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Abstract

Having doubts about the adequacy of reliability level of satellite-derived precipitation products, along with their applica-
tion in large number of hydrological models, has led to many studies on evaluating the efficiency of such data. In this study,
two new procedures were proposed to compute reliability and certainty degrees of PERSIANN and TRMM 3B42RT data
sets, and six traditional indicators were used to evaluate their validation. In addition, the cumulative density function (cdf)
of the above-mentioned data sets was compared with the ground-based observations in 23 synoptic stations in Fars, Iran.
The Kolmogorov—Smirnov test was performed using the data sets at 5% significance level which led to the result of null
hypothesis that was not being rejected, suggesting that the satellite-derived daily precipitation data (SDDPD) and ground-
based observations are drawn from the same distribution. Results indicated that TRMM and PERSIANN follow quite similar
probability pattern of ground-based observations in arid and semiarid climate, respectively. However, data probability pattern
of TRMM cannot be considered similar to ground-based observations in arid region, neither can PERSIANN in semiarid
climate. Among common cross-validating attributes, the values of ME and BIAS, in addition to RMSE and MAE, led to
the conclusion that in PERSIANN, the rainfall daily rates are almost underestimated while TRMM overestimates the values
mainly in semiarid regions. Moreover, the PERSIANN was found to be significantly correlated with IDM (De Martonne
aridity Index), and the values of underestimation increased with growth of the index. The reliability values of SDDPD over
the study area, for both TRMM and PERSTANN, show the reverse trend with increasing IDM in almost all acceptable error
intervals. Along with effects of climate conditions, the reliability degrees of PERSIANN seem quite more consistent at
different acceptable error intervals in comparison with the corresponding values of TRMM. In addition to validity and reli-
ability, the error entropy of SDDPD, as an index for uncertainty degree, increases as the IDM rises, which is theoretically
corresponds with reliability concept. However, in comparison with PERSIANN, TRMM data set, overall, has higher degree
of uncertainty. In addition, to evaluate effect of daily rainfall intensity on the uncertainty degree of SDDPD, the uncertainty
degree slightly increases as daily rainfall intensifies to about 15 mm/day. But for higher daily rainfall intensities, on the other
hand, the uncertainty degree seems to gradually decline as the daily rainfall increases.
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Introduction

Hydrologists and water resources managers are usually
confronted with problems that require precise, reliable

Edited by Dr. Senlin Zhu (ASSOCIATE EDITOR) / Dr. Michael and validated spatiotemporal rainfall data. These data are
Nones (CO-EDITOR-IN-CHIEE). often used in various spatial and temporal scales for numer-
54 Mahmood Reza Shaghaghian ous applications, including water budget studies, reservoir

shaghaghian1357 @ gmail.com operation, and flood forecasting and control (Shaghaghian

and Abedini 2013). The background data required for such
inputs are often collected via either ground-based measure-
ments (i.e., in situ rain gauges) or air-based instruments (i.e.,
radar and satellite imagery). For example, as a broadly used
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Table 1 Summary of some of available TRMM and PERSIANN family satellite-derived precipitation products (Sun et al. 2018)

Data set Spatial resolution Frequency Period Data source

TRMM 3B42 0.25° 3-h 1998-2020  TMI, TRMM Combined Instrument, SSM/I, SSMIS, AMSR-E, AMSU-B,
MHS and GEO IR

TRMM 3B43 0.25° Monthly ~ 1998-2020  TMI, TRMM Combined Instrument, SSM/I, SSMIS, AMSR-E, AMSU-B,
MHS and GEO IR

PERSIANN 0.25° Hourly 2000—present

PERSIANN-CSS 0.04° Hourly 2003—present Meteosat, GOES, GMS, SSM/I, polar/near polar precipitation radar, TMI,
AMSR

PERSIANN-CDR 0.25° 3-h 1983—present GOES 8, GOES 10, GMS-5, Metsat-6 and Metsat-7, TRMM, NOAA 15, 16,

17, DMSP F13, F14, F15

application, ground, radar and satellite-based precipitation
products are widely used in watershed models (Gilewski and
Nawalany 2018; Price et al. 2014), and various compara-
tive indicators have been used to evaluate the effect of the
input data source (rain gauges, radars or satellite-derived
products) on the performance of simulations employ such
data (Gilewski 2021; Gupta et al. 2009; Zubieta et al. 2015).
The rain gauges estimate point precipitation directly at the
Earth’s surface, and no complicated procedure is needed to
prepare data to be used. However, in spite of the greater
reliability, such measurements, for lack of observations (i.e.,
low spatiotemporal resolution), often do not fulfill all the
requirements in many hydrological models. In addition to
scarcity of ground-based rainfall observations, the extrava-
gant prices for construction and maintenance of rain gauge
stations make achieved data unnecessarily expensive. There-
fore, currently, usage of air-based products to approximate
rainfall parameters gradually increases in many environmen-
tal simulations, and high confidence in accuracy of such data
is vastly needed.

Satellite systems have been used to measure atmospheric
parameters since the early 1960s. In the primary systems,
only the produced images of clouds and their comparison
with meteorological observations were the indicators for
estimating atmospheric parameters, but in the next steps,
satellites were equipped with more advanced sensors. The
sensors mainly categorized into three classes: visible/IR
(VIS/IR) sensors on geostationary (GEO) and low Earth
orbit (LEO) satellites, passive MW (PMW) sensors on
LEO satellites, and active MW sensors on LEO satellites
(Michaelides et al. 2009; Prigent 2010). Each of the sensors
can be used individually or combined to develop procedures
including the VIS/IR-based methods, active and passive MW
techniques, and compound VIS/IR and MW approaches to
estimate precipitation (Kidd and Levizzani 2011). Sensors
and precipitation deriving methods are continuously being
improved in order to raise the accuracy, certainty and reli-
ability level of remotely sensed rainfall measurement.

Among a number of satellite-based rainfall monitoring
programs, Tropical Rainfall Measuring Mission (TRMM),
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Global Precipitation Measurement (GPM), and Precipitation
Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks (PERSIANN) are three well-known,
widely used and evolving processes that have attracted a
great deal of research. TRMM was a joint space mission
sponsored by NASA and Japan Aerospace Exploration
Agency (JAXA) from 1997 to 2015, and afterward, with the
cooperation of an association of international space agen-
cies, its activities are continued using modern satellite tech-
nologies equipped with advanced sensors under the name
of GPM. Besides TRMM and GPM, PERSIANN is a soft-
computing-based approach to estimate rainfall, developed by
Center for Hydrometeorology and Remote Sensing (CHRS)
at the University of California for global precipitation data
gathering over the last two decades.

TRMM and PERSTANN families include some satellite-
derived precipitation data sets which provide rainfall data
at different spatiotemporal resolutions (Table 1). Numerous
studies on application of satellite-derived precipitation prod-
ucts in hydrology are about evaluation of validation and/or
reliability of such retrieved data over global or local scales,
some of which are referred to on the map shown in Fig. 1. In
these studies, it is tried to assess the quality of the products,
through quantification of the uncertainties in the repossessed
data or the retrieval algorithms used to regenerate such data.

Several quantitative indices are used to validate the satel-
lite-based precipitation products. The measures range from
the elementary pairwise metrics such as correlation coeffi-
cient, the bias and the root-mean-square deviation (Camici
et al. 2018; Chen et al. 2013a, b; Darand et al. 2017; Gao
et al. 2018) to numerical results of advanced validation
approaches such as triple collocation analysis (Li et al. 2018;
Lu et al. 2021), consistency through process models and
spectral methods (Nourani et al. 2013). Among the metrics,
all pairwise methods are calculated between two data sets,
both of which are subject to errors. However, for validation
purposes, they are commonly calculated with respect to a
presupposed error-free reference data. Therefore, they are
assumed to represent an estimate of the various uncertainty
aspects of the data set under validation. Furthermore, beyond
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Fig. 1 Continental distribution of some research on TRMM and PERSIANN satellite precipitation validation

the use of elementary validation metrics, probability distri-
bution function (pdf) intercomparison and the stability of
monitoring satellite data records are other methods to evalu-
ate trustworthiness of satellite-based precipitation products
(Dinku et al. 2008; Tan and Santo 2018).

In addition to “verification” or “validation” of satellite-
based precipitation products, many studies conducted to
evaluate the “reliability” of such data are based on the ability
to detect precipitation (Gumindoga et al. 2019; Masood et al.
2020; Mosaffa et al. 2020). Probability of detection (POD),
false alarm ratio (FAR), and critical success index (CSI)
are three classified statistical indicators which are applied
to evaluate the ability to detect actual precipitation events
as the reliability of the satellite precipitation data (Paredes
Trejo et al. 2016). POD represents the proportion of cor-
rectly detected precipitation events, FAR represents the
proportion of missed precipitation events, and CSI compre-
hensively reflects the ability of satellite precipitation data to
detect actual precipitation. However, these indicators often
deal with the ability of detecting or not detecting rainfall
events, but reliability of detected events is not considered.

Generally, for satellite-derived precipitation data, the
term “reliability” refers to the consistency of the products
in quality of the precipitation detection. In other words, the
above-mentioned indicators just deal with the ability—inabil-
ity in detection of rainfall event as well as accuracy—inac-
curacy of satellite-derived databases and the relative quality
of the retrieved data is not considered. For example, while
the observed daily rainfall intensity is 3 mm day~', the
aforementioned reliability attributes reflect the same values

for both corresponding satellite-derived measurements
4.5 mm day~! and 10 mm day~', and the difference in reli-
ability between these two values is not highlighted properly.
The “certainty” of the amount of rainfall retrieved by sat-
ellites is another issue to evaluate the correct performance
of satellites and the applicability of algorithms used in the
production of precipitation data. Error analysis is commonly
used to calculate the certainty of rainfall values obtained
from satellite data (AghaKouchak et al. 2012). Here, sat-
ellite-based precipitation estimation error characteristics
quantified, and the influence of the error propagation into
hydrological simulation is assessed. The indicators used for
quantification of the error of satellite-based precipitation
data are mainly the same metrics used for validation (e.g.,
bias), and most studies do not draw a clear line between
certainty and validity of satellite-based precipitation data.
To address the critical shortcomings of many studies on
evaluation of satellite-based precipitation products, it should
be noted that in most of them, the data obtained from rainfall
estimating algorithms which process the signals sent from
satellites have been compared with deterministic and error-
free ground- or radar-based data. Therefore, the randomness
characteristic of ground-based data is usually ignored, and to
explain the probability in the calculated comparing indica-
tors, no probability conditions have been assigned to them.
In this paper, in the first step, all data, whether satellite-
based or ground-based, are considered as random variables.
For this purpose, appropriate probability density functions
are assigned to them, and most computations are based on
analysis and comparison of random variables. Furthermore,

@ Springer



1748

Acta Geophysica (2022) 70:1745-1767

(a) 51GOE 52GUE

200 — - =

53 qUE 54'70E 55'qUE 56°G0°E

- aroeN

= leroon
300N —

- |erowN
30°007

- REonN
28°00"N '

Height above MSL(m)

i B
2870'0"H — |

[ Jon
[ 109-1.000 |
I 1090 - 2,000 ~ -
I 20020 e L Lo
EEthal  Froey -

0204 &0 120 160

Kilometsrs

| | | L
51C0E s2doe sardoE sedoe sodoe

sedoe

(b)

1, 5
% o g
32, Y —
"'7'/,/ ‘_; $§ Semiarid climate
. -
g, . Arid Climate
"
31 ; Mediterranean climate
=« i Semi-humid climate
‘\r\\t\:f
L@,
W -
? 30 < 3
<
=
i
& 29
=l
S
[
28 '
Satellite-based observations \ ; T KN
S ;. 0"7,
27 s, %,
= ~ <+
b %) n @ e} v Lg)
Latitude (°E)

Fig.2 a Elevation map of the study area, b spatial distribution of available ground-based and satellite-based observation, regional climate divi-

sion, and direction of air masses affecting the study area

some statistical validation approaches besides a reliability
index and Shanon’s entropy as a measure for uncertainty
are employed to evaluate and compare TRMM 3B42RT (is
called TRMM in this study) and PERSIANN daily precipita-
tion data, as two databases represent their family in a large
number of studies in which the quality of the SDDPD is
assessed, over Fars Province, Iran. The study area has mainly
arid and semiarid climates, and the comparison and valida-
tion results are reported separately for each climate. The
study tries to narrow the focus of the investigation to concen-
trate on error resources. In other words, besides the answer
to this question that whether the satellite-derived data are
valid, reliable and/or certain, it is tried to find the measures
for constituent parts of data collection such as several rain-
fall intensities, and pave the way for accurately detecting the
errors and rectify them for probable further applications.
This is the first of a series of papers aimed at incorpo-
rating into employment of reliable SDDPD in hydromete-
orological applications, such as rain gauge network design,
IDF curve development and spatiotemporal forecasting
approximation in the study area. The aforementioned mod-
els, however, require long-term historical rainfall obser-
vations, whereas lack of high-temporal-resolution rainfall
records (e.g., sub-daily) often results in less satisfactory
outcomes. High-temporal-resolution rainfall observation,
however, is often a luxury for many regions due to the high
cost, confidentiality, time-consuming procedures involved
in data acquisition and sharing, etc., and as substitutions to
the in situ rainfall measurement, reliable and interpretable
satellite-based precipitation products meet the fundamen-
tal requirements in case of data scarcity. Consequently, the
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results of this paper will be considered as the base of the
foregoing hydrological simulations.

Study area and data
Study area

Fars province, as the study area, is located nearly in south-
western part of Iran (27°-32° N, 50°-55° E) with a total
area of 122,608 km2. As shown in Fig. 2a, the study area,
contains mountainous regions, mainly situated in northern
and northwestern sector of the province, in which 54% is
covered with elevations more than 1500 m above M.S.L.
However, the southern and eastern parts of the study area
are covered by flat lands (southern coastal plains and east-
ern deserts) with average slopes less than 5% and elevation
less than 1000 m above M.S.L. Therefore, various landform
classes can be found in the study area.

In addition to the topographical setting, three air masses
including maritime polar, Mediterranean and continental
tropical (also known as Sudan) normally influence the study
area in the wet period (November—April), and the maritime
tropical air mass only influences the study area in the dry
period, May—October (Heydarizad et al. 2019; Javanmard
et al. 2010). Among the masses, Mediterranean is one of
the most active air masses and affects almost all parts of
the study area. Mediterranean air mass supplies moisture
from the Mediterranean Sea and the Atlantic Ocean, and to
a lesser extent the Black Sea (Heydarizad et al. 2018). The
maritime polar air mass dominantly influences the study area
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Table 2 Climatological (aridity)

- . Station code Geographical Elevation ~AAT' (°C) AAP** (mm) IDM*** Climatological
Class.lﬁ.cat.lon and the related coordinates (m) classification
precipitation and temperature
information of the selected Longitude Latitude
synoptic stations in the study
area 40,848 52°36'10" 29°32'39" 1484 18.1 317.49 11.3 Semiarid

99,566 52°0024" 30°14'03" 2201 14.7 648.65 26.3 Semi-humid
40,818 52°36'42" 31°11'54" 2030 14.4 134.9 5.5 Arid
99,646 53°31'02" 28°28'58" 1082 20.8 276.1 9.0 Arid
40,847 52°42'15" 29°46'39" 1596 16.5 303.71 11.5 Semiarid
40,844 52°27'54" 30°10'59" 1650 17.7 457.14 16.5 Semiarid
99,580 51°32'39" 30°04'46" 972 21.2 458.1 14.7 Semiarid
88,190 53°12'12" 27°21'52" 405 25.6 212.25 6.0 Arid
40,861 51°39'54" 29°3626" 860 23.1 358.3 10.8 Semiarid
99,561 53°36'32" 30°28'34" 2231 13.8 215.12 9.0 Arid
40,828 52°40'32" 30°52'09" 2300 13.0 319.81 13.9 Semiarid
40,855 53°0923" 30°3527" 2251 12.1 204.05 9.2 Arid
40,869 54°21'07" 29°11'12" 1632 19.5 197.12 6.7 Arid
40,862 54°17'46" 28°4725" 1098 222 262.26 8.1 Arid
99,607 54°02'54" 29°0825" 1690 17.4 253.86 9.3 Arid
40,859 53°43'10" 28°53'56" 1288 19.4 286.01 9.7 Arid
40,873 54°2229" 27°40'12" 792 23.8 210.06 6.2 Arid
99,575 52°5321" 29°55'11" 1605 17.5 291.68 10.6 Semiarid
99,516 52°07'42" 31°31'47" 2188 13.8 151.6 6.4 Arid
99,579 53°16'46" 29°56'08” 1703 18.4 236.4 8.3 Arid
99,590 54°25'44"  28°21'55" 1029 23.2 216.9 6.5 Arid
99,630 52°33'06" 28°53'09” 1362 20.7 377.2 12.3 Semiarid
40,864 52°07'09" 28°48'47" 782 22.2 272.3 8.5 Arid

*average annual temperature, *taverage annual precipitation, T**De Martonne aridity Index

during December, January, and February, while the Medi-
terranean air mass dominantly influences the study area
during March and April. The continental tropical air mass
enters from the south and affects most parts of the study
area (like the Mediterranean air mass), but affects the south
most strongly. The continental tropical air mass transports
a considerable amount of moisture from the Persian Gulf,
the Red Sea and the Arabian Sea. The continental tropical
air mass has a crucial role in the rainfall in the study area
during all of the wet period. However, the summer precipi-
tation southeast of the study area is sometimes influenced
by the maritime tropical air mass. The maritime tropical air
mass supplies moisture from the Arabian Sea and the Indian
Ocean to southeast and south of the study area (see Fig. 2b).

Topographical setting (elevation differences and slope
characteristics) and the arriving air mass systems in the
study area control the regional climate conditions. Gener-
ally, several quantitative measures are focused to catego-
rize the climate conditions based on different climatic ele-
ments: precipitations only, for example SPI' (Caloiero et al.

! Standardized Precipitation Index.

2018) and ASP? (Liu et al. 2016), besides temperature and
precipitations, for instance, IDM? (Pellicone et al. 2019;
Tabari et al. 2014) and IP* (Baltas 2007). Among the indi-
ces, although De Martonne aridity Index is one of the old-
est aridity/humidity indices, because of its efficiency and
relevance in relation to the arid/humid climate classification,
in recent years, it was still used with good results worldwide
in order to identify dry/humid conditions of different regions
(Emadodin et al. 2019; Pellicone et al. 2019; Zarghami et al.
2011) and is employed in this study. The index may be calcu-
lated both on annual and on shorter period basis. For annual
values, it may be calculated as presented below:

DM = —Las
ST 10 1)

aa

2 Anomaly Standardized Precipitation.
3 De Martonne aridity Index.

4 Pinna combinative Index.
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where P,, is the annual amount of precipitation (in millim-
eters) and 7, is the mean annual air temperature (in degree
Celsius).

Figure 2b also displays regional climate classification,
with regard to De Martonne aridity Index, over the study
area based on the data gathered from the meteorological
stations shown in Table 2. The spatial distribution of the
aridity index calculated for annual values reveals that the
driest regions in the study area are located in the southeast-
ern and northern parts, which are included hot arid climate
southern coastal plains and eastern deserts, also cold arid
climate northern mountainous section. The remaining areas
in central and western parts have mainly semiarid climate.
However, the only stations close to the northwestern bound-
ary recorded values specific to semi-humid climates.

Data set

The reference data sets employed in the present work are
based on the daily rainfall observations derived from 23 syn-
optic stations (Table 2 and Fig. 2). The synoptic station data
were provided by Iran Meteorological Organization (IMO),
and the recording period of the stations varied in duration,
but all had data from 2000 to 2020 which are completely
compatible with period of available SDDPD. The spatial
distribution of the synoptic gauge stations over the study
area is deducible from the map in Fig. 2b, and it is not dif-
ficult to qualitatively infer that most of the stations spread
uniformly in the study area.

In addition to ground-based observations, TRMM
3B42RT and PERSIANN are a couple of general satellite-
based precipitation data are used in this study. The TRMM
3B42RT precipitation output comprises 0.25°x0.25° grid
cells (about 25 km X 30 km in location of the study area)
for every 3 h, with spatial extent covering a global belt
(—180°W to 180°E) extending from 50°S to 50°N latitude.
Besides TRMM satellite-based precipitation products,
SDPPs based on PERSIANN, also, compute an estimate of
rainfall rate at each 0.25°x0.25° pixels, but, for every 1 h.
As TRMM 3B42 data, PERSIANN rainfall product covers
50°S to 50°N globally. The utilized TRMM 3B42 and PER-
SIANN data in this paper were covering the study area from
2000 to end of 2019.

UTC offset and probable delay in recording observa-
tions are crucial issues in recovering daily data hour-based
information (which is not much focused in the literature).
For example, to obtain a daily-scale 3B42 product, the pre-
cipitation measurements from eight three-hourly products
(00:00 UTC, 03:00 UTC, 06:00 UTC, 09:00 UTC, 12:00
UTC, 15:00 UTC, 18:00 UTC, and 21:00 UTC) of a specific
date were accumulated and multiplied by a factor of 3. Since
the precipitation gauges in the study area measure the daily
precipitation with regard to local time, a time calibration
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Fig.3 Correlation coefficient between SDPPs and ground-based
observations considering several time lags

is required for the matter. Figure 3 shows average correla-
tion coefficient between daily precipitation of rain gauge
observations and the generated values from hourly-scale data
derived from the TRMM and PERSIANN satellites. It is
clear from the figure that considering a delay between, about
12 h, beginning hour in a day to generate daily precipitation
data from hourly (for PERSTANN) and/or three-hourly (for
TRMM) products yield to the highest correlation coefficient
and probably provide more efficient results. Therefore, in
this study, the daily-scale satellite-derived products were
synchronized with ground-based observations from shift-
ing the time 12 h earlier to compensate the time difference
between local and standard time, and any probable delay in
data reporting.

Methodology

The validity, reliability and certainty of daily precipita-
tion data retrieved from TRMM and PERSTANN databases
are evaluated by comparing them with IMO ground-based
observations in selected synoptic stations during the period
spanning from 2000 to 2019, corresponding to availability
of almost complete data sets during these years. A detailed
comparison of the data sets is provided in different climates
of the study area, to assess the relationship between climate
conditions and the quality of the SDDPD. To achieve these
goals, a straightforward procedure is established from taking
the following steps:

1. Choose a method to divide the study area into regions
with the homogeneous climate conditions or similar cli-
matic indicators:

Climatic classifications is mainly used to reflect the
average spatial climatic characteristics of a region (Geng
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Table 3 Type of climate according to the De Martonne aridity Index

(IDM)

Climate type Ipyy value
Arid Iy < 10
Semiarid 10 < I, < 20
Mediterranean 20< Iy <24
Simi-humid 24 <Ipy <28
Humid 24 <Ipy <35
Very humid 35< Iy <55
Extremely humid Ipy 255

et al. 2014). Various climatic classification models based
on meteorological parameter processing approaches are
found in the literature (De Martonne 1926; Gadgil and
Narayana Iyengar 1980; Stamp and Wooldridge 1951;
Thornthwaite 1955). Among the methods, De Martonne
climatic classification approach has been used in many
environmental studies in recent decades, indicating that
although this index is one of the oldest climate indi-
ces, but it is still worldwide used with logical results in
order to mirror climate conditions of different regions
(Emadodin et al. 2019; Pellicone et al. 2019). Therefore,
based on the simplicity and efficiency of the De Mar-
tonne aridity Index, this approach is chosen for dividing
the study area into climatic subregions (refer to Eq. 1
and Table 3).

Select conventional diagnostic statistics to quantify the
accuracy of the PERSIANN and TRMM daily precipita-
tion:

Six parameters are used to measure the precision of
the satellite-derived data: the Pearson and the Spear-
man’s rank correlation coefficients (Zou et al. 2003),
the root-mean-square error (Gupta et al. 2008, 2009),
the mean error, mean absolute error, relative bias and
Kolmogorov—Smirnov statistic (Zhang et al. 2011). The
values for the first five parameters are calculated by the
following equations:

S, G
Pearson correlation coefficient : M, )
050G
. ) cov(S,. G,)
Spearman’s rank correlation coefficient: ———=,
050G,
3
Mean error : E
E,=S,—G; Meanabsolute error : |E|, )
Relative Bias : % x 100

where S and G are satellite-derived precipitation data
and the observed precipitation from gauges, S, and G, are
rank variables of the previously mentioned parameters,
and S; and G; are corresponding daily satellite-derived
precipitation data and the rain gauge observations. In
addition, the Kolmogorov—Smirnov statistic quantifies a
distance between the cumulative distribution function of
the satellite-derived precipitation data and the cumula-
tive distribution function of the rain gauge observations
considered as reference distribution (Bityukov et al.
2016).

Employ the statistical concept of consistency to deter-
mine reliability degree of PERSIANN and TRMM daily
precipitation.

Reliability and the probability of failure are on both
sides of balance scale so that the lowering of one causes
the rising of the other (Birolini 2017). For the satel-
lite-derived precipitation measurements, failure means
incorrect retrieval of the amount of rainfall sent by sat-
ellite signals which is directly related to the value of
the acceptable error threshold. In other words, error in
a given interval, known as threshold, is considered to
be insignificant, and the corresponding amount of sat-
ellite-derived precipitation is considered to be accept-
able (reliable). However, if the error value is outside the
negligible error range, the related precipitation value is
unacceptable (failure). It is obvious that the number of
acceptable rainfall amounts, and consequently level of
reliability, increases with the expansion of the accept-
able error range; however, the relationship between the
rate of change in the level of reliability and the values of
the acceptable error range has received less attention.

Statistically, error probability distribution function is,
also, another basic constituent of the reliability concept.
The function is derived from empirical distribution func-
tion of the generated samples based on SDDPD. Fur-
thermore, the procedure for modeling the distribution
function requires a goodness-of-fit test. Hence, choos-
ing an appropriate type of distribution function and fit-
ting procedure, besides providing the error structure of
satellite-derived precipitation values are integral parts
of reliability analysis.

Introduce an effective uncertainty index to imply the
viability of the PERSIANN and TRMM SDPPs.

Uncertainty analysis of satellite-derived precipita-
tion products is a computational process of quantita-
tively analyzing possible errors and estimating of the
total uncertainty of a measurement. Conventionally,
quantifying uncertainty in satellite-derived precipita-
tion products, accuracy of data is determined; however,
most of the traditional disinformative uncertainty indica-
tors are not able to identify source of data uncertainty.
Therefore, to tackle the problem, entropy is considered
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as an effective measure to represent uncertainty of data
(Amorocho and Espildora 1973; Robinson 2008).

For more clarification, here an illustrative example is
provided. Suppose the real value for a parameter to be
10. The value was observed by a couple of devices, in
which the first observed values were 9, 11, 12, and 8. On
the other hand, the second device recorded observation
values were 14, 14, 14, 14. Here, mean error (bias), as
one of the traditional uncertainty indices, related to the
first device is 0; however, the mean error of the second
device is 4. Traditionally, the uncertainty index of the
second device is higher, but the error was spread uni-
formly in all the observations and may remove hardly.
However, the error can be easily detected and removed
in the second device.

Entropy is a measure of redundancy. The relative
entropy gives a comparison between two probabilistic
systems and typically measures the actual entropy to the
maximal possible entropy. It is the relative entropy that
has played the key role in determining the uncertainty
indices of this study.

The above steps require some tools which are explained
as follows:

Statistical analysis

A purposive approach to the probabilistic concepts produces
some meaningful results that can be effectively utilized in
logical interpretation of such subjects. The methods are
comprised mainly of suitable probability density functions
(pdfs) in addition to effective analytic strategies and reason-
ably inferring plans. These pdfs represent random variables
fairly well and remove noises from data effectively. Besides,
well-organized processing techniques provide deducible
results that enable to classify data, clarify the current situ-
ation and establish intellectual foundations for forecasting
procedures. Therefore, analyzing the events including ran-
dom variables requires careful selection of constituents of
statistical analysis procedure to form objective judgment on
the measures.

Proper probabilistic evaluation of satellite-derived pre-
cipitation data by comparing them with rain gauge obser-
vations, while both are considered to be random variables,
requires some essential statistical tools. Accordingly,
pdfs of satellite-derived precipitation data and rain gauge
observations, as the basis for many statistical analyses, are
better to be established in early stages of the study. Estab-
lishment of pdfs is to identify the type of proper shape
and define its calibrating parameters utilizing a conscious
fitting policy with non-debatable measures.

@ Springer

For averaged daily precipitation, a gamma distribu-
tion is commonly used for describing rainfall statistics
(Martinez-Villalobos and Neelin 2019). The function is
given by:

_ P et
fx) = o ¢
where a is the shape parameter, f the rate parameter, and x
represents daily averaged precipitation. For daily precipita-
tion, shape and rate parameters are applicable metrics to
control the probability of light and moderate daily precipi-
tation sums, and represent changes of the extremes, respec-
tively (Wilby and Wigley 2002).

. ®

Reliability analysis

For satellite-derived precipitation data, most of the research
focuses on accuracy of the measurements, while their con-
sistency is not highly regarded. Increasing the accuracy of
the data is a direct consequence of the error reduction, while
their consistency achievement is essence of error organiza-
tion. So, profound knowledge to error nature of satellite pre-
cipitation data increases the “reliability” of their utilization
in hydrological models. Statistically, the reliability may be
defined as follows:

+E
R(E)=Pr(-E<x<E)= / Jo(x)dx, (6)
-E

where E is the acceptable error domain of satellite data and
f,(x) is pdf of the satellite data error. The measure indi-
cates the trustworthiness degree of the data with regard to
predefined probable deviation from the ground rain gauge
observations.

Shannon entropy analysis

Error uncertainty of the satellite data may be utilized as a
measure to evaluate their performance. Generally, uncer-
tain data are data that contain noises that which make them
deviate from the correct, intended or original values. Hence,
calculating error uncertainty of the satellite daily rainfall
data seems to be an appropriate way to delineate of their
applicability for several usages.

Entropy is an encapsulation of the rather vague notions of
disorder or chaos, uncertainty or randomness. The measure
implies the degree of uncertainty to the values of data if the
process takes place for errors. For more details, consider the
Shannon entropy definition of data error:
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N
H(ERR) = ZT —P(x;) InP(x;), empirical data set o
[ P(e)InP(e)de,  the modeled pdf

where, for analyzing empirical data sets, N is number of
error domains. Besides, x; = {x €X e <Err(x) < ei+,}
where X is data set, Err(x) is error value for x, and e_ are
sequential predefined errors. In addition, for the modeled
pdf, P(e) is probability of error e. For both cases, H(ERR)
represents uncertainty of errors. Lower values of H(E) imply
certainty of errors more and increase the ability to identify
and remove errors.

It can be shown that, for empirical data set, the value of
H(FE) is maximum when all the x; are equally probable, that
is, when the outcome has maximum uncertainty. In this case,
the entropy becomes:

H,, (ERR) = InN. (8)

At the other extreme, when all outcomes except one
have zero probability, H(E) vanishes, which corresponds to
absolute certainty. On the other hand, for modeled pdf, with
respect to Appendix, while normal skew distribution func-
tion is used to simulate the extreme entropy the values are:

H_..(ERR) = Hyp

H,_. (ERR) = Hyp —In2’ ©)

where Hyy, is entropy of normally distributed function.
For skewed normal distribution function (Eq. 11), the
entropy is calculated as (Arellano-Valle et al. 2013):

(a9

(10)

H(E) = % + %ln(Zﬂwz) - E{ln

Results and discussion

The focus of this study is to evaluate the validity, reliability
and uncertainty of two well-known SDDPD called TRMM
(TRMM 3B42RT) and PERSIANN. It should be noted that
indicators for the aforementioned concepts can be defined
based on different viewpoints. In this paper, various statisti-
cal procedures are used to assess these indicators that are
mentioned in detail in the previous section.

Table 4 reports shape and rate parameters of the gamma
distribution function for rain gauge observations, PER-
SIANN and TRMM explained in Eq. 5. In Table 4 (and
others), gray rows represent stations located in arid region,
while the values in orange and green rows are related to sta-
tions placed in semiarid and semi-humid climates, respec-
tively. The parameters were calibrated from optimizing the

modeled probability distribution to the sample to achieve
minimum distance in Kolmogorov—Smirnov test which can
be found in this table. Besides, maximum vertical distance
between cumulative distribution function (cdf) of daily rain
gauge observations and corresponding satellite-derived
data are shown, which are used in performing a Kolmog-
orov—Smirnov test for the null hypothesis that rain gauge
observations and TRMM or PERSIANN are reasonably
from the same distribution function (Teegavarapu 2019). In
addition to the parameters of the pdfs, some common cross-
validating attributes are presented in Table 4. The linear
association between the satellite-derived data sets and rain
gauge observations is evaluated using Pearson and Spearman
rank correlation coefficients (Egs. 2 and 3). Bias in the mean
daily precipitation of all data sets is estimated with mean
error (Eq. 4). The mean absolute error (Eq. 4) and the root-
mean-square error (RMSE) are used to measure the average
magnitude of the errors, with the difference that RMSE gives
greater weight to the larger errors relative to MAE. Finally,
with the relative bias (Eq. 4) the mean error was scaled with
respect to the mean precipitation of the gauge observations.

Precipitation observations and satellite data are con-
sidered as random variables. The probability distribution
function can be used to validate the rainfall amount distri-
bution and the error dependence on precipitation rate for
satellite estimates (Chen et al. 2013b; Tian et al. 2009). This
kind of evaluation also offers insight into error dependence
on precipitation rate and the potential impact of the error
on hydrological applications. The K-S statistic values for
each set of data (rain gauge observations, PERSIANN and
TRMM) confirm a good enough fit in all cases. However,
Fig. 4 indicates that the metric denotes quantitative compari-
son of satellite data with rain gauge observations, somehow
depends on the climate of the region. Since the hypothesis is
rejected if the K-S statistic is higher than the critical value
0.20517 at a 95% significance level of confidence (Langat
et al. 2019), regarding the figure, TRMM detects rainfall
more efficiently in wetter regions than the PERSIANN satel-
lite. But, for arid regions, the pdf similarities of PERSIANN
and rain gauge observations are more considerable.

Figure 5 shows some statistical distinguishing indices for
validation of PERSIANN and TRMM in several climates
in the study area. Pearson and Spearman rank correlation
coefficients do not show a clear pattern for any of the sat-
ellites and regions. However, the values of ME and BIAS
lead to the conclusion that PERSIANN almost underesti-
mates the rainfall daily rates while TRMM overestimates
the value mainly in semiarid regions. In addition, the figures
indicate that the “pattern of the errors” for PERSIANN is
more organized. For instance, absolute values for RMSE,
ME, MAE, and BIAS gradually become more substantial
with increasing the De Martonne aridity Index, although no
significant pattern can be found for TRMM. The pattern may
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Table 4 Rain gauge daily observations, PERSIANN and TRMM satellite daily data estimated parameters summary of gamma probability distri-
bution

Station K-S Pearson correlation
code RDGO PERSIANN TRMM K-S statistic coefficient
K=s K=s K=S stz.;\tlstlc(PERSIANN— (TBMM— RGDO- RGDO-
@ P g @ P s @ P gy | TinE3UESs) rain PERSSIANN  TRMM
gauges)
40848 040 0.09 0.06 0.55 0.19 0.03 0.40 0.11 0.01 0.101 0.050 0.37 0.60
99566 0.44 0.05 0.02 0.62 0.22 0.03 0.44 0.05 0.02 0.267 0.018 0.33 0.54
40818 041 0.19 0.04 0.67 030 0.03 0.49 0.06 0.03 0.133 0.301 0.35 0.23
99646 0.51 006 003 055 0.18 0.03 0.85 0.10 0.03 0.228 0.131 0.41 0.65
40847 0.42 0.07 0.03 060 024 0.04 0.58 0.05 0.02 0.187 0.186 0.37 0.55
40844 050 0.06 0.03 0.58 0.23 0.03 0.42 0.40 0.10 0.289 0.463 0.36 0.59
99580 0.60 0.07 0.04 0.62 0.19 0.04 0.39 0.03 0.02 0.272 0.083 0.31 0.46
88190 0.40 0.06 0.03 056 0.16 0.04 1.21 0.21 0.07 0.116 0.248 0.35 0.55
40861 0.50 0.07 0.05 0.57 0.18 0.03 0.39 0.05 0.03 0.182 0.045 0.24 0.56
99561 0.40 0.13 005 0.70 0.36 0.04 0.94 0.16 0.03 0.115 0.309 0.35 0.26
40828 055 0.10 0.04 0.62 0.29 0.03 0.45 0.07 0.02 0.240 0.044 0.28 0.26
40855 0.52 0.13 0.04 064 032 0.04 0.53 0.09 0.03 0.173 0.104 0.33 0.24
40869 0.40 0.09 0.04 0.62 0.28 0.03 0.96 0.15 0.06 0.137 0.273 0.40 0.36
40862 0.40 0.10 0.07 0.55 0.18 0.03 0.82 0.12 0.02 0.059 0.260 0.41 0.52
99607 0.40 0.09 0.05 0.63 0.28 0.03 1.15 0.18 0.04 0.146 0.308 0.46 0.48
40859 041 0.06 0.02 0.57 021 0.03 0.75 0.09 0.03 0.204 0.176 0.45 0.59
40873 052 0.09 0.03 0.59 0.17 0.03 0.85 0.14 0.04 0.121 0.128 0.36 0.39
99575 050 0.08 0.04 0.59 0.25 0.03 0.47 0.05 0.02 0.228 0.106 0.40 0.54
99516 0.44 0.13 004 068 0.31 0.03 0.56 0.08 0.03 0.100 0.210 0.37 0.20
99579 040 0.07 0.04 066 030 0.04 0.60 0.07 0.03 0.198 0.165 0.40 0.54
99590 0.40 0.07 0.04 0.58 0.19 0.04 0.83 0.10 0.04 0.126 0.234 0.30 0.57
99630 0.40 0.05 0.03 0.57 0.20 0.04 0.54 0.10 0.03 0.200 0.060 0.26 0.57
40864 0.43 006 003 060 0.19 o0.03 0.63 0.07 0.03 0.165 0.134 0.32 0.43
) Spearman rank
Station pcorrelation RMSE ME MAE BIAS
code -
coefficient

RGDO- RGDO- RGDO- RGDO- RGDO- RGDO- RGDO- RGDO- RGDO- RGDO-

PERSSIANN TRMM PERSSIANN  TRMM PERSSIANN TRMM PERSSIANN TRMM PERSSIANN TRMM
40848 0.12 0.02 8.86 7.32 -1.85 2.04 4.20 3.41 -43.72 118.72
99566 0.08 0.13 13.22 13.13 -4.77 -1.57 6.79 7.45 -66.03 -20.17
40818 -0.09 -0.17 4.65 11.45 0.31 1.86 2.35 4.76 19.54 82.39
99646 0.02 0.13 10.83 10.58 -1.81 -1.37 5.47 6.43 -36.21 -18.59
40847 0.09 0.17 8.43 12.87 -2.09 2.56 4.26 6.41 -48.36 52.24
40844 0.08 0.04 11.73 8.58 -3.86 0.07 5.89 3.04 -62.30 2.59
99580 0.10 0.22 11.52 17.49 -2.42 3.00 6.00 9.57 -40.71 41.72
88190 0.06 0.09 9.81 9.97 -0.62 1.80 4.71 5.54 -15.42 44.72
40861 0.08 0.26 11.33 13.68 -1.64 2.92 5.67 7.02 -32.51 55.36
99561 -0.13 -0.29 6.40 9.69 -1.04 1.07 3.13 4.99 -37.82 36.01
40828 -0.10 -0.18 8.84 13.72 -2.14 0.69 4.26 6.34 -53.48 16.07
40855 -0.08 -0.18 5.81 10.97 -0.70 1.54 3.14 5.37 -25.73 48.38
40869 -0.02 -0.11 6.66 8.95 -1.20 -0.65 3.32 5.05 -38.74 -15.40
40862 -0.01 0.13 8.65 9.10 -1.61 -1.21 4.16 4.80 -41.82 -24.57
99607 0.01 0.05 8.57 9.51 -2.12 -1.68 4.03 5.01 -51.33 -33.04
40859 0.04 0.08 9.59 10.34 -2.09 -1.04 4.68 5.81 -46.17 -16.93
40873 -0.05 -0.05 8.67 9.95 -0.45 -1.12 4.51 5.61 -12.60 -22.09
99575 0.07 0.14 8.14 12.59 -2.22 1.59 4.26 6.21 -50.52 30.50
99516 -0.15 -0.17 4.96 10.89 0.00 1.70 2.65 5.29 0.02 59.16
99579 0.02 0.10 7.43 10.51 -1.34 0.95 3.73 5.36 -37.28 20.48
99590 -0.03 0.11 9.58 9.68 -0.43 -1.43 4.78 5.28 -11.69 -25.02
99630 0.04 0.18 11.23 10.78 -1.66 0.23 5.28 5.70 -34.99 3.99
40864 0.04 0.17 10.11 11.67 0.03 1.91 4.86 6.42 0.81 37.07
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Fig.4 Climatological evaluation of the Kolmogorov—Smirnov test
metric for the null hypothesis that the precipitation time series at
daily resolution of rain gauges is the same as satellite data

help for error-removal of data with several kinds of error-
generating noises (Fig. 6).

To evaluate error distribution inherent features, Fig. 2
shows the sample frequency and the model of PERSIANN
and TRMM data error distributions in four sample loca-
tions with available daily rain gauge observations. The
skew-normal distribution function (O'Hagan and Leonard
1976) is utilized to model the empirical distribution in
such a way that distance between the empirical distribution

function of the sample and the cumulative distribution
function of the reference distribution is minimized (the
K-S stat. in Table 5 is used to indicate the minimum value
which all reject the null hypothesis). The function model
is as follows:

2=y [,

fx) =
w\ 2x 0 \/Z

an

where a (shape parameter), w (scale parameter), and & (loca-
tion parameter) are regulating parameters of the function.
The distribution is right skewed if @ > 0 and is left skewed if
a < 0. Regarding the parameters, mean, variance and skew-
ness of the sample modeled by the aforementioned pdf are
as follows:

[0

2
Mean (u) =¢&+ 5\/j where 6 = ———
x Jira

2
Variance (¢%) = w2<1 - £>

3

)
4-z \ ')
=

Table 5 also contains the skew-normal model parame-
ters besides the estimated mean, variance and skewness of
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Fig.5 Statistical bi-cross-validation representation of the climato-
logical validation of PERSIANN and TRMM daily precipitation
estimates using the pixels with assimilated RGDO of Fars province:

De Martonne Aridity Index

De Martonne Aridity Index

a Pearson coefficient of correlation, b Spearman coefficient of rank
correlation, ¢ root-mean-square error (RMSE), d mean error (ME), e
mean absolute error (MAE), and f relative bias (BIAS)
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Fig. 6 Rainfall daily intensity occurrence frequency in four typical stations

the simulated distribution (Eq. 12). The parameters were
calculated establishing a genetic algorithm procedure to

minimize the K-S statistics.
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A reliability expression can be calculated by applying
Eq. 11 in Eq. 6 as follows:
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Table 5 The estimates of PERSIANN and TRMM satellite daily averaged data error distributions model parameters and the corresponding cal-

culated simulated statistical measures (mean, variance, and skewness)

Station PERSIANN TEMM
code
K-S
a w & Stat. a w

40848 -7.39 4.73 2.84 0.10 -0.84 2.65
99566 -15.36 9.54 4.61 0.10 -0.09 6.26
40818 1.19 2.35 -0.98 0.07 1.02 3.79
99646 -9.59 6.77 4.73 0.09 -2.53 9.32
40847 -38.56 5.62 3.17 0.09 4.79 7.94
40844 —-29.80 7.92 4.02 0.10 10.63 1.51
99580 -8.69 8.15 4.91 0.08 4.47 12.18
88190 -3.63 4.98 3.73 0.08 -1.28 5.98
40861 -7.31 7.08 4.55 0.09 4.04 8.51
99561 -6.14 3.92 2.67 0.09 2.28 5.89
40828 -0.58 4.04 0.86 0.10 1.47 6.35
40855 -5.10 4.33 2.92 0.07 -0.64 5.05
40869 -12.17 4.18 2.84 0.09 -1.50 5.37
40862 -7.37 4.34 2.87 0.10 -4.04 6.06
99607 -35.62 4.65 2.80 0.09 -1.64 4.75
40859 -3.13 5.43 3.42 0.09 -2.02 7.40
40873 -3.63 5.49 4.16 0.08 -2.23 7.55
99575 -3.43 5.65 3.07 0.09 -2.28 8.18
99516 -2.36 3.21 2.46 0.07 3.59 5.89
99579 3.55 5.14 -3.94 0.13 1.31 5.10
99590 -1.22 4.54 3.18 0.09 -3.33 6.75
99630 -5.69 6.14 3.95 0.10 -1.93 6.65
40864 -2.64 5.41 4.07 0.08 1.99 7.49
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Fig. 7 Reliability evaluation of PERSIANN and TRMM daily rainfall
data as a function of acceptable error domain

where erf() is error function® and 7() is Owen’s T func-
tion®. The equation substantially indicates the cumulative
probability of absolute value of the error to be less than E.
Figure 7 compares reliability variation of PESIANN and
TRMM with acceptable error range in the stations of study
area. At the beginning of the graph, in lower threshold lev-
els of acceptable error, a sharp increase in the reliability is

5
2

A
a

CT(ra)= o [
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e dr.

g*%xz(lﬂz)

142

erf(x) =

O~ =

dr.
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PERSIANN TRMM
K-S Mean Var. Skew. Mean Var. Skew.
st W @) W W 0) ()
2.66 012 -089 837 -092 131 518  -0.09
-1.07 009 -298 3331 -098 -153 39.01 0.0
-222 011 0.45 3.45 020 -0.05 970 0.14
5.89 0.06 -0.64 1699 -095 -1.03 39.05 -058
-490 008 -131 1148 -099 130 2459 084
-077 017 -230 2283 -099 043 0.84 0.96
-802 008 -155 2472 -094 147 5837 082
5.55 0.05 -0.10 1014 -075 179 2157 -0.23
-480 008 -105 1880 -092 179 2898  0.79
-362 008 -042 584 -090 068 1614  0.53
-406 008 -075 1376 -004 012 2280  0.29
2.15 0.09 -048 727 -086 -0.02 2075 -0.05
2.89 0.08 -048 643 -097 -067 1615 -030
3.76 010 -055 705 -092 -094 1472 -0.79
2.24 009 -091 786 -099 -1.00 12.08 -0.35
4.42 007 -071 1248 -069 -0.88 2681 -046
4.70 007 -0.06 1231 -075 -0.80 2684 -051
5.43 010 -126 1320 -073 -0.54 3119 -0.53
-413 008 0.10 475  -055 039 1418 074
-329 008 001 1083 074 -006 1555 024
3.90 0.08 037 1280 -021 -125 1893 -0.71
4.81 0.08 -0.87 1442 -088 009 2200 -0.44
-410 007 0.04 1296 -060 124 2758 045
observed for both satellites. The rise is followed by attenu-

ated growth for the broadening acceptable error ranges. In
addition to overall behavior of the curves, the graphs that
represent TRMM seem to be more widely scattered than
the PERSTANN. Since the compacted curves indicate more
chance to develop some trends for the error variation of the
data, the PERSIANN satellite daily rainfall data are more
consistent than the daily data obtained from TRMM satellite.

Figure 8 illustrates behavior of PERSIANN and TRMM
SDDPD and clarifies their possible climatological con-
sistency. Regarding the figures, a harmonious relation
can be visually found between reliability of PERSIANN
daily rainfall data and the climatological indicator in low
(E =3 mm/day) and medium (E = 6 mm/day) threshold
levels, while no remarkable correlation exists between the
data related to TRMM satellite and De Martonne aridity
Index in the aforementioned domains. However, a near
complete reliability can be found in higher threshold levels
(E > 9 mm/day) for both satellite-derived precipitation data
sets.

Figure 9 depicts the uncertainty of PERSIANN and
TRMM data errors in terms of the Shannon entropy in
coordination with the stations in the study area. It can be
clearly observed that the parameter for the satellites differs
in such way that one can claim that the PERSTANN satellite
daily rainfall errors have lower uncertainty in several clima-
tological situations in the study area. In addition, for both of
the satellites, the daily rainfall errors uncertainty gradually
increases with growth of De Martonne aridity Index, which
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Fig.8 Reliability to PERSIANN and TRMM daily rainfall data with acceptance errors: a E=+3 mm/day, b E=+6 mm/day, ¢ E=+9 mm/day,

and d E=+ 12 mm/day
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Fig.9 Entropy of PERSIANN and TRMM simulated daily rainfall
error distribution

means that daily rainfall errors for both satellites are more
certain in the arid climate.

Relative entropy, which is defined as the ratio of data
error entropy to its highest possible value and being calcu-
lated as in Eq. 14, can be used to remove the scale parameter
from data error. This quantity is a good measure to deter-
mine and compare the uncertainty of data error in various
data domain sections. Recognition of domains with more
error uncertainty helps to develop a clear vision of error
resources and more efficient strategies to rectify them.

H(E) .
H(ERR , empirical data set
H(ERR) = TR _ J e, P
H...(ERR) 1- o the modeled pdf
14

The more uniformity of the data error distribution along
the data domain, the closer the relative entropy is to unity.
Since homogeneous data error made error detection more
difficult, the lower relative entropy of the data error is more

@ Springer
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