; Varfinezhad 
et al. 2020), direct current resistivity data inversion (Varfin-
ezhad et al. 2022) and for seismic tomography (Ajo-Franklin 
et al., 2007).

It is well-known that gravity data inversion, like other poten-
tial field inversions, has no intrinsic depth resolution. Hence, 
the depth resolution is a critical problem in gravity inversion. 
To overcome this problem, several approaches have been 
proposed by a number of researchers (e.g., Li and Oldenburg 
1998; Portniaguine and Zhdanov 2002; Commer 2011; Cella 
and Fedi 2012). Especially, the depth weighting function pro-
posed by Li and Oldenburg (1996, 1998) is the most popular 
approach and has been used in numerous potential field inver-
sion methods (e.g., Boulanger and Chouteau 2001; Pilkington 
2008; Oldenburg and Li. 2005; Namaki et al. 2011, Cheyney 
et al. 2015; Rezaie 2020). However, the choice of the parameter 
(the exponent) in this depth weighting function, which strongly 
affects the results, needs to be done manually (by trial and error) 
and there are no set criteria to select this parameter. To resolve 
this limitation, a new depth weighting function has been intro-
duced in this paper. Simultaneously, an improved gravity inver-
sion method that produces compact and sharp images of the 

subsurface density distribution is presented using the proposed 
depth-weighting function. The inversion method is obtained 
from the minimization of an objective function, which consists 
of data misfit and  L0-norm stabilizing functions, by iteratively 
reweighted least-squares (IRLS) algorithm.

The paper is structured in such a way that it first intro-
duces the forward and inverse modeling approaches and 
simultaneously, describes and examines the depth weight-
ing function that has been suggested by Li and Oldenburg, 
(1996, 1998) by making use of the behavior of gravity ker-
nel. Then a new depth weighting function, which overcomes 
shortcomings of the former depth weighting function and 
also effectively counteracts the decay of the gravity kernel, 
will be discussed. In addition to the effectiveness of the new 
depth weighting function, its advantage in the automatic 
determination of its parameters will also be discussed. This 
depth weighting function will later be incorporated in the 
improved gravity inversion method. The other improvement 
is the implementation of the element -by-element physical 
parameter inequality constraint algorithm. Before a con-
clusive remark is given, the improved inversion method is 
evaluated by making use of various synthetic and real data 
tests. Finally, concluding remarks will be given based on 
synthetic and real data inversion results.

Methodology

Parameterization of the model

In potential field modeling, the subsurface is commonly 
represented using digitized finite number of right rectangu-
lar prisms (Boulanger and Chouteau 2001; Commer 2011; 
Vatankhah et al. 2015), because of the simplicity of the 
approach. As rectangular prisms are used as building blocks 
for 3D modeling, parallelograms are used as building blocks 
for two-dimensional (2D) gravity modeling. The 2D approxi-
mation of the subsurface model can be obtained from the 3D 
case by assuming that each rectangular prism is infinitely long 
in the Y-direction with invariant density, while variations in 
densities are only allowed along the X and Z directions.

Figure 1 shows the cross section of the 2D discretization 
of the subsurface under a hypothetical gravity profile. Each 
rectangular element has known constant size and position 
as presented in Fig. 1. The density contrasts within each 
elementary cell are assumed to be a constant, which is pre-
scribed in the forward problem, but an unknown parameter in 
the inverse problem. This type of 2D discretization has been 
applied in several 2D gravity modeling methods proposed by 
a number of investigators (Last and Kubik 1983; Grandis and 
Dahrin 2014; Vatankhah et al. 2014; Ghalehnoe et al. 2016). 
In the present work, for the sake of simplicity, we will deal 
with the 2D problem.
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Forward modeling

In this work, the forward and inverse gravity modeling are 
addressed by considering the 2D subsurface model shown in 
Fig. 1. For this model, the geometry of the model structure 
remains constant, only the densities of the rectangular blocks 
are variable parameters. The relationship between the model 
parameters of each block and the vertical gravitational field 
data is linear in the way the formulation is subsequently pre-
sented. For such discretized model the vertical gravitational 
attraction caused by each block can be calculated individually. 
Then the sum of the contributions from each of the individual 
blocks produces the vertical gravity field data gi at ith measure-
ment point, which can be given by:

where M is the number of rectangular blocks, �j is the den-
sity of jth rectangular block and it is assumed to be con-
stant within the cell, ei is a random noise associated with ith 
measurement point, aij is a kernel matrix element, depends 
upon the geometry of the discretization, and determines the 
gravitational influence of the jth cell on the ith observation 
point. The analytical formula employed for computation of 
aij for each cell, considering the 2D model (Fig. 1), is given 
by the following equation (Last and Kubik 1983):

(1)gi =

M∑
j=1

aij�j + eij = 1, 2,…… .M,

(2)
aij =2�
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where h and d are height and width of each cell, respec-
tively; Xj and Zj are the horizontal and the vertical distance 
from the center of the reference point to the center of the  jth 
cell and � is the universal gravitational constant and:
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Here the vector � ,  which can be written as [
�1, �2,… ..�M

]T  and g that can also be written as [
g1, g2,… ..gN

]T represents the density contrast of the rec-
tangular cells and vertical gravity data vectors, respec-
tively. N is the number of available observation points, and 
T  denotes the vectors transpose. Then the linear forward 
modeling problem relating the model parameter vector � 
to the gravity data vector g can be expressed using Eq. 3:

where e represents the N-dimensional noise vector and A 
the N × M kernel matrix with elements [ aij ]; i = 1, 2… N; 
j = 1, 2,…, M. In the present work the forward modeling 
that is the calculation of the predicted gravity anomalies (or 
theoretical data) for a known subsurface density contrast is 
accomplished using Eq. 3.

Inverse modeling

The principal aim of the gravity inverse modeling is to 
obtain a geologically reasonable density model based on 
the given observed gravity data. Since the gravity inverse 
problem is usually an ill-posed problem, the standard way 
to determine the model parameters � is minimizing the 
following objective function ( Φ ), which is the combina-
tion of prediction error or data misfit functional (Φd) and 
stabilizing functional ( S(m) ) and it is given by:

where � is the regularization parameter, which controls the 
relative balance between the stabilizing term and the data 
misfit. The data misfit functional Φd measures how well the 
predicted data reproduce the observed data, and hence usu-
ally defined as a L2-norm of difference between observed 
and computed field (Menke 1989):

(3)gNx1 = ANM�M1 + eN1,

(4)Φ = Φd + �2S(m)),

Fig. 1  2D discretization of the earth model under the survey area 
with square cells. Gravity stations at the ground surface are posi-
tioned at midpoints of the blocks indicated by the ▽ symbols
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where the diagonal matrix �e defines the relative contribu-
tion of each individual error to the total prediction error. 
Depending on the type of desired model features to be recov-
ered through the inversion, there are several choices for the 
stabilizing functional. Following Menke (1989) the classical 
weighted L2–norm stabilizing functional can be defined as 
follows:

where �F is a prior reference model vector, and Wm is diago-
nal weighting matrix. By suitably choosing �F and Wm one 
can quantify a variety solution with different model features. 
Using Eqs. 5 and 6 the conventional  L2-norm objective func-
tion can be formed as:

In Eq. 7, the  L2-norm measure is applied on both the 
data misfit and stabilizing functions. The minimization 
of this type of  L2-norm measure objective function has 
been widely used in potential filed inverse modeling prob-
lems (Li and Oldenburg 1996 1998; Cella and Fedi 2012). 
However, as mentioned in the introduction section mod-
els recovered from procedures following this approach are 
usually characterized by smooth features, especially poorly 
defined boundaries (Farquharson 2008; Utsugi 2019). This 
is mainly problematic in areas where the geology of the 
study area is known to have sharp discontinuities such as 
distinct layering or formation of localized bodies. To deal 
with such problems designing an objective function that 
use different measures (i.e., non -L2) for the stabilizing 
function has dominated the literature over the past few 
decades. In this paper, to obtain compact and sharp mod-
els, the widely used  L0-norm measure stabilizing function 
is used. Following the conventional way, we write ‖�‖0 
as zero norm  (L0-norm) of a vector which refers for the 
number of nonzero components of the vector � . Analogous 
to the L2–norm regularized objective function, presented 
in Eq. 7, the commonly L0–norm regularized objective 
function ΦL0

 can be written in the following form:

Inversion algorithms that employ minimization of L0

–norm type regularized objective function, similar to the 
one given in Eq. 8, are known to yield focused and sharp 
images of the subsurface structures. For this reason, it has 
been extensively used in several geophysical inversion 
algorithms, particularly when it can be assumed that the 
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subsurface targets are localized and compact and/or have 
sharp edges. For instance, it was utilized in the seismic data 
inversion (Chen et al. 2013; Liu et al. 2018; Dai and Yang 
2021), for potential field inversion (Zhao et al. 2016; Meng 
2018; Hu et al. 2019; Feng et al., 2020) and many others.

It is well known that the minimization of Eq. 8 is an NP-
hard problem so it is very difficult to directly find the solu-
tion (Chen et al. 2013; Wang, et al. 2013; Meng 2018). To 
overcome this difficulty, several approximate mathematical 
approaches have been developed and employed successfully 
in a variety of applications. For a comprehensive review of 
the developed methods and possible applications, the reader 
can refer to Zhang et al. (2015) and the references therein. 
Particularly, the iteratively reweighted least-squares (IRLS) 
algorithm (Chartrand and Yin 2008; Daubechies et al. 2010) 
is one of the most common techniques and has superior per-
formance in a variety of geophysical inversion methods (e.g., 
Farquharson 2008; Silva et al. 2009; Stocco et al. 2009; Sun 
and Li 2014; Gholami and Aghamiry 2017). In the current 
study, taking the flexibility advantage offered by the IRLS 
algorithm and using a suitably chosen weighting matrix Wm 
the solution for Eq. 8 is obtained by minimizing Eq. 7 (Chen 
et al. 2013; Wang et al. 2019). In other words, the  L0-norm 
minimization is approximated by iteratively re-weighted 
 L2-norm minimization and it is carried out as follows. Min-
imizing the  L2-norm objective function ΦL2

 in Eq. 7 using 
the standard weighted-damped least-square optimization, 
the estimated density distribution ( �k+1 ) at k + 1 iteration in 
matrix notation can be given by (Menke 1989):

where �k
F
 and Wk

e
 are the  kth iteration reference density vector 

and error weighting matrix, respectively. The computation 
of �k

F
 will be explained in detail in the next subsections. 

gk
r
= gobs − A�k

F
 represents reduced data vector computed 

at each iteration. The parameter � (Eq. 9) is a nonnega-
tive scalar and controls the tradeoff between the data misfit 
and the stabilization term. With a small value of � , recon-
structed models have highly oscillatory artificial structures 
and a large value of � leads to a big misfit value between 
the observed and predicted data (Silva and Barbosa 2006). 
Consequently, choosing an appropriate value of � is cru-
cial to obtain a reasonable model, achieve stability, and also 
improve convergence. Here depending on the noise level 
of the data points, a suitable � value is chosen by trial and 
error (Barbosa and Silva 2006; Silva and Barbosa 2006; 
Ghalehnoe et al. 2016).

In this work, Wk
m
  is a product of three different diagonal 

matrices such as  L0-norm stabilizer 
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(
Wh

k
)
 and depth weighting 

(
Wzn

)
 . Mathematically, Wk

m
 is 

expressed as:

The matrices Wh
k and Wzn will be described in the next 

subsections. During the inversion process, except Wzn which 
has a fixed value during the iterative process, the values of 
all the other weighting matrices changes at each iteration. 
The  L0-norm stabilizing matrix Wk

L0
 applied in this work is 

the one, which is originally proposed by Last and Kubik 
(1983) and further developed by Portniaguine and Zhdanov 
(1999). The diagonal elements of this matrix can be obtained 
using:

where � is a focusing parameter, which determines the com-
pactness of the generated model. A large value of the focus-
ing parameter provides a smooth model, while a very small 
value leads to the singularity of the stabilizing function (Hu 
et al. 2019). Thus, in order to obtain a compact model with 
sharp edges it is very essential to choose an optimal value of 
� (Zhao et al. 2016). In previous studies for instance the 
pioneering work of Last and Kubik (1983), and Lewi (1997) 
the parameter � was assigned a value close to machine preci-
sion ( 10−11 to 10−15 ). On the other hand, Zhdanov and Tol-
staya (2004) introduced a trade-off curve method, similar to 
the L-curve technique, to select � by calculating model 
objective for the current model estimate with different values 
of � . However, as pointed out by Ajo-Franklin et al. (2007) 
setting � to values near machine precision results in severe 
instability as �j → 0 and the approach of Zhdanov and Tol-
staya (2004) often yields trade-off curves with poorly 
defined corners. Therefore, it is better to fix � at a reasonable 
value determined by experience, typically between 1 0−4 and 

(10)Wk
m
= Wk

Lo
WznW

k
h
.

(11)
[
Wk

L0

]−1
jj

=
[
�k
j

]2
+ �,

10
−7 (Ajo-Franklin et al., 2007). Therefore, based on several 

numerical simulation tests the value 1 0−6 is assigned for all 
inversions considered in the present work. Updating the 
matrix Wk

L0
 , in Eq. 11, at each iteration and applying in the 

regularized least square solution (Eq. 9), is exactly equiva-
lent to minimization of the objective function with  L0-norm 
stabilizer in Eq. 8 (Sun and Li 2014). Consequently,  L0-norm 
stabilization that leads to a compact and sharp solution is 
implemented through the iterative WLo

k . Here, the error 
weighting diagonal matrix Wk

e
 is computed at each iteration. 

We adopted the expression that has been proposed by Last 
and Kubik (1983) and implemented by many authors (e.g., 
Guillen and Menichetti 1984; Barbosa and Silva 1994; Gha-
lehnoee et al. 2016):

where diag stands for diagonal.

Depth weighting

It is widely known that gravity data inversion has no intrinsic 
depth resolution. As a result of this, the reconstructed model 
from the inversion process tends to concentrate close to the 
surface, irrespective of the actual depth of the anomalous 
body. This is a direct indication of the natural decay of the 
gravity kernel values with increasing depth from observa-
tion locations. The decay of the kernel with depth from the 
surface observation point is demonstrated in Fig. 2 where 
panels (a) and (b) display the kernel decay for different cell 
sizes discretization. The kernel values were calculated using 
Eq. 2 for a mesh along a single column of cells at a single 
observation point. In order to overcome this problem various 
approaches have been developed, by a number of researchers 
( e.g., Portniaguine and Zhdanov 2002; Commer 2011; Cella 
and Fedi 2012). Particularly, the first and the most common 
approach to counteract the kernel’s decay and hence solve 

(12)Wk
e
= diag

(
AWk

m
AT

)
,

Fig. 2  Comparison of the gravity kernel decay and  wz (z) (Eq.  13) 
directly beneath the observation point for different values of β. The 
corresponding computed zo values are also presented. Both curves 

are normalized with their respective maximum value. a Displays for 
10 × 10 m cell size discretization. b Displays for 500 × 500 m cell size 
discretization
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the lack of depth resolution is the depth weighting func-
tion introduced by Li and Oldenburg (1996) for 3D mag-
netic inversion. It has been proved that the application of 
a weighting function in magnetic inversion prevented the 
concentration of recovered susceptibility at the surface (Li 
and Oldenburg 1996). Similarly, Li and Oldenburg (1998) 
introduced and used a depth weighting function that approxi-
mately compensates for the gravity kernel’s decay in gravity 
inversion. The depth weighting function formerly suggested 
by Li and Oldenburg (1996, 1998) has the form:

where zj is the mean depth variable of the jth cell and zo and 
� are adjustable parameters. The parameter zo depends on the 
cell size and the observation height of the data. zo is calcu-
lated in such a way that the decay of the weighting function 
mimics the decay of the kernel at an observation point with 
wz(z) for a known value of � . The commonly chosen � value 
is to reproduce the power-law decay of the gravity kernel. 
Hence based on numerical tests Li and Oldenburg (1998) 
suggested the β values be 1.5 < 𝛽 ≤ 2 , and the most accept-
able value of β is 2 for gravity inversion. Latter Oldenburg 
and Li (2005) pointed out that the appropriate value of β 
used in a particular inversion could be chosen in the range 
between 1.5 and 2, by finding the best performance of dif-
ferent β values applied on synthetic data from forward mod-
els that resembles the expected solution. Nevertheless, the 
choice of a test model that resembles the real one might not 
always be an easy task. Cella and Fedi (2012) suggested that 
a suitable value of exponent β should be the structural index 
of the anomalous body. In other words, rather than selecting 
the value of β depending on the decay of the gravity kernel, 
it can be chosen by relating it with the structural index of the 
expected geometry of the source body. This implies that the 
anomalous bodies with different geometry need a specific 
value of β depending on the structural index which is on the 
other hand is dependent on a prior information. Accordingly, 
the limitation of Cella and Fedi (2012) approach is that 
when a priori information about the geometry of the causa-
tive body is not available, the depth of the body may not be 
adequately recovered (Cheyney et al. 2015). The exponent 
β is very crucial in determining the final model and there 
are no other methods mentioned so far on how to choose an 
acceptable value of β for specific inversion.

Hence, it is extremely important to look for a method 
that determines an optimal value to get geologically plau-
sible results. Moreover, comparative analysis between wz(z) 
(Eq. 13) and the gravity kernel is also very important, it 
is only so far being done for the magnetic inversion (e.g., 
Li and Oldenburg 1996; Oldenburg and Li 2005; Cheyney 
et al. 2015).

(13)wz(z) =
1

(
zj + zo

) �

2

,

Comparison of the gravity kernel with weighting function 
(Eq. 13) as a function of depth is shown in Fig. 2. The val-
ues for the weighting function were computed for different 
values of β such as 1.5, 2, as suggested by Li and Oldenburg 
(1998) and additionally with 1 and 3. Then optimum zo value 
is approximated by using the nonlinear least-squares optimi-
zation (Virtanen et al. 2020) between the actual kernel values 
and wz(z) for these β values. The obtained optimum parameters 
for different cell sizes are also presented in Fig. 2. We can see 
that zo values insignificantly vary with β values for the same 
cell size. In contrast, comparing the values in Fig. 2a and b, zo 
values dramatically vary with cell size for the same β value. 
The values for the weighting function were computed using 
the parameter obtained this way. In Fig. 2 all the values are 
normalized with respect to their maximum value. As we can 
see from the figure, wz(z) decays in the same manner as the 
gravity kernel at very shallow depths, up to about the cell size 
and then more rapidly in shallower depths greater than the cell 
size. At higher depths, both curves asymptotically approach 
0 value. This is found to be true for all cell sizes. Finally, at 
deeper depth, it decays smoothly but still at a different rate 
relative to the gravity kernel. In all the presented cases we 
notice a significant discrepancy between wz(z) and the gravity 
kernel especially near the elbow of the curves. As shown in 
Fig. 2b for large cell sizes the behavior of the weighting func-
tion curve becomes the same for all β. Hence, we can say that 
for large cell sizes the behavior of the curve is independent of β 
values in ranges 1 < 𝛽 ≤ 3 . In contrast for small cell sizes, the 
curve shows some differences for different β values (Fig. 2a). 
This variation of the characteristic of wz(z) with cell size, could 
make it hard to choose the best β value for specific inversion. 
Consequently, this behavior of the weighting function curve 
may also yield some effect on the inversion result. Moreover, 
numerical tests that were done for � = 3.5 and � = 4 , where 
the results not presented here demonstrate that wz(z) shows 
different unacceptable characteristics depending on the cell 
size as compared to the kernel function. Hence, based on the 
results, here we suggest the appropriate range of β values to 
be 1 < 𝛽 ≤ 3 . The usage of the different values of β within 
this range will be tested with synthetic examples in the next 
subsections.

Considering the aforementioned shortcomings, it was 
necessary to modify the depth weighting function (Eq. 13) 
by introducing a better function that can counteract the natu-
ral decay of the kernel functions. Toward this we propose 
a new depth weighting function wzn(z) which is given by:

Then the diagonal elements of Wzn are given as:

(14)wzn(z) =
(
azj + co

)−�
.

(15)Wzn = diag
(
wzn(z)

)
,
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where zj is the mean depth variable of the jth cell and a , co 
and � are adjustable parameters. The optimal values of the 
three parameters were determined by optimizing wzn(z) to 
match with the gravity kernel function (the actual kernel 
values) using nonlinear least-squares optimization (Virtanen 
et al. 2020). Figure 3 represents, the result of the optimiza-
tion using Eq. 14, for those two examples in Fig. 2. As it is 
shown in Fig. 3, the graph of the depth weighting function 
and the kernel matches very well at all depths for all cell 
sizes. This is also found to be true in many other tests, whose 
results are not presented here. Thus, the modified depth 
weighting function approximates the kernel decay more 
properly and hence it is more appropriate to compensate 
for the kernel’s natural decay in a better way at any depths. 
The implementation of wzn(z) will be tested in the following 
sections by inverting synthetic and measured data.

Physical parameter inequality constraint algorithm (PPICA)

Implementation of physical inequality constraints can 
improve the solution of inverse problems in potential 
field data by producing stable and geologically plausible 
results. It is also effective in reducing solution ambiguity 
(Silva et al. 2001; Oldenburg and Li 2005). Several physi-
cal parameter constraint techniques such as the transform 
function approach (Kim et al. 1999; Lelievre and Old-
enburg 2006; Commer and Newman 2008), logarithmic 
barrier approach (Li and Oldenburg 2003; Oldenburg and 
Li 2005) and gradient projection approach (Lelièvre et al. 
2009) have been proposed and implemented in different 
inversion schemes.

With regards to compact or focused gravity inversion 
methods, as compared to the above-cited approaches, a 
direct upper and lower bound density constraint function is 
effective and commonly implemented approach (Barbosa 
and Silva 1994; Portniaguine and Zhdanov 1999; Silva 
et al. 2009; Meng 2018; Rezaie 2020). Thus, we have 

chosen to apply the direct minimum and maximum physi-
cal parameter (density contrasts) values as a constraint 
function that provides a powerful means of enforcing the 
inversion results within a region or unit cell to a geologi-
cally reasonable range. This implies that at  kth iteration 
density contrast of each rectangular block must full fill 
element by element inequality constraint which can be 
expressed by:

where �min and �max are the minimum and maximum density 
limit vectors. Density contrasts of the minimum and maxi-
mum bounds of the inequality constraints can be obtained 
from prior information such as geological maps in conjunc-
tion with published density values of rocks, well-logging, 
and/or laboratory tests. Because the developed inversion 
method recovers density contrasts not true densities, the 
minimum and maximum density constraints of each cell 
must be provided as density contrast values rather than true 
densities. Density contrasts are determined by subtract-
ing the background density value from the target anoma-
lous density value where both are obtained from a priori 
information.

In this work, a Physical Parameter Inequality Constraint 
Algorithm (PPICA) is developed, to incorporate the ine-
quality constraint at each iteration in the inversion process. 
The inequality constraint algorithm imposes by computing 
the hard constraint matrix ( Wh

k) (Boulanger and Chouteau 
2001) and the reference density vector �k

F
 at each iteration 

as follows: 
The diagonal elements of Wh

k are either � or 1.0. When 
prior information is available to provide the initial value 
of density contrast of the jth specific cells ( �apr

j
) , then these 

values are assigned to the corresponding 
[
�F

]
j
 . Similarly, 

the corresponding diagonal elements of 
[
Wh

k
]
jj
 are fixed at 

� . During the inversion process, if the jth elements of 

(16)�min ≤ �
k
j
≤ �max,

Fig. 3  Comparison of the gravity kernel and  wzn (z) from Eq. 14 directly beneath the observation point. Both curves are normalized with their 
respective maximum value. a Displays for 10 × 10 m cell size discretization. b Displays for 500 × 500 m cell size discretization
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estimated density values ( �k
j
 ) fall out of any of the inequal-

ity constraint limits defined by �min and �max then 
[
�
k
F

]
j
 and 

the estimated density values �k
j
 will be fixed at the violated 

bound density itself and 
[
Wh

k
]
jj
 is fixed at � . On the other 

hand, if �k
j
 did not exceed its bounds (i.e., lies between the 

limits), then 
[
Wh

k
]
jj
 and 

[
�
k
F

]
j
 will be given a value that 

amounts to 1.0 and 0.0 respectively, while the density 
remains unchanged as �k

j
 . Mathematically, in case �k

j
 takes 

a value beyond the limits can be described as:

or

In general, by employing PPICA, the inversion algorithm 
will force the value back to the exceeded limit or the known 
value, when any blocks whose density is known from a 
priori information or exceeds the density constraint limit. 
Similarly, using Wh

k when the density of a block exceeds 
the density constraint limit, the algorithm will automatically 
freeze this cell in the next iteration by assigning a very small 
weight to it. Simultaneously, �k

F
 obtained at each iteration 

from this algorithm is used to remove the gravity effects 
of the cells, whose estimated densities are greater than the 
density constraint limit or equal to the target density, from 
total gravity anomaly gobs . This is accomplished by comput-
ing the reduced data vector gk

r
= gobs − A�k

F
 in Eq. 9 of the 

inversion algorithm.

Stopping criteria

Stopping the iterative process after an optimal number of 
iterations is an important aspect of iterative inversion meth-
ods. The frequently applied criteria to terminate iterative 
inversion procedures is based on the misfit between the 
observed data and computed data produced by the predicted 
model (e.g., Rezaie and Moazam 2017; Feng et al. 2018; 
Rezaie 2020). Accordingly, the iterative inversion process, in 
the present work, will terminate when one of the following 
stopping criteria is met:

(I) The maximum number of iterations, which is preset 
by the user ( kmax ) is reached;

(17)if [�k]j ≥ [�max ]j

⎧
⎪⎨⎪⎩

�
�
k
F

�
j

= [�max ]j

[�k]j = [�max ]j�
Wk

h

�
jj

= �

(18)if [�k]j ≤ [�min]j

⎧⎪⎨⎪⎩

�
�
k
F

�
j

= [�min]j

[�k]j = [�min]j�
Wk

h

�
jj
= �.

(II) The misfit in Eq. 19 reaches the required level. In 
other terms, the condition misfitk ≤ � must be fulfilled. 
Where δ is the target threshold value (the random noise 
level).

where, gobs
i

 is the observed gravity anomaly and gcal
i

 the cal-
culated data produced by the predicted model.

Computational procedure for the inversion

The inverse modeling consists of an iterative procedure in 
which the weighting matrices are changing at each iteration 
until an acceptable convergence of the solution is obtained. 
In summary, the iterative process is shown in Fig. 4 and it 
consists the following steps:

Input: mesh grid including the measurement points, A
,gobs , �min and �max,� , maximum number of iterations  (kmax).

(1) Compute WznorWz and AT.
(2) At iteration k = 1, solution for � satisfying the inequal-

ity constraints is obtained by using Eq. 9 and setting 
Wh

k=Wk
L0

  = I;�k
F
 = zero vector.

(19)misfit =

�∑N

i=1

�
gobs
i

− gcal
i

�2
∑N

i=1

�
gobs
i

�2
�1∕2

,

Fig. 4  A flowchart showing the iterative inversion process
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(3) Forward modeling: compute the predicted gravity 
anomaly gcal and then gk

r
 using the inversion result from 

the previous iteration.
(4) Evaluate Wh

k and �k
F
 with PPICA using previous itera-

tion result.
(5) Compute Wk

L0
 using Eq. 11 and subsequently Wk

m
 using 

Eq. 10.
(6) Compute Wk

e
 with Eq. 12.

(7) Carrying out the inversion through Eq. 9.
(8) Impose the inequality constraints on �k as discussed in 

the preceding section.
(9) Test for stopping criteria. If the stopping criterion is 

satisfied, the iteration terminates and obtained results 
are stored and plotted. Or else increment k and go to 
step 3.

Synthetic model tests

In this section, we verify the efficiency of the proposed 
inversion method with the new depth weighting function 
through tests on four different synthetic models. Particu-
larly, the synthetic model tests were performed with two 
major objectives: The first one is to further practically 
examine the effect of different values of β in using wz(z) 
(Eq. 13) and also to validate the usage of β = 1 and β = 3. 
The optimum zo value for all cases is approximated as 
described above. The second one is to illustrate the prac-
ticability of the proposed depth weighting function wzn(z) 
(Eq. 14) and to evaluate the capability of the method in 
resolving the position of causative bodies both horizon-
tally and vertically. In each example different cell size 

digitization was applied in order to test the effectiveness 
of wzn(z) (Eq. 14) for various cell sizes.

Synthetic model I: Single rectangular block

In the first synthetic model examples, the anomalous source 
consists of a single rectangular block (Fig. 5). The top of 
the anomalous block is placed 500 m below the surface. The 
density contrast of the anomalous rectangular block was set 
to be 2000 kg

m3
 with zero background density. In this synthetic 

test, the entire model domain is divided into 60 × 20 = 1200 
square cells in the horizontal and vertical directions, respec-
tively. The dimension of each square cell is 100 m × 100 m. 
The synthetic gravity data were computed at 60 observa-
tion points on the surface with a regular sample spacing of 
100 m. Then the computed data were contaminated with 3% 
Gaussian noise.

To make it easier to compare the inversion results in using 
wz(z) (Eq. 13) and wzn(z) (Eq. 14), we perform the inversion 
by using the two functions separately. At first, the noise-
contaminated data were inverted using the described method 
with the former depth weighting function wz(z) . Note that, to 
illustrate further the effect of different values of β in using 
wz(z) (Eq. 13), the inversion was performed with different 
values β within the range 1.5 ≤ � ≤ 3 . During the inversion, 
the parameter � was given a value of 0.55 and the mini-
mum density limit for the inequality constraint was chosen 
as �min = 0.0 and the elements of the maximum density 
limit �max were assigned a value of 2000 kg/m3. Keeping 
all the inversion parameters the same for comparison, the 
data were then inverted using the proposed depth weighing 
function wzn(z) . The three parameters of wzn(z) are deter-
mined automatically according to the procedure described 

Fig. 5  Results of synthetic data inversion, for anomalous rectangular 
block, to illustrate the effect of different values of β in using  wz (z) 
and practicability of the proposed depth weighting function  wzn (z). 
The panels from (a) to (c) are results from the inversion of the syn-

thetic data when different values of β were applied in using  wz (z) and 
the panel (d) shows the result with  wzn (z). The black solid line indi-
cates the outlines of the true location of the causative body
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in the previous section. Figure 5 shows the recovered density 
models, including the true outline (black solid line) of the 
anomalous block. In addition, the Root-Mean-Square (RMS) 
errors of the difference between the data and the predicted 
data and model recovery RMS (Zhang et al 2012) are cal-
culated to measure the quality of the solution and shown in 
Table 1.

The inversion results (Fig. 5a-c) obtained with wz(z) using 
different β values clearly indicate that the function worked 
well even after crossing the upper limit which was set to be 
2 (Li and Oldenburg 1996) for gravity inversion. This can 
suggest the possibility of using wz(z) (Eq. 13) with β = 3. 
However, different β values produce different results with 
different qualities (Table 1). As a result, we can infer that 
the results of the inversion with wz(z) (Eq. 13) have a certain 
degree of dependence on the selection of the exponent β, and 
the best model produced by the inversion method with wz(z) 
need a suitable β. On the other hand, the new depth weighting 
function wzn(z) with automatic determination of its param-
eters can yield a reasonable result (Fig. 5d), thus avoiding 
the problem of choosing the exponent β. As one can see from 
Table 1 the recovered model using wzn(z) has a better quality 
(i.e., relatively better model recovery with smaller RMS of 
the data) than the models obtained with wz(z) . Furthermore, 
the final solution of the inverse problem using both weighting 
functions has been achieved after the same number of itera-
tions, and also the recovered models are compact and sharp.

Synthetic model II: Vertical and horizontal 
blocks

For the second synthetic model example, the anomalous source 
consists of two separate vertical and horizontal rectangular 
blocks. The anomalous bodies have different sizes and are bur-
ied at different depths. The density contrast of the horizontal 
and vertical blocks ware set to different densities of 2000 kg

m3
 and 

3000
kg

m3
 with zero background density. In this synthetic test, the 

2D model domain is divided into 50 × 12 = 600 square cells. In 
order to test the functionality of the method, when large cell 
sizes are used, a cell size with a dimension of 400 m × 400 m 
is used in the X and Z directions, respectively. The gravity data 
were computed on the surface at 50 observation points with a 
sampling interval of 400 m. Later the computed data were con-
taminated with 2% Gaussian noise.

Like the previous example, the inversions were performed 
using the two depth weighting functions wzn(z) and wz(z) sep-
arately. In order to compare the results, we used two different 
β values such as 1 and 2 when the inversion was performed 
with wz(z) (Eq. 13). Here, the minimum density limits for 
the inequality constraint were chosen as �min = 0.0 , and the 
maximum density limit �max was given two different val-
ues for two different sections of the model domain. These 
maximum density values are 2000 kg

m3
 for the left section and 

3000
kg

m3
 for the right section. The parameter � was set to be 

0.6. In Fig. 6, the inversion results including the outlines of 
the true boundary of the two blocks (black solid line) are dis-
played. In addition, Table 2 shows the corresponding misfit 
RMS and model recovery RMS of the inversions.

Comparing the results, the data fit (upper panel) and the 
recovered models (lower panel), in Figs. 6a and b the function 
wz(z) worked well after crossing the lower limit which was set 
to be 1.5 (Li and Oldenburg 1996). Besides, Table 2 shows less 
misfit RMS and model recovery RMS when β = 1 compared 
with β = 2 which implies in some situations β = 1 may give 
a better result than β = 2 which is the typical value for grav-
ity inversion. This can indicate the possibility of using wz(z) 
(Eq. 13) with β = 1, and the necessity of a suitable choice of β 
to obtain the best result. On the other hand, the function wzn(z) 
with automatic determination of its parameters produced an 
acceptable result (Fig. 6c). As shown in Table 2, like the for-
mer example the model recovery RMS and the misfit RMS are 
less when wzn(z) is incorporated in the inversion method than 
when wz(z) suggesting the better quality of the results when 
wzn(z) was used. In other words, the inversion using wzn(z) 
recovered the causative sources at the depth consistent with 
the true depth, and with the true model’s boundary adequately. 
This means that the approach described here is capable of pro-
ducing physically realistic models, even if the model space has 
multiple causative sources having different densities and are 
located at different depths.

Synthetic model III: Vertical and horizontal 
blocks with negative density contrast

The third synthetic case is composed of two rectangular 
blocks. The anomalous structures have different dimen-
sions and are located at different depths. The top of the first 
block is placed at a depth of 400 m and its density contrast 
is −1000 kg

m3
 while the top of the second block is placed at a 

Table 1  Number of iterations and the RMS errors when applying the 
developed method with the two depth weighting functions wz(z) and 
wzn(z) for the inversion of the first synthetic example

Depth weighting 
function

Number of 
iterations

RMS errors
�∑N

i=1 (g
obs
i

−g
pre

i )
2

N

�∑N

i=1

�
�
tru
j
−�reco

j

�
2

N

wz(z) with β = 1.5 9 0.1166 188.9062
wz(z) with β = 2 9 0.1093 163.3766
wz(z) with β = 3 9 0.2418 129.0994
wzn(z) 9 0.1054 162.3453
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depth of 500 m and has a density contrast of 1000 kg

m3
 . The 

densities of the causative bodies are given relative to the 
zero density of the uniform background. In this synthetic 
test, the subsurface was discretized using a mesh of 100 × 20 
square cells with dimensions of 100 m × 100 m in the X and 
Z directions, respectively. The gravity data are computed 
at 100 data points with a sample spacing of 100 m. The top 
panel of Fig. 7 (blue stars) shows the gravity anomaly from 
these models after contaminating it with 2% Gaussian noise.

For the current synthetic example, the inversion process 
was commenced by assigning an initial zero density to each 

cell and by setting the parameter � = 0.7. The lower bound 
density constraint �min was set to zero for the right section 
and −1000 kg

m3
 for the left part. The upper bound �max was 

also given two different values for two different sections: 
zero for the left section and 1000 kg

m3
 for the right section 

of the model domain. The inversion was again carried out 
separately using the former (Eq. 13) with β = 1.5, and the 
proposed (Eq. 14) depth weighting functions. The param-
eters for the proposed depth weighting functions are once 
again determined automatically. In Fig. 7 (lower panel) the 
inverted density models with the outlines of the true bod-
ies overlaid are presented. The corresponding fits between 

Fig. 6  Second example inversion results: in each figure (a–c) the 
lower panel shows the density distribution of the synthetic source 
which consists of two separate vertical and horizontal blocks at differ-

ent depths. The black solid line indicates the outlines of the boundary 
of true anomaly. Similarly, the top panel shows the corresponding fits 
between synthetic data (star dots) and calculated data (line)

Table 2  Number of iterations 
and the RMS errors when 
applying the developed method 
with the two depth weighting 
functions wzn(z) and wz(z) for 
the inversions of the second 
third, fourth synthetic examples

Synthetic Models Depth weighting function Number of 
iterations

RMS errors
�∑N

i=1
(gobs

i
−g

pre

i
)
2

N

�∑N

i=1
(�tru

j
−�reco

j
)
2

N

Example 2 wz(z) with β = 1 9 0.8172 385.2394
wz(z) with β = 2 9 1.7216 418.9325
wzn(z) 9 0.7974 306.866

Example 3 wz(z) with β = 1.5 9 0.2475 115.9130
wzn(z) 10 0.1684 111.6885

Example 4 wzn(z) 8 0.3550 249.8119
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synthetic data (star dots) and calculated data (solid line) 
are shown in the upper panel. As one can see from the fig-
ure, the inversions using both functions wzn(z) and wz(z) 
generated acceptable models. The location, geometry, and 
densities of the synthetic causative bodies that were used 
to generate the synthetic gravity data are fully recovered. 
Besides, the fit between noise- contaminated data and pre-
dicted responses from the recovered model are acceptable 
for both cases (Fig. 7). However, as the previous cases, the 
solution of the inverse problem using wzn(z) has less model 
recovery RMS and misfit RMS rather than the method that 
utilizes the wz(z) function (Table 2). This can suggest that 
the proposed function (Eq. 14) is suitable for the positive 
and negative anomaly bodies in producing better results as 
compared with the former function (Eq. 13).

Synthetic model IV: Three different shaped 
sources

The fourth synthetic model is rather more complicated 
including three different geometric bodies that are placed at 
different depths, with different density contrast values and 
dimensions. The different shapes, dimensions, and depths 
of closely located anomalous bodies have been considered 
to test the vertical and horizontal resolving power of the 
inversion method, and its capability to recover the true 
densities of multiple bodies. In the forward modeling the 
top part of the first body, which is a horizontal rectangular 
block, is located at 100 m depth and has a density contrast of 
1000

kg

m3
 . The second body is a vertical block and its top part 

is located at a depth of 200 m and has a density contrast that 
amounts to 2000 kg

m3
 . The third body is a dipping dyke with 

a density contrast of 3000 kg

m3
 and its top part is located at a 

depth of 150 m. The densities of all the causative bodies are 
given relative to the zero density of a uniform background. 

In this synthetic test, the model space is constructed using 
90 × 20 = 1800 square cells with side lengths of 50 m in X 
and Z directions. The gravity data are then computed on 90 
data points with a sample spacing of 50 m.

To demonstrate the strength of the method in recovering 
the true density, we first inverted the noise-free data obtained 
from the forward model, and the result is presented in the 
bottom panel of Fig. 8a. The noise-free computed gravity 
data (the black stars) and the model generated one (the black 
solid line) are presented on the top panel of Fig. 8a. Later the 
computed gravity data were contaminated with uncorrelated 
2% Gaussian noise. These data are shown with black stars on 
the top panel of Fig. 8b. The inversion process was initial-
ized by assigning an initial zero density to each cell and by 
setting the value of � = 0.5. The lower bound for the inequal-
ity constraint �min is set to zero for both cases, whereas the 
upper bound density constraint �max was defined based on 
the location of the expected anomalous bodies. These �max 
values are: 1000 kg

m3
 for the left section, 2000 kg

m3
 for the mid-

dle section, and 3000 kg

m3
 for the right section of the model 

domain. The density model, recovered with the improved 
inversion method that makes use of the new depth weight-
ing function, together with the outlines of the true causative 
bodies (black solid line) are presented in the lower panel of 
Fig. 8a and b. The corresponding fits between synthetic data 
(star dots) and calculated data (solid line) are shown in the 
upper panels of the same figures.

As shown in Fig. 8, the level of the data fit is completely 
perfect for the one without noise and it is very good for the 
one that is contaminated with noise. Looking at the recov-
ered density distributions, one can conclude that the inver-
sion method, which makes use of the new depth weighting 
function, has delivered an excellent result. It leads to a very 
good data fit within the noise level that has been used to 
contaminate the data. Both the top and the bottom depths are 

Fig. 7  Gravity anomaly caused by two rectangular structures with dif-
ferent sizes and densities. The anomalous structures are also placed 
at different depths. The outlines of the true causative bodies are 

indicated by the black solid line. The panels in the bottom show the 
model domain and those on the top show the data domain with fits 
between the synthetic and calculated data
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determined adequately including the horizontal extent of the 
bodies. The density contrasts of all the shallower and deeper 
sources are also recovered sufficiently. The results from this 
example, therefore confirm the capability of the method in 
producing geologically reasonable models, in case multiple 
bodies with different densities, shapes, sizes, and locations 
are present in the subsurface. Furthermore, like the previ-
ous examples, the recovered models are compact and have 
sharp boundaries.

Based on the synthetic tests presented above, we suggest 
to use β = 1 and β = 3 in the inversion of gravity data, if 
one prefers to use the function wz(z) (Eq. 13). This implies 
that the appropriate range of β values for gravity inversion 
is 1 < 𝛽 ≤ 3 . The synthetic inversion done with different β 
values, also suggests that in applying wz(z) , which is given 
in Eq. 13, the appropriate β value is a critical parameter 
not only to locate the recovered model at the proper depth, 
but also in recovering the density distribution. Hence, it is 
very important to choose an appropriate value for β depend-
ing on the depth of anomaly. For shallow depth anomalies, 
small values of β shall be used and large values of β for deep 
anomalous source reconstruction are recommended. This is, 
however, true if we only have prior information about the 
depth of the causative bodies. As mentioned in the previous 
sections and as per the result of the synthetic data inversion 
the major limitations of using wz(z) are: (I) the selection of 
the appropriate value of β through trial and error is tedious 
and challenging and (II) even if we are able to select the 
appropriate β value, the inversion algorithm may lead to an 
unrealistic solution when the anomalous sources are placed 
at some specific depths, due to the difference in rate decay 
between the kernel and the depth weighting function. This is 
also pointed out by Barbosa et al., (2002). On the other hand, 
using the improved depth weighting function wzn(z) repro-
duces a geologically acceptable model no matter where the 

sources are located. Therefore, according to the results, we 
can say that using wzn(z) as given in Eq. (14) can reduce the 
problem that might be caused by inappropriate choice β as 
in the case of wz(z) . The function wzn(z) becomes even more 
advantageous when we do not have prior depth information 
because all the parameters are obtained through optimization 
between the weighting function and the gravity kernel. This 
way of implementation of wzn(z) can avoid the inconvenience 
in choosing appropriate β and the process is not tedious. In 
general, all the synthetic test results demonstrate the suc-
cessful implementation of the improved methodology in pro-
ducing geologically reasonable compact models with sharp 
boundaries and also confirm the efficiency and effectiveness 
of the proposed depth weighting function wzn(z).

Real data example

In this section, we illustrate the practicality and robustness 
of the suggested approach by applying it to a real gravity 
data.

Woodlawn ore body

As a field example, we have inverted gravity data that were 
collected over Woodlawn orebody, New South Wales, Aus-
tralia (Templeton 1981). The Woodlawn orebody, which has 
a complex shape and it contains a massive sulfide deposit. 
Based on a priori information, the average estimated den-
sity of the footwall (host rock) ore is 2900 kg

m3
 , and of the 

massive sulfide ore is of about 3900 kg

m3
 . Hence, the target 

density contrast is equal to 1000 kg

m3
 which is the difference 

between host rock and the massive sulfides ore body. Further 
detail about the measurement and geology of the area can be 
found in Whiteley (1981). In our case, the residual anomaly 

Fig. 8  The fourth synthetic model and the model obtained for three 
separate anomalous bodies having different shape and density con-
trast and located at different depths. The outlines of the true bodies 
are indicated by the black solid line in the recovered mod model. 

Where the top panel shows the corresponding fits between data and 
predicted data. Inversion was performed using the proposed depth 
weighting function  wzn (z)
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data used to perform the inverse modeling is obtained, by 
digitizing the data in Fig. 7a of the paper by Last and Kubik 
(1983). The profile length is about 305 m and the residual 
anomaly on this profile was digitized at regular intervals 
of 5 m producing a total of 61 measurement points. The 
top panel of Fig. 9 displays this digitized residual anomaly, 
which is presented using stars, over the Woodlawn massive 
sulfide ore body.

The subsurface model containing the ore body was discre-
tized into 61 × 30 = 1830 rectangular cells with dimensions 
5 × 5 m in the X- and Z-directions, respectively. Using the 
procedure described above the new depth weighting func-
tion (Eq. 14) is incorporated in the inversion process with 
its automatically determined parameters. The inversion was 
commenced by using the parameter � = 0.6 . Based on the 
prior information, the lower and the upper density bounds of 
the cells are taken as �min = −600.0

kg

m3
 and �max = 1000

kg

m3
 . 

The given upper density bound is similar to the target den-
sity contrast. The maximum number of iterations was set to 
20. In Fig. 9 the final reconstructed.

Density model and its gravity response using the pro-
posed inversion methodology are displayed. Figure 9 top 
panel shows the fit between the observed data (blue stars) 
and the gravity response of the density model resulted from 
the inversion process (red solid line). As one can see from 
the figure, there is good agreement between the observed 
gravity data and the inverse model-generated data. The bot-
tom panel in Fig. 9 depicts the final recovered density model 
together with the outlines (solid line) of the massive sulfide 
ore body, which is verified by drilling (Templeton 1981). As 
depicted in the figure, the recovered density distribution is 
compatible with the real density contrast of the subsurface 
that is obtained from prior information. The extent, position, 
and dip of the sulfide ore body are defined adequately except 
at the upper part of the ore body. As it can see from the data, 
this is due to the absence of high frequency information 

on the measured data at this particular location. Therefore, 
this can be taken as additional evidence that the proposed 
method works properly and that it can be effectively appli-
cable to real data.

Conclusion

In this paper, we have presented an improved gravity inver-
sion method that can recover sharp discontinuities and 
blocky features such as distinct layering or formation of 
localized bodies in the subsurface. The developed method 
is based on the minimization of an objective function, which 
comprises  L2-norm data misfit and  L0-norm stabilizing func-
tions, by iteratively reweighted least-squares (IRLS) algo-
rithm. The main contribution of the improved method is a 
newly introduced depth weighting function that counteracts 
the natural decay of the kernel appropriately, for various cell 
size discretization, so that the inversion results can provide 
realistic depth information. A crucial feature of the depth 
weighting function is the automated determination of its 
parameters using the standard optimization method before 
the inversion process is commenced. This is a significant 
advantage to avoid the selection of the parameter β through 
trial and error, using the previously proposed function, 
whenever there is no a priori depth information. Apart from 
this, to impose the physical inequality constraints on density 
contrasts from the inversion process an efficient algorithm 
named Physical Parameter Inequality Constraint Algorithm 
(PPICA) has also been developed and incorporated in the 
inversion procedure. The PPICA allows enforcing localized 
density constraints at different localities of the model space 
to allow the recovery of multiple causative bodies having 
different densities.

To verify the applicability and effectiveness of the new 
depth weighting function, we carried out inversion of 

Fig. 9  Inversion results of real 
gravity data from Woodlawn ore 
body, New South Wales (after 
Last and Kubik, 1981). The 
top panel shows the observed 
gravity data (blue star dotes) 
and the calculated data from 
inverse model (solid line). The 
bottom panel on the other hand 
represents the recovered density 
model and the outlines of the 
ore body indicated by the red 
solid line. The Inversion was 
performed using the improved 
weighting function using  wzn 
(z), as given in Eq. 14
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synthetic and real data tests. The inversion of synthetic data 
sets, contaminated with different noise levels, from multiple 
and complicated geometry sources revealed that the method 
has successfully recovered the causative subsurface densi-
ties. The results also reveal that the method has an adequate 
resolution capability in the vertical and lateral directions. 
Moreover, the inversion results of real data sets also con-
firmed the practicality and effectiveness of the presented 
method in producing geologically acceptable models which 
were confirmed through drilling.
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