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Abstract
Having doubts about the adequacy of reliability level of satellite-derived precipitation products, along with their applica-
tion in large number of hydrological models, has led to many studies on evaluating the efficiency of such data. In this study, 
two new procedures were proposed to compute reliability and certainty degrees of PERSIANN and TRMM 3B42RT data 
sets, and six traditional indicators were used to evaluate their validation. In addition, the cumulative density function (cdf) 
of the above-mentioned data sets was compared with the ground-based observations in 23 synoptic stations in Fars, Iran. 
The Kolmogorov–Smirnov test was performed using the data sets at 5% significance level which led to the result of null 
hypothesis that was not being rejected, suggesting that the satellite-derived daily precipitation data (SDDPD) and ground-
based observations are drawn from the same distribution. Results indicated that TRMM and PERSIANN follow quite similar 
probability pattern of ground-based observations in arid and semiarid climate, respectively. However, data probability pattern 
of TRMM cannot be considered similar to ground-based observations in arid region, neither can PERSIANN in semiarid 
climate. Among common cross-validating attributes, the values of ME and BIAS, in addition to RMSE and MAE, led to 
the conclusion that in PERSIANN, the rainfall daily rates are almost underestimated while TRMM overestimates the values 
mainly in semiarid regions. Moreover, the PERSIANN was found to be significantly correlated with IDM (De Martonne 
aridity Index), and the values of underestimation increased with growth of the index. The reliability values of SDDPD over 
the study area, for both TRMM and PERSIANN, show the reverse trend with increasing IDM in almost all acceptable error 
intervals. Along with effects of climate conditions, the reliability degrees of PERSIANN seem quite more consistent at 
different acceptable error intervals in comparison with the corresponding values of TRMM. In addition to validity and reli-
ability, the error entropy of SDDPD, as an index for uncertainty degree, increases as the IDM rises, which is theoretically 
corresponds with reliability concept. However, in comparison with PERSIANN, TRMM data set, overall, has higher degree 
of uncertainty. In addition, to evaluate effect of daily rainfall intensity on the uncertainty degree of SDDPD, the uncertainty 
degree slightly increases as daily rainfall intensifies to about 15 mm/day. But for higher daily rainfall intensities, on the other 
hand, the uncertainty degree seems to gradually decline as the daily rainfall increases.
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Introduction

Hydrologists and water resources managers are usually 
confronted with problems that require precise, reliable 
and validated spatiotemporal rainfall data. These data are 
often used in various spatial and temporal scales for numer-
ous applications, including water budget studies, reservoir 
operation, and flood forecasting and control (Shaghaghian 
and Abedini 2013). The background data required for such 
inputs are often collected via either ground-based measure-
ments (i.e., in situ rain gauges) or air-based instruments (i.e., 
radar and satellite imagery). For example, as a broadly used 
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application, ground, radar and satellite-based precipitation 
products are widely used in watershed models (Gilewski and 
Nawalany 2018; Price et al. 2014), and various compara-
tive indicators have been used to evaluate the effect of the 
input data source (rain gauges, radars or satellite-derived 
products) on the performance of simulations employ such 
data (Gilewski 2021; Gupta et al. 2009; Zubieta et al. 2015). 
The rain gauges estimate point precipitation directly at the 
Earth’s surface, and no complicated procedure is needed to 
prepare data to be used. However, in spite of the greater 
reliability, such measurements, for lack of observations (i.e., 
low spatiotemporal resolution), often do not fulfill all the 
requirements in many hydrological models. In addition to 
scarcity of ground-based rainfall observations, the extrava-
gant prices for construction and maintenance of rain gauge 
stations make achieved data unnecessarily expensive. There-
fore, currently, usage of air-based products to approximate 
rainfall parameters gradually increases in many environmen-
tal simulations, and high confidence in accuracy of such data 
is vastly needed.

Satellite systems have been used to measure atmospheric 
parameters since the early 1960s. In the primary systems, 
only the produced images of clouds and their comparison 
with meteorological observations were the indicators for 
estimating atmospheric parameters, but in the next steps, 
satellites were equipped with more advanced sensors. The 
sensors mainly categorized into three classes: visible/IR 
(VIS/IR) sensors on geostationary (GEO) and low Earth 
orbit (LEO) satellites, passive MW (PMW) sensors on 
LEO satellites, and active MW sensors on LEO satellites 
(Michaelides et al. 2009; Prigent 2010). Each of the sensors 
can be used individually or combined to develop procedures 
including the VIS/IR-based methods, active and passive MW 
techniques, and compound VIS/IR and MW approaches to 
estimate precipitation (Kidd and Levizzani 2011). Sensors 
and precipitation deriving methods are continuously being 
improved in order to raise the accuracy, certainty and reli-
ability level of remotely sensed rainfall measurement.

Among a number of satellite-based rainfall monitoring 
programs, Tropical Rainfall Measuring Mission (TRMM), 

Global Precipitation Measurement (GPM), and Precipitation 
Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks (PERSIANN) are three well-known, 
widely used and evolving processes that have attracted a 
great deal of research. TRMM was a joint space mission 
sponsored by NASA and Japan Aerospace Exploration 
Agency (JAXA) from 1997 to 2015, and afterward, with the 
cooperation of an association of international space agen-
cies, its activities are continued using modern satellite tech-
nologies equipped with advanced sensors under the name 
of GPM. Besides TRMM and GPM, PERSIANN is a soft-
computing-based approach to estimate rainfall, developed by 
Center for Hydrometeorology and Remote Sensing (CHRS) 
at the University of California for global precipitation data 
gathering over the last two decades.

TRMM and PERSIANN families include some satellite-
derived precipitation data sets which provide rainfall data 
at different spatiotemporal resolutions (Table 1). Numerous 
studies on application of satellite-derived precipitation prod-
ucts in hydrology are about evaluation of validation and/or 
reliability of such retrieved data over global or local scales, 
some of which are referred to on the map shown in Fig. 1. In 
these studies, it is tried to assess the quality of the products, 
through quantification of the uncertainties in the repossessed 
data or the retrieval algorithms used to regenerate such data.

Several quantitative indices are used to validate the satel-
lite-based precipitation products. The measures range from 
the elementary pairwise metrics such as correlation coeffi-
cient, the bias and the root-mean-square deviation (Camici 
et al. 2018; Chen et al. 2013a, b; Darand et al. 2017; Gao 
et al. 2018) to numerical results of advanced validation 
approaches such as triple collocation analysis (Li et al. 2018; 
Lu et al. 2021), consistency through process models and 
spectral methods (Nourani et al. 2013). Among the metrics, 
all pairwise methods are calculated between two data sets, 
both of which are subject to errors. However, for validation 
purposes, they are commonly calculated with respect to a 
presupposed error-free reference data. Therefore, they are 
assumed to represent an estimate of the various uncertainty 
aspects of the data set under validation. Furthermore, beyond 

Table 1  Summary of some of available TRMM and PERSIANN family satellite-derived precipitation products (Sun et al. 2018)

Data set Spatial resolution Frequency Period Data source

TRMM 3B42 0.25° 3-h 1998–2020 TMI, TRMM Combined Instrument, SSM/I, SSMIS, AMSR-E, AMSU-B, 
MHS and GEO IR

TRMM 3B43 0.25° Monthly 1998–2020 TMI, TRMM Combined Instrument, SSM/I, SSMIS, AMSR-E, AMSU-B, 
MHS and GEO IR

PERSIANN 0.25° Hourly 2000–present
PERSIANN-CSS 0.04° Hourly 2003–present Meteosat, GOES, GMS, SSM/I, polar/near polar precipitation radar, TMI, 

AMSR
PERSIANN-CDR 0.25° 3-h 1983–present GOES 8, GOES 10, GMS-5, Metsat-6 and Metsat-7, TRMM, NOAA 15, 16, 

17, DMSP F13, F14, F15
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the use of elementary validation metrics, probability distri-
bution function (pdf) intercomparison and the stability of 
monitoring satellite data records are other methods to evalu-
ate trustworthiness of satellite-based precipitation products 
(Dinku et al. 2008; Tan and Santo 2018).

In addition to “verification” or “validation” of satellite-
based precipitation products, many studies conducted to 
evaluate the “reliability” of such data are based on the ability 
to detect precipitation (Gumindoga et al. 2019; Masood et al. 
2020; Mosaffa et al. 2020). Probability of detection (POD), 
false alarm ratio (FAR), and critical success index (CSI) 
are three classified statistical indicators which are applied 
to evaluate the ability to detect actual precipitation events 
as the reliability of the satellite precipitation data (Paredes 
Trejo et al. 2016). POD represents the proportion of cor-
rectly detected precipitation events, FAR represents the 
proportion of missed precipitation events, and CSI compre-
hensively reflects the ability of satellite precipitation data to 
detect actual precipitation. However, these indicators often 
deal with the ability of detecting or not detecting rainfall 
events, but reliability of detected events is not considered.

Generally, for satellite-derived precipitation data, the 
term “reliability” refers to the consistency of the products 
in quality of the precipitation detection. In other words, the 
above-mentioned indicators just deal with the ability–inabil-
ity in detection of rainfall event as well as accuracy–inac-
curacy of satellite-derived databases and the relative quality 
of the retrieved data is not considered. For example, while 
the observed daily rainfall intensity is 3 mm   day−1, the 
aforementioned reliability attributes reflect the same values 

for both corresponding satellite-derived measurements 
4.5 mm  day−1 and 10 mm  day−1, and the difference in reli-
ability between these two values is not highlighted properly.

The “certainty” of the amount of rainfall retrieved by sat-
ellites is another issue to evaluate the correct performance 
of satellites and the applicability of algorithms used in the 
production of precipitation data. Error analysis is commonly 
used to calculate the certainty of rainfall values obtained 
from satellite data (AghaKouchak et al. 2012). Here, sat-
ellite-based precipitation estimation error characteristics 
quantified, and the influence of the error propagation into 
hydrological simulation is assessed. The indicators used for 
quantification of the error of satellite-based precipitation 
data are mainly the same metrics used for validation (e.g., 
bias), and most studies do not draw a clear line between 
certainty and validity of satellite-based precipitation data.

To address the critical shortcomings of many studies on 
evaluation of satellite-based precipitation products, it should 
be noted that in most of them, the data obtained from rainfall 
estimating algorithms which process the signals sent from 
satellites have been compared with deterministic and error-
free ground- or radar-based data. Therefore, the randomness 
characteristic of ground-based data is usually ignored, and to 
explain the probability in the calculated comparing indica-
tors, no probability conditions have been assigned to them.

In this paper, in the first step, all data, whether satellite-
based or ground-based, are considered as random variables. 
For this purpose, appropriate probability density functions 
are assigned to them, and most computations are based on 
analysis and comparison of random variables. Furthermore, 
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Fig. 1  Continental distribution of some research on TRMM and PERSIANN satellite precipitation validation
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some statistical validation approaches besides a reliability 
index and Shanon’s entropy as a measure for uncertainty 
are employed to evaluate and compare TRMM 3B42RT (is 
called TRMM in this study) and PERSIANN daily precipita-
tion data, as two databases represent their family in a large 
number of studies in which the quality of the SDDPD is 
assessed, over Fars Province, Iran. The study area has mainly 
arid and semiarid climates, and the comparison and valida-
tion results are reported separately for each climate. The 
study tries to narrow the focus of the investigation to concen-
trate on error resources. In other words, besides the answer 
to this question that whether the satellite-derived data are 
valid, reliable and/or certain, it is tried to find the measures 
for constituent parts of data collection such as several rain-
fall intensities, and pave the way for accurately detecting the 
errors and rectify them for probable further applications.

This is the first of a series of papers aimed at incorpo-
rating into employment of reliable SDDPD in hydromete-
orological applications, such as rain gauge network design, 
IDF curve development and spatiotemporal forecasting 
approximation in the study area. The aforementioned mod-
els, however, require long-term historical rainfall obser-
vations, whereas lack of high-temporal-resolution rainfall 
records (e.g., sub-daily) often results in less satisfactory 
outcomes. High-temporal-resolution rainfall observation, 
however, is often a luxury for many regions due to the high 
cost, confidentiality, time-consuming procedures involved 
in data acquisition and sharing, etc., and as substitutions to 
the in situ rainfall measurement, reliable and interpretable 
satellite-based precipitation products meet the fundamen-
tal requirements in case of data scarcity. Consequently, the 

results of this paper will be considered as the base of the 
foregoing hydrological simulations.

Study area and data

Study area

Fars province, as the study area, is located nearly in south-
western part of Iran (27°–32° N, 50°–55° E) with a total 
area of 122,608  km2. As shown in Fig. 2a, the study area, 
contains mountainous regions, mainly situated in northern 
and northwestern sector of the province, in which 54% is 
covered with elevations more than 1500 m above M.S.L. 
However, the southern and eastern parts of the study area 
are covered by flat lands (southern coastal plains and east-
ern deserts) with average slopes less than 5% and elevation 
less than 1000 m above M.S.L. Therefore, various landform 
classes can be found in the study area.

In addition to the topographical setting, three air masses 
including maritime polar, Mediterranean and continental 
tropical (also known as Sudan) normally influence the study 
area in the wet period (November–April), and the maritime 
tropical air mass only influences the study area in the dry 
period, May–October (Heydarizad et al. 2019; Javanmard 
et al. 2010). Among the masses, Mediterranean is one of 
the most active air masses and affects almost all parts of 
the study area. Mediterranean air mass supplies moisture 
from the Mediterranean Sea and the Atlantic Ocean, and to 
a lesser extent the Black Sea (Heydarizad et al. 2018). The 
maritime polar air mass dominantly influences the study area 

Fig. 2  a Elevation map of the study area, b spatial distribution of available ground-based and satellite-based observation, regional climate divi-
sion, and direction of air masses affecting the study area
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during December, January, and February, while the Medi-
terranean air mass dominantly influences the study area 
during March and April. The continental tropical air mass 
enters from the south and affects most parts of the study 
area (like the Mediterranean air mass), but affects the south 
most strongly. The continental tropical air mass transports 
a considerable amount of moisture from the Persian Gulf, 
the Red Sea and the Arabian Sea. The continental tropical 
air mass has a crucial role in the rainfall in the study area 
during all of the wet period. However, the summer precipi-
tation southeast of the study area is sometimes influenced 
by the maritime tropical air mass. The maritime tropical air 
mass supplies moisture from the Arabian Sea and the Indian 
Ocean to southeast and south of the study area (see Fig. 2b).

Topographical setting (elevation differences and slope 
characteristics) and the arriving air mass systems in the 
study area control the regional climate conditions. Gener-
ally, several quantitative measures are focused to catego-
rize the climate conditions based on different climatic ele-
ments: precipitations only, for example SPI1 (Caloiero et al. 

2018) and ASP2 (Liu et al. 2016), besides temperature and 
precipitations, for instance, IDM3 (Pellicone et al. 2019; 
Tabari et al. 2014) and IP4 (Baltas 2007). Among the indi-
ces, although De Martonne aridity Index is one of the old-
est aridity/humidity indices, because of its efficiency and 
relevance in relation to the arid/humid climate classification, 
in recent years, it was still used with good results worldwide 
in order to identify dry/humid conditions of different regions 
(Emadodin et al. 2019; Pellicone et al. 2019; Zarghami et al. 
2011) and is employed in this study. The index may be calcu-
lated both on annual and on shorter period basis. For annual 
values, it may be calculated as presented below:

(1)DMI =
Paa

Taa + 10
,

Table 2  Climatological (aridity) 
classification and the related 
precipitation and temperature 
information of the selected 
synoptic stations in the study 
area

+ average annual temperature, ++average annual precipitation, +++De Martonne aridity Index

Station code Geographical  
coordinates

Elevation 
(m)

AAT + (°C) AAP++ (mm) IDM+++ Climatological  
classification

Longitude Latitude

40,848 52°36′10″ 29°32′39″ 1484 18.1 317.49 11.3 Semiarid
99,566 52°00′24″ 30°14′03″ 2201 14.7 648.65 26.3 Semi-humid
40,818 52°36′42″ 31°11′54″ 2030 14.4 134.9 5.5 Arid
99,646 53°31′02″ 28°28′58″ 1082 20.8 276.1 9.0 Arid
40,847 52°42′15″ 29°46′39″ 1596 16.5 303.71 11.5 Semiarid
40,844 52°27′54″ 30°10′59″ 1650 17.7 457.14 16.5 Semiarid
99,580 51°32′39″ 30°04′46″ 972 21.2 458.1 14.7 Semiarid
88,190 53°12′12″ 27°21′52″ 405 25.6 212.25 6.0 Arid
40,861 51°39′54″ 29°36′26″ 860 23.1 358.3 10.8 Semiarid
99,561 53°36′32″ 30°28′34″ 2231 13.8 215.12 9.0 Arid
40,828 52°40′32″ 30°52′09″ 2300 13.0 319.81 13.9 Semiarid
40,855 53°09′23″ 30°35′27″ 2251 12.1 204.05 9.2 Arid
40,869 54°21′07″ 29°11′12″ 1632 19.5 197.12 6.7 Arid
40,862 54°17′46″ 28°47′25″ 1098 22.2 262.26 8.1 Arid
99,607 54°02′54″ 29°08′25″ 1690 17.4 253.86 9.3 Arid
40,859 53°43′10″ 28°53′56″ 1288 19.4 286.01 9.7 Arid
40,873 54°22′29″ 27°40′12″ 792 23.8 210.06 6.2 Arid
99,575 52°53′21″ 29°55′11″ 1605 17.5 291.68 10.6 Semiarid
99,516 52°07′42″ 31°31′47″ 2188 13.8 151.6 6.4 Arid
99,579 53°16′46″ 29°56′08″ 1703 18.4 236.4 8.3 Arid
99,590 54°25′44″ 28°21′55″ 1029 23.2 216.9 6.5 Arid
99,630 52°33′06″ 28°53′09″ 1362 20.7 377.2 12.3 Semiarid
40,864 52°07′09″ 28°48′47″ 782 22.2 272.3 8.5 Arid

1 Standardized Precipitation Index.

2 Anomaly Standardized Precipitation.
3 De Martonne aridity Index.
4 Pinna combinative Index.
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where Paa is the annual amount of precipitation (in millim-
eters) and Taa is the mean annual air temperature (in degree 
Celsius).

Figure 2b also displays regional climate classification, 
with regard to De Martonne aridity Index, over the study 
area based on the data gathered from the meteorological 
stations shown in Table 2. The spatial distribution of the 
aridity index calculated for annual values reveals that the 
driest regions in the study area are located in the southeast-
ern and northern parts, which are included hot arid climate 
southern coastal plains and eastern deserts, also cold arid 
climate northern mountainous section. The remaining areas 
in central and western parts have mainly semiarid climate. 
However, the only stations close to the northwestern bound-
ary recorded values specific to semi-humid climates.

Data set

The reference data sets employed in the present work are 
based on the daily rainfall observations derived from 23 syn-
optic stations (Table 2 and Fig. 2). The synoptic station data 
were provided by Iran Meteorological Organization (IMO), 
and the recording period of the stations varied in duration, 
but all had data from 2000 to 2020 which are completely 
compatible with period of available SDDPD. The spatial 
distribution of the synoptic gauge stations over the study 
area is deducible from the map in Fig. 2b, and it is not dif-
ficult to qualitatively infer that most of the stations spread 
uniformly in the study area.

In addition to ground-based observations, TRMM 
3B42RT and PERSIANN are a couple of general satellite-
based precipitation data are used in this study. The TRMM 
3B42RT precipitation output comprises 0.25° × 0.25° grid 
cells (about 25 km × 30 km in location of the study area) 
for every 3 h, with spatial extent covering a global belt 
(− 180°W to 180°E) extending from 50°S to 50°N latitude. 
Besides TRMM satellite-based precipitation products, 
SDPPs based on PERSIANN, also, compute an estimate of 
rainfall rate at each 0.25° × 0.25° pixels, but, for every 1 h. 
As TRMM 3B42 data, PERSIANN rainfall product covers 
50°S to 50°N globally. The utilized TRMM 3B42 and PER-
SIANN data in this paper were covering the study area from 
2000 to end of 2019.

UTC offset and probable delay in recording observa-
tions are crucial issues in recovering daily data hour-based 
information (which is not much focused in the literature). 
For example, to obtain a daily-scale 3B42 product, the pre-
cipitation measurements from eight three-hourly products 
(00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00 
UTC, 15:00 UTC, 18:00 UTC, and 21:00 UTC) of a specific 
date were accumulated and multiplied by a factor of 3. Since 
the precipitation gauges in the study area measure the daily 
precipitation with regard to local time, a time calibration 

is required for the matter. Figure 3 shows average correla-
tion coefficient between daily precipitation of rain gauge 
observations and the generated values from hourly-scale data 
derived from the TRMM and PERSIANN satellites. It is 
clear from the figure that considering a delay between, about 
12 h, beginning hour in a day to generate daily precipitation 
data from hourly (for PERSIANN) and/or three-hourly (for 
TRMM) products yield to the highest correlation coefficient 
and probably provide more efficient results. Therefore, in 
this study, the daily-scale satellite-derived products were 
synchronized with ground-based observations from shift-
ing the time 12 h earlier to compensate the time difference 
between local and standard time, and any probable delay in 
data reporting.

Methodology

The validity, reliability and certainty of daily precipita-
tion data retrieved from TRMM and PERSIANN databases 
are evaluated by comparing them with IMO ground-based 
observations in selected synoptic stations during the period 
spanning from 2000 to 2019, corresponding to availability 
of almost complete data sets during these years. A detailed 
comparison of the data sets is provided in different climates 
of the study area, to assess the relationship between climate 
conditions and the quality of the SDDPD. To achieve these 
goals, a straightforward procedure is established from taking 
the following steps:

1. Choose a method to divide the study area into regions 
with the homogeneous climate conditions or similar cli-
matic indicators:

  Climatic classifications is mainly used to reflect the 
average spatial climatic characteristics of a region (Geng 

Fig. 3  Correlation coefficient between SDPPs and ground-based 
observations considering several time lags
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et al. 2014). Various climatic classification models based 
on meteorological parameter processing approaches are 
found in the literature (De Martonne 1926; Gadgil and 
Narayana Iyengar 1980; Stamp and Wooldridge 1951; 
Thornthwaite 1955). Among the methods, De Martonne 
climatic classification approach has been used in many 
environmental studies in recent decades, indicating that 
although this index is one of the oldest climate indi-
ces, but it is still worldwide used with logical results in 
order to mirror climate conditions of different regions 
(Emadodin et al. 2019; Pellicone et al. 2019). Therefore, 
based on the simplicity and efficiency of the De Mar-
tonne aridity Index, this approach is chosen for dividing 
the study area into climatic subregions (refer to Eq. 1 
and Table 3).

2. Select conventional diagnostic statistics to quantify the 
accuracy of the PERSIANN and TRMM daily precipita-
tion:

  Six parameters are used to measure the precision of 
the satellite-derived data: the Pearson and the Spear-
man’s rank correlation coefficients (Zou et al. 2003), 
the root-mean-square error (Gupta et al. 2008, 2009), 
the mean error, mean absolute error, relative bias and 
Kolmogorov–Smirnov statistic (Zhang et al. 2011). The 
values for the first five parameters are calculated by the 
following equations:

(2)Pearson correlation coefficient ∶
cov(S,G)

�S�G
,

(3)

Spearman’s rank correlation coefficient:
cov

(
Sr,Gr

)
�Sr�Gr

,

(4)Ei = Si − Gi

Mean error ∶ E

Mean absolute error ∶ |E|
Relative Bias ∶

E

G
× 100

,

 where S and G are satellite-derived precipitation data 
and the observed precipitation from gauges, Sr and Gr are 
rank variables of the previously mentioned parameters, 
and Si and Gi are corresponding daily satellite-derived 
precipitation data and the rain gauge observations. In 
addition, the Kolmogorov–Smirnov statistic quantifies a 
distance between the cumulative distribution function of 
the satellite-derived precipitation data and the cumula-
tive distribution function of the rain gauge observations 
considered as reference distribution (Bityukov et al. 
2016).

3. Employ the statistical concept of consistency to deter-
mine reliability degree of PERSIANN and TRMM daily 
precipitation.

  Reliability and the probability of failure are on both 
sides of balance scale so that the lowering of one causes 
the rising of the other (Birolini 2017). For the satel-
lite-derived precipitation measurements, failure means 
incorrect retrieval of the amount of rainfall sent by sat-
ellite signals which is directly related to the value of 
the acceptable error threshold. In other words, error in 
a given interval, known as threshold, is considered to 
be insignificant, and the corresponding amount of sat-
ellite-derived precipitation is considered to be accept-
able (reliable). However, if the error value is outside the 
negligible error range, the related precipitation value is 
unacceptable (failure). It is obvious that the number of 
acceptable rainfall amounts, and consequently level of 
reliability, increases with the expansion of the accept-
able error range; however, the relationship between the 
rate of change in the level of reliability and the values of 
the acceptable error range has received less attention.

  Statistically, error probability distribution function is, 
also, another basic constituent of the reliability concept. 
The function is derived from empirical distribution func-
tion of the generated samples based on SDDPD. Fur-
thermore, the procedure for modeling the distribution 
function requires a goodness-of-fit test. Hence, choos-
ing an appropriate type of distribution function and fit-
ting procedure, besides providing the error structure of 
satellite-derived precipitation values are integral parts 
of reliability analysis.

4. Introduce an effective uncertainty index to imply the 
viability of the PERSIANN and TRMM SDPPs.

  Uncertainty analysis of satellite-derived precipita-
tion products is a computational process of quantita-
tively analyzing possible errors and estimating of the 
total uncertainty of a measurement. Conventionally, 
quantifying uncertainty in satellite-derived precipita-
tion products, accuracy of data is determined; however, 
most of the traditional disinformative uncertainty indica-
tors are not able to identify source of data uncertainty. 
Therefore, to tackle the problem, entropy is considered 

Table 3  Type of climate according to the De Martonne aridity Index 
(IDM)

Climate type I
DM

 value

Arid I
DM

< 10

Semiarid 10 ≤ I
DM

< 20

Mediterranean 20 ≤ I
DM

< 24

Simi-humid 24 ≤ I
DM

< 28

Humid 24 ≤ I
DM

< 35

Very humid 35 ≤ I
DM

< 55

Extremely humid I
DM

≥ 55
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as an effective measure to represent uncertainty of data 
(Amorocho and Espildora 1973; Robinson 2008).

  For more clarification, here an illustrative example is 
provided. Suppose the real value for a parameter to be 
10. The value was observed by a couple of devices, in 
which the first observed values were 9, 11, 12, and 8. On 
the other hand, the second device recorded observation 
values were 14, 14, 14, 14. Here, mean error (bias), as 
one of the traditional uncertainty indices, related to the 
first device is 0; however, the mean error of the second 
device is 4. Traditionally, the uncertainty index of the 
second device is higher, but the error was spread uni-
formly in all the observations and may remove hardly. 
However, the error can be easily detected and removed 
in the second device.

  Entropy is a measure of redundancy. The relative 
entropy gives a comparison between two probabilistic 
systems and typically measures the actual entropy to the 
maximal possible entropy. It is the relative entropy that 
has played the key role in determining the uncertainty 
indices of this study.

The above steps require some tools which are explained 
as follows:

Statistical analysis

A purposive approach to the probabilistic concepts produces 
some meaningful results that can be effectively utilized in 
logical interpretation of such subjects. The methods are 
comprised mainly of suitable probability density functions 
(pdfs) in addition to effective analytic strategies and reason-
ably inferring plans. These pdfs represent random variables 
fairly well and remove noises from data effectively. Besides, 
well-organized processing techniques provide deducible 
results that enable to classify data, clarify the current situ-
ation and establish intellectual foundations for forecasting 
procedures. Therefore, analyzing the events including ran-
dom variables requires careful selection of constituents of 
statistical analysis procedure to form objective judgment on 
the measures.

Proper probabilistic evaluation of satellite-derived pre-
cipitation data by comparing them with rain gauge obser-
vations, while both are considered to be random variables, 
requires some essential statistical tools. Accordingly, 
pdfs of satellite-derived precipitation data and rain gauge 
observations, as the basis for many statistical analyses, are 
better to be established in early stages of the study. Estab-
lishment of pdfs is to identify the type of proper shape 
and define its calibrating parameters utilizing a conscious 
fitting policy with non-debatable measures.

For averaged daily precipitation, a gamma distribu-
tion is commonly used for describing rainfall statistics 
(Martinez-Villalobos and Neelin 2019). The function is 
given by:

where � is the shape parameter, � the rate parameter, and x 
represents daily averaged precipitation. For daily precipita-
tion, shape and rate parameters are applicable metrics to 
control the probability of light and moderate daily precipi-
tation sums, and represent changes of the extremes, respec-
tively (Wilby and Wigley 2002).

Reliability analysis

For satellite-derived precipitation data, most of the research 
focuses on accuracy of the measurements, while their con-
sistency is not highly regarded. Increasing the accuracy of 
the data is a direct consequence of the error reduction, while 
their consistency achievement is essence of error organiza-
tion. So, profound knowledge to error nature of satellite pre-
cipitation data increases the “reliability” of their utilization 
in hydrological models. Statistically, the reliability may be 
defined as follows:

where E is the acceptable error domain of satellite data and 
fe(x) is pdf of the satellite data error. The measure indi-
cates the trustworthiness degree of the data with regard to 
predefined probable deviation from the ground rain gauge 
observations.

Shannon entropy analysis

Error uncertainty of the satellite data may be utilized as a 
measure to evaluate their performance. Generally, uncer-
tain data are data that contain noises that which make them 
deviate from the correct, intended or original values. Hence, 
calculating error uncertainty of the satellite daily rainfall 
data seems to be an appropriate way to delineate of their 
applicability for several usages.

Entropy is an encapsulation of the rather vague notions of 
disorder or chaos, uncertainty or randomness. The measure 
implies the degree of uncertainty to the values of data if the 
process takes place for errors. For more details, consider the 
Shannon entropy definition of data error:

(5)f (x) =
��

Γ(x)
x�−1e−�x,

(6)R(E) = Pr(−E ≤ x ≤ E) =
�

+E

−E

fe(x)dx,
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where, for analyzing empirical data sets, N  is number of 
error domains. Besides, xi =

{
x ∈ X ∶ ei < Err(x) < ei+1

}
 

where X is data set, Err(x) is error value for x , and e− are 
sequential predefined errors. In addition, for the modeled 
pdf, P(e) is probability of error e . For both cases, H(ERR) 
represents uncertainty of errors. Lower values of H(E) imply 
certainty of errors more and increase the ability to identify 
and remove errors.

It can be shown that, for empirical data set, the value of 
H(E) is maximum when all the xi are equally probable, that 
is, when the outcome has maximum uncertainty. In this case, 
the entropy becomes:

At the other extreme, when all outcomes except one 
have zero probability, H(E) vanishes, which corresponds to 
absolute certainty. On the other hand, for modeled pdf, with 
respect to Appendix, while normal skew distribution func-
tion is used to simulate the extreme entropy the values are:

where HND is entropy of normally distributed function.
For skewed normal distribution function (Eq. 11), the 

entropy is calculated as (Arellano-Valle et al. 2013):

Results and discussion

The focus of this study is to evaluate the validity, reliability 
and uncertainty of two well-known SDDPD called TRMM 
(TRMM 3B42RT) and PERSIANN. It should be noted that 
indicators for the aforementioned concepts can be defined 
based on different viewpoints. In this paper, various statisti-
cal procedures are used to assess these indicators that are 
mentioned in detail in the previous section.

Table 4 reports shape and rate parameters of the gamma 
distribution function for rain gauge observations, PER-
SIANN and TRMM explained in Eq. 5. In Table 4 (and 
others), gray rows represent stations located in arid region, 
while the values in orange and green rows are related to sta-
tions placed in semiarid and semi-humid climates, respec-
tively. The parameters were calibrated from optimizing the 

(7)H(ERR) =

⎧
⎪⎨⎪⎩

N∑
i=1

−P
�
xi
�
lnP

�
xi
�
, empirical data set

∫ P(e) lnP(e)de, themodeled pdf

,

(8)Hmax(ERR) = lnN.

(9)
Hmax(ERR) = HND

Hmin(ERR) = HND − ln 2
,

(10)

H(E) =
1

2
+

1

2
ln
(
2�w2

)
− E

{
ln

[
1 + erf

(
�
(x − �)

w

)]}
.

modeled probability distribution to the sample to achieve 
minimum distance in Kolmogorov–Smirnov test which can 
be found in this table. Besides, maximum vertical distance 
between cumulative distribution function (cdf) of daily rain 
gauge observations and corresponding satellite-derived 
data are shown, which are used in performing a Kolmog-
orov–Smirnov test for the null hypothesis that rain gauge 
observations and TRMM or PERSIANN are reasonably 
from the same distribution function (Teegavarapu 2019). In 
addition to the parameters of the pdfs, some common cross-
validating attributes are presented in Table 4. The linear 
association between the satellite-derived data sets and rain 
gauge observations is evaluated using Pearson and Spearman 
rank correlation coefficients (Eqs. 2 and 3). Bias in the mean 
daily precipitation of all data sets is estimated with mean 
error (Eq. 4). The mean absolute error (Eq. 4) and the root-
mean-square error (RMSE) are used to measure the average 
magnitude of the errors, with the difference that RMSE gives 
greater weight to the larger errors relative to MAE. Finally, 
with the relative bias (Eq. 4) the mean error was scaled with 
respect to the mean precipitation of the gauge observations.

Precipitation observations and satellite data are con-
sidered as random variables. The probability distribution 
function can be used to validate the rainfall amount distri-
bution and the error dependence on precipitation rate for 
satellite estimates (Chen et al. 2013b; Tian et al. 2009). This 
kind of evaluation also offers insight into error dependence 
on precipitation rate and the potential impact of the error 
on hydrological applications. The K–S statistic values for 
each set of data (rain gauge observations, PERSIANN and 
TRMM) confirm a good enough fit in all cases. However, 
Fig. 4 indicates that the metric denotes quantitative compari-
son of satellite data with rain gauge observations, somehow 
depends on the climate of the region. Since the hypothesis is 
rejected if the K–S statistic is higher than the critical value 
0.20517 at a 95% significance level of confidence (Langat 
et al. 2019), regarding the figure, TRMM detects rainfall 
more efficiently in wetter regions than the PERSIANN satel-
lite. But, for arid regions, the pdf similarities of PERSIANN 
and rain gauge observations are more considerable.

Figure 5 shows some statistical distinguishing indices for 
validation of PERSIANN and TRMM in several climates 
in the study area. Pearson and Spearman rank correlation 
coefficients do not show a clear pattern for any of the sat-
ellites and regions. However, the values of ME and BIAS 
lead to the conclusion that PERSIANN almost underesti-
mates the rainfall daily rates while TRMM overestimates 
the value mainly in semiarid regions. In addition, the figures 
indicate that the “pattern of the errors” for PERSIANN is 
more organized. For instance, absolute values for RMSE, 
ME, MAE, and BIAS gradually become more substantial 
with increasing the De Martonne aridity Index, although no 
significant pattern can be found for TRMM. The pattern may 
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Table 4  Rain gauge daily observations, PERSIANN and TRMM satellite daily data estimated parameters summary of gamma probability distri-
bution
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help for error-removal of data with several kinds of error-
generating noises (Fig. 6).  

To evaluate error distribution inherent features, Fig. 2 
shows the sample frequency and the model of PERSIANN 
and TRMM data error distributions in four sample loca-
tions with available daily rain gauge observations. The 
skew-normal distribution function (O'Hagan and Leonard 
1976) is utilized to model the empirical distribution in 
such a way that distance between the empirical distribution 

function of the sample and the cumulative distribution 
function of the reference distribution is minimized (the 
K–S stat. in Table 5 is used to indicate the minimum value 
which all reject the null hypothesis). The function model 
is as follows:

where � (shape parameter), w (scale parameter), and � (loca-
tion parameter) are regulating parameters of the function. 
The distribution is right skewed if 𝛼 > 0 and is left skewed if 
𝛼 < 0 . Regarding the parameters, mean, variance and skew-
ness of the sample modeled by the aforementioned pdf are 
as follows:

Table 5 also contains the skew-normal model parame-
ters besides the estimated mean, variance and skewness of 

(11)f (x) =
2

w
√
2�

e
1

2

�
x−�

w

�2

∫

�

�
x−�

w

�

−∞

1√
2�

e
−

t2

2 dt,

(12)

Mean (�) = � + �

�
2

�
where � =

�√
1 + �2

Variance
�
�2
�
= w2

�
1 −

2�2

�

�

Skewness (�) =
4 − �

2

�
�

�
2

�

�3

�
1 −

2�2

�

� 3

2

.

.

Fig. 4  Climatological evaluation of the Kolmogorov–Smirnov test 
metric for the null hypothesis that the precipitation time series at 
daily resolution of rain gauges is the same as satellite data

Fig. 5  Statistical bi-cross-validation representation of the climato-
logical validation of PERSIANN and TRMM daily precipitation 
estimates using the pixels with assimilated RGDO of Fars province: 

a Pearson coefficient of correlation, b Spearman coefficient of rank 
correlation, c root-mean-square error (RMSE), d mean error (ME), e 
mean absolute error (MAE), and f relative bias (BIAS)
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the simulated distribution (Eq. 12). The parameters were 
calculated establishing a genetic algorithm procedure to 
minimize the K–S statistics.

A reliability expression can be calculated by applying 
Eq. 11 in Eq. 6 as follows:

Fig. 6  Rainfall daily intensity occurrence frequency in four typical stations



1757Acta Geophysica (2022) 70:1745–1767 

1 3
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�
E + �

w
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�
,

Fig. 6  (continued)
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where erf() is error function5 and T() is Owen’s T func-
tion6. The equation substantially indicates the cumulative 
probability of absolute value of the error to be less than E . 
Figure 7 compares reliability variation of PESIANN and 
TRMM with acceptable error range in the stations of study 
area. At the beginning of the graph, in lower threshold lev-
els of acceptable error, a sharp increase in the reliability is 

observed for both satellites. The rise is followed by attenu-
ated growth for the broadening acceptable error ranges. In 
addition to overall behavior of the curves, the graphs that 
represent TRMM seem to be more widely scattered than 
the PERSIANN. Since the compacted curves indicate more 
chance to develop some trends for the error variation of the 
data, the PERSIANN satellite daily rainfall data are more 
consistent than the daily data obtained from TRMM satellite.

Figure 8 illustrates behavior of PERSIANN and TRMM 
SDDPD and clarifies their possible climatological con-
sistency. Regarding the figures, a harmonious relation 
can be visually found between reliability of PERSIANN 
daily rainfall data and the climatological indicator in low 
( E = 3mm/day ) and medium ( E = 6mm/day ) threshold 
levels, while no remarkable correlation exists between the 
data related to TRMM satellite and De Martonne aridity 
Index in the aforementioned domains. However, a near 
complete reliability can be found in higher threshold levels 
( E ≥ 9mm/day ) for both satellite-derived precipitation data 
sets.

Figure  9 depicts the uncertainty of PERSIANN and 
TRMM data errors in terms of the Shannon entropy in 
coordination with the stations in the study area. It can be 
clearly observed that the parameter for the satellites differs 
in such way that one can claim that the PERSIANN satellite 
daily rainfall errors have lower uncertainty in several clima-
tological situations in the study area. In addition, for both of 
the satellites, the daily rainfall errors uncertainty gradually 
increases with growth of De Martonne aridity Index, which 

Table 5  The estimates of PERSIANN and TRMM satellite daily averaged data error distributions model parameters and the corresponding cal-
culated simulated statistical measures (mean, variance, and skewness)

Fig. 7  Reliability evaluation of PERSIANN and TRMM daily rainfall 
data as a function of acceptable error domain

5 
erf(x) =

2√
�

x

∫

0

e−t
2

dt.

6 T(x, a) = 1

2�

a

∫

0

e
−
1
2
x2(1+t2)

1+t2
dt.
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means that daily rainfall errors for both satellites are more 
certain in the arid climate.

Relative entropy, which is defined as the ratio of data 
error entropy to its highest possible value and being calcu-
lated as in Eq. 14, can be used to remove the scale parameter 
from data error. This quantity is a good measure to deter-
mine and compare the uncertainty of data error in various 
data domain sections. Recognition of domains with more 
error uncertainty helps to develop a clear vision of error 
resources and more efficient strategies to rectify them.

The more uniformity of the data error distribution along 
the data domain, the closer the relative entropy is to unity. 
Since homogeneous data error made error detection more 
difficult, the lower relative entropy of the data error is more 

(14)

Hr(ERR) =
H(ERR)

Hmax(ERR)
=

{
H(E)

lnN
, empirical data set

1 −
Ψ

HND

, themodeled pdf
.

Fig. 8  Reliability to PERSIANN and TRMM daily rainfall data with acceptance errors: a E = ± 3 mm/day, b E = ± 6 mm/day, c E = ± 9 mm/day, 
and d E = ± 12 mm/day

Fig. 9  Entropy of PERSIANN and TRMM simulated daily rainfall 
error distribution
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Fig. 10  Relative Entropy of PERSIANN and TRMM daily rainfall 
error for: a daily rainfall less than 3  mm, b daily rainfall between 
3 and 6  mm, c daily rainfall between 6 and 9  mm, d daily rainfall 

between 9 and 12 mm, e daily rainfall between 12 and 15 mm, and f 
daily rainfall between 15 and 18 mm
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favorable. For example, a data set with lower data error 
relative entropy seems to have error concentration about a 
certain value. If the value can be ignored, as the simplest 
way for error deletion, the accuracy of the data increases 
enormously. Therefore, lower values for data error entropy 
are desirable.

Figures 10 and 11 show variation of daily rainfall data 
error relative entropy with respect to daily rainfall intensity 
for PERSIANN and TRMM satellites. Figure 10 implies 
invariancy of the parameter as an uncertainty index, in both 
climatological conditions, i.e., arid and semiarid climates, 
for almost all rainfall intensities. However, Fig. 11 shows a 
slight discrepancy in the relative entropies between PER-
SIANN and TRMM satellites daily rainfall data error, and 
is possible to infer that the uncertainty of TRMM satellite 
daily rainfall data error for lower daily rainfall intensities is 
less than similar data uncertainty of PERSIANN satellite. 
On the contrary, the error uncertainty index of TRMM satel-
lite daily rainfall error is quite higher in rather heavily rainy 
days in the study area.

As a summary of the discussion, reliable, certain and 
valid precipitation data are key requirement of plenty of 
hydrological models. However, high expenses and inacces-
sibility to precise ground-based observations to obtain the 
most reliable, certain and valid precipitation data affects the 
performance of such models. Therefore, in recent decades, 
the utilization of remote sensed precipitation data in water 
management, hydrological simulations and other water-
related activities, besides strategic necessities to evaluate 
them considerably increased.

The present study has tried to address some shortcomings 
of previous studies. In Salmani-Dehaghi and Samani (2019), 
as a research in which the study area is exactly the same as 
the present study, it is concluded that PESIANN, in all spa-
tiotemporal scales, reflects the ground-based precipitation 

observation pattern, but underestimate the precipitation 
in the study area. The finding of this paper has direct cor-
respondence with the results in the aforementioned study. 
However, in addition to comparing the pattern of rainfall 
data calculated by algorithms based on satellite data and 
ground-based observations, this study analyzes the error 
values   of satellite data in terms of reliability and certainty 
degree. It is concluded that satellite-derived precipitation 
products have higher reliability and certainty degree in arid 
climate regions of the study area. Furthermore, the results 
of other studies that cover the study area and satellites used 
in this research (e.g., Darand et al. 2017; Javanmard et al. 
2010; Moazami et al. 2013, 2016) have more or less accept-
able agreement with the results of this study in terms of 
accuracy, but firstly, the effect of climate on the results has 
not been investigated, and in addition, the reliability and 
uncertainty degree of the satellite-based precipitation data 
and their error have not been thoroughly explained. So, it is 
difficult to employ such data in hydrological or environmen-
tal simulations, for instance, flood warning models (Nguyen 
et al. 2015), in which nature of uncertainty of input data 
should be quantitatively explored.

This research also moves toward two specific goals. 
Firstly, it was tried to use the underlying concepts of reliabil-
ity, uncertainty/certainty and validity, as identified statisti-
cal approaches, to assess satellite-derived daily precipitation 
data over the study area separately, and secondly, probable 
links between their quality and the climate conditions were 
checked. The principal findings are summarized as follows:

1. Among common cross-validating attributes, Pearson 
and Spearman rank correlation coefficients do not reflect 
useful outputs to validate SDDPD, nor can they be used 
to examine the effect of regional climates on the qual-
ity of this data. However, the values of ME and BIAS, 

Fig. 11  PERSIANN and 
TRMM daily rainfall data error 
relative entropy for various rain-
fall intensities in the study area
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in addition to RMSE and MAE, lead to the conclusion 
that PERSIANN almost underestimates the rainfall daily 
rates while TRMM overestimates the values mainly in 
semiarid regions. Besides, the PERSIANN is found to 
be significantly correlated with IDM, and the value of 
underestimation increases with growth of the index.

2. Making an appropriate analogy between cdfs of SDDPD 
and rain gauge observations indicates that TRMM and 
PERSIANN follow quite similar probability pattern of 
rain gauge observations in arid and semiarid climate, 
respectively. However, the pattern of the probability dis-
tribution function for the data for TRMM cannot be con-
sidered similar to rain gauge observations in arid region, 
just as PERSIANN in semiarid climate cannot. For more 
details, Fig. 12 shows quality of SDDPD over the study 
area with regard to data pattern analogy. According to 
the map, except in the eastern and southeastern regions 
of the study area, TRMM follows similar probability 
pattern of rain gauge observations. In addition, remov-
ing northwestern corner and a central spot, PERSIANN 
follows similar probability pattern of rain gauge obser-
vation.

3. The reliability values of SDDPD over the study area, for 
both TRMM and PERSIANN, have a reverse trend with 
increasing IDM values   at almost all acceptable inter-
vals. In other words, in terms of statistical reliability, 

SDDPD in arid climate are more expected to be cor-
rectly detecting the rain gauge observations with pre-
sumed threshold. In addition to effects of climate condi-
tions, the reliability indices of PERSIANN seem quite 
more consistent with different thresholds in comparison 
with the corresponding values of TRMM.

4. The SDDPD error entropy, as an index for uncertainty 
degree, increases as IDM rises, which is theoretically 
corresponding with reliability concept. However, in 
comparison with PERSIANN, TRMM, in overall, has 
higher degree of uncertainty. In addition, to evaluate 
effect of daily rainfall intensity on the uncertainty degree 
of SDDPD, the uncertainty degree slightly increased as 
daily rainfall intensified to about 15 mm/day. But for 
higher daily rainfall intensities, on the other hand, the 
uncertainty degree seems to gradually decline as the 
daily rainfall increases.

In brief, the concluding remarks are summarized in 
Table 6.

Conclusions

In this study, two widely used precipitation products (TRMM 
3B42RT and PERSIANN) were evaluated against rain gauge 
data over prevailing climates (arid and semiarid) in Fars prov-
ince located in southwest of Iran during nearly a twenty-year 
period. The evaluation shows that “probability distribution pat-
tern” of TRMM is in agreement with ground-based observa-
tions in the semiarid climate just as the PERSIANN in the arid 
climate. The Kolmogorov–Smirnov index, on the other hand, 
rejects the conformity of the probability distribution pattern of 
the ground-based observation to TRMM data in arid climates 
and to PERSIANN data in semiarid climates. Among com-
mon cross-validating attributes, the values of ME and BIAS, 
in addition to RMSE and MAE, lead to the conclusion that 
in the PERSIANN almost underestimates the rainfall daily 
rates while TRMM overestimates the values mainly in semi-
arid regions. Besides, the PERSIANN is found to be signifi-
cantly correlated with IDM, and the values of underestimation 
increase with growth of the index. The reliability degree of 
SDDPD over the study area, for both TRMM and PERSIANN, 
decreases as the IDM increases for almost all acceptable error 
thresholds. Along with effects of climate conditions, the reli-
ability indices of PERSIANN seem quite more consistent 
with different acceptable error thresholds in comparison with 
the corresponding values of TRMM. The entropy of SDDPD 
error, as an index for uncertainty degree, increases as IDM 
rises, which is theoretically corresponds with reliability con-
cept. However, in comparison with PERSIANN, TRMM, in 
overall, have higher degree of uncertainty. In addition, to eval-
uate effect of daily rainfall intensity on the uncertainty degree 

Fig. 12  Regional classification of the study area according to Kol-
mogorov–Smirnov statistic in Accepting (A) or Rejecting (R) the 
hypothesis for harmonic behavior of satellite-based (PERSIANN and 
TRMM) daily precipitation with ground-based observations
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of SDDPD, the uncertainty degree slightly increases as daily 
rainfall intensified to about 15 mm/day. But for higher daily 
rainfall intensities, on the other hand, the uncertainty degree 
seems to gradually decline as the daily rainfall increases.

This article tries to take a new look at the analysis of the 
reliability and certainty of satellite-derived precipitation data 
at a medium temporal resolution, i.e., daily. By the way, the 
need for more stations does not seem reasonable with regard to 
uniformity in results reflected by current stations. However, it 
is suggested that other researchers use the proposed procedures 
to analyze reliability and certainty degree of satellite-derived 
precipitation data for other temporal scales, regions and cli-
mate conditions, beside huge number of studies on indicators 
of validation.

Appendix: Entropy of skew‑normal 
distribution

The skew-normal distribution is an extension of the normal 
(Gaussian) probability distribution, allowing for the pres-
ence of skewness. This model and its variants have attracted 
the attention of an increasing number of research. The prob-
ability density function (pdf) of the skew-normal distribution 
with parameter � is given by:

where

in which �(t) represents the normally distributed part and 
Φ(t) tilted it to characterize the skewness.

Establishing some algebraic procedure to determine the 
entropy of the skew-normal distribution, it can be calculated 
as:

where HN is entropy of normally distributed function 
( HN =

1

2
+

1

2
ln
(
2�w2

)
 ). The following procedure shows 

that expectation of ln(2Φ(x, �)) is just related to skewness 
factor �.

f (x) = 2�

(
x − �

w

)
Φ

(
�,

x − �

w

)
,

�
�(t) =

1

w
√
2�
e−t

2

Φ(t, �) =
1

2
[1 + erf(�t)]

t =
x − �

w
√
2
,

HSN = HN − E(ln(2Φ(x, �))),

Ψ(�) = E(ln (2Φ(x, �))) =

+∞

∫
−∞

2�(x)Φ(�, x) ln (2Φ(�, x))dx ⇒

Ψ(�) =
1√
�

+∞

∫
−∞

e−t
2

[1 + erf(� t)] ln
�
1 + erf (� t)

�
dt .

The value is defined as “entropy reduction parameter” and 
can be identified from the following diagram:
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