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Abstract
The present study investigates the prediction accuracy of standalone Reduced Error Pruning Tree model and its integration 
with Bagging (BA), Dagging (DA), Additive Regression (AR) and Random Committee (RC) for drought forecasting on 
time scales of 3, 6, 12, 48 months ahead using Standard Precipitation Index (SPI), which is among the most common criteria 
for testing drought prediction, at Kermanshah synoptic station in western Iran. To this end, monthly data obtained from a 
31-year period record including rainfall, maximum and minimum temperatures, and maximum and minimum relative humid-
ity rates were considered as the required input to predict SPI. In addition, different inputs were combined and constructed 
to determine the most effective parameter. Finally, the obtained results were validated using visual and quantitative criteria. 
According to the results, the best input combination comprised both meteorological variable and SPI along with lag time. 
Although hybrid models enhanced the results of standalone models, the accuracy of the best performing models could vary 
on different SPI time scales. Overall, BA, DA and RC models were much more effective than AR models. Moreover, RMSE 
value increased from SPI (3) to SPI (48), indicating that performance modeling would become much more challenging and 
complex on higher time scales. Finally, the performance of the newly developed models was compared with that of conven-
tional and most commonly used Support Vector Machine and Adaptive Neuro-Fuzzy Inference System (ANFIS) models, 
regarded as the benchmark. The results revealed that all the newly developed models were characterized by higher prediction 
power than ANFIS and ANN.
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Introduction

Drought remains among the costliest climatic threats many 
countries are facing. In a general definition, drought is a 
long-term climatological period that experiences a less-than-
average amount of precipitation, which in turn leads to defi-
cit in water resources and other major problems in agricul-
tural and economic spheres, ecosystems, human health, etc. 

(Wu et al. 2001; Quiring and Papakryiakou 2003; Belayneh 
et al. 2016; Wilhite and Buchanan-Smith 2005; Liu et al. 
2021). This phenomenon is often interpreted as a creeping 
phenomenon. To be specific, compared to other natural dis-
asters such as flood, landslide and earthquake, the resulting 
damage of this phenomenon gradually pans out (Rossi 2000; 
Wilhite et al. 2007). Situated in the Middle East, Iran is 
generally categorized as an arid to semi-arid country since 
two-thirds of its area are mostly desert.

Definition of drought varies from one region to another, 
and its classification is specific to every region. American 
Meteorological Society (1997) classified drought in 4 main 
terms: meteorological (based on precipitation), hydrological 
(reservoir storage), agricultural (soil moisture and stream-
flow) and socio-economic categories. Drought is monitored 
using different drought indices that detect drought conditions 
and trends based on the precipitation deviation from the nor-
mal level (Paulo et al. 2012), soil moisture deficit and reduc-
tion in surface and underground flows (Zargar et al. 2011). 
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Palmer Drought Severity Index (Palmer 1968), SPI (McKee 
et al. 1993), Standardized Precipitation Evapotranspiration 
Index (Vicente-Serrano et al. 2010), Rainfall Anomaly Index 
(van Rooy 1965), Crop Moisture Index (Palmer 1968) and 
Surface Water Supply Index (Doesken and Garen 1991) 
are some important instances of drought indices. SPI is 
among the well-known drought indicators (McKee et al. 
1993) that has been introduced as a standard global-scale 
meteorological drought index (Wardlow et al. 2012). Being 
measurable on different time scales including 1, 3, 6, 9, 12, 
18, 24 and 48 months, SPI is used to observe the histori-
cal trend of drought on 3 long-, short- and medium-term 
scales. SPI enjoys several advantages; for instance, it can 
be measured using only precipitation information/data at a 
high confidence level, compared to the case of soil moisture. 
These benefits contribute to the popularity of this index in 
drought studies (see Hayes 1999; Szalai and Szinell 2000; 
Bordi and Sutera 2001; Lloyd-Hughes and Saunders 2002; 
Vicente-Serrano et al. 2004; Tsakiris et al. 2007; Shukla and 
Wood 2008; Raziei et al. 2009; Palchaudhuri and Biswas 
2013; Portela et al. 2015; Ionita et al. 2016; and Kadam et 
al. 2021).

Drought monitoring helps raise awareness of the onset 
of drought and identify its magnitude and level in the past. 
However, more importantly, proper drought forecasting is 
needed to gain an insight into possible future drought in 
the region. Drought forecasting seems necessary in man-
aging and reducing its adverse effects. Recently, a number 
of researchers have expressed great interest in regression 
models (Leilah and Al-Khateeb 2005), time series models 
of Auto-Regressive Integrated Moving Average (ARIMA) 
(Han et al. 2010), probability and analytic models of auto-
covariance matrix (Cancelliere et al. 2007), Artificial Neu-
ral Network (ANN) models (Morid et al. 2007; Barua et al. 
2012), Adaptive Neuro-Fuzzy Interface System (ANFIS) 
(Mokhtarzad et al. 2017; Kisi et al. 2019), extreme learning 
machine (Deo and Sahin 2015) and Support Vector Machine 
(SVM) (Khan et al. 2020) methods for predicting drought.

Mishra and Desai (2005) managed to make a combination 
of ANN and linear stochastic models based on SPI series 
in Kansabati River Basin, India. The mentioned model 
managed to predict drought with high accuracy. Bacanli 
et al. (2009) investigated the efficiency of Feed Forward 
Neural Network (FFNN) and ANFIS models in predicting 
drought based on the SPI series Central Anatolia, Turkey. 
They found that ANFIS model outperformed FFNN model. 
Shirmohammadi et al. (2013) investigated the efficiency of 
ANN, ANFIS, Wavelet-ANFIS and Wavelet-ANN models 
in predicting drought based on the SPI series in Azerbaijan, 
Iran. Their results demonstrated that all the aforementioned 
models could predict SPI; however, the hybrid Wavelet-
ANFIS model outperformed the others. Mokhtarzad et al. 
(2017) compared the efficiencies of ANN, ANFIS and SVM 

in predicting drought based on the SPI series using meteoro-
logical station data of Bojnourd province, Iran. According to 
the results, SVM outperformed ANN and ANFIS in terms 
of accuracy.

Kisi et al. (2019) investigated the precision of four evo-
lutionary neuro-fuzzy methods, namely Adaptive Neuro-
Fuzzy Inference System with Particle Swarm Optimization 
(ANFIS-PSO), ANFIS with Genetic Algorithm (ANFIS-
GA), ANFIS with Ant Colony Algorithm (ANFIS-ACO) 
and ANFIS with Butterfly Optimization Algorithm (ANFIS-
BOA). Then, they made a comparison between the precision 
of these methods and that of the classical ANFIS method in 
predicting SPI time series at Abbasabad and Biarjmand Sta-
tions, Semnan, Iran. According to the results obtained from 
Ebrahim-Abad Station, the ANFIS-PSO method exhibited 
the best prediction precision on different SPI time scales.

Iran, an arid to semi-arid region, receives the mean rain-
fall of 250 mm, which is about a quarter of the world average 
(Mahdavi 2010). In recent years, Iran has been subjected to 
persistent and brutal droughts that caused severe shortage 
of surface water and groundwater resources, followed by 
subsequent environmental and agricultural adverse effects. 
This issue triggered further investigation and characteriza-
tion of drought phenomenon in different regions of Iran 
through several studies recently conducted by Raziei et al. 
(2009), Zarch et al. (2011), Moradi et al. (2011), Mirabbasi 
et al. (2013), Saghafian and Mehdikhani (2014), Raziei et al. 
(2015) and Rezaei et al. (2016). The western part of Iran 
is a vital area that contains a significant amount of water 
supply in the country since it is the source of 3 major rivers 
of Karkheh, Dez and Karoon. The Karkheh basin is one of 
the regions that are frequently affected by drought (Byzedi 
et al. 2012; Ashraf Vaghefi et al. 2014; Kamali et al. 2015; 
Zamani et al. 2015; Kamali et al. 2017). This basin is shared 
by some of Iranian provinces including Hamedan, Kerman-
shah, Kurdistan, Ilam, Lorestan and Khuzestan. Karkheh 
River, after Karoon and Dez rivers, is considered the third 
biggest river in Iran that plays a significant role in providing 
a large share of water to many parts of Iran. This is the main 
reason why droughts in this basin cause many challenges in 
agricultural and economic sectors of the mentioned prov-
inces. Recently, considerable attention has been drawn to 
tree-based models all over the world and it has been stated 
that tree-based models are more effective and have higher 
prediction power than ANFIS, SVM and ANN models. Hus-
sain and Khan (2020) found that Random Forest (RF) model 
outperformed both ANN and SVM models in forecasting 
monthly river flow. Shamshirband et al. (2020) argued that 
M5 model trees provided a better prediction of the stand-
ardized streamflow index than SVM and Gene Expression 
Programming.

In this regard, first and foremost, this study has 4 main 
objectives to follow: (a) to forecast the next drought 
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occurrence at the Kermanshah synoptic station on time 
scales of 3, 6, 12 and 48 months using SPI index as well as 
new algorithms for the standalone model of REPT and its 
new integration with Bagging (BA-REPT), Dagging (DA-
REPT), Additive Regression (AR-REPT) and Random Com-
mittee (RC-REPT); (b) to investigate the prediction power 
of the meteorological variable versus lag-time SPI (i.e., 
 SPI(t-1),  SPI(t-2) and so on) as 2 inputs, which have not been 
compared with each other yet (investigated only separately); 
(c) to determine which input scenario exhibits better perfor-
mance in drought forecasting; and (d) to develop a predictive 
model to forecast future drought based on the past-to-current 
data. The findings of the current study can assist decision-
makers and the rest of Natural Resources Bureau with better 
management of drought risk threatening the basin.

Study area

This research is centered on the Karkheh Watershed (Fig. 1) 
which is 50768  km2 in size, and it is located in the central 
and southwestern regions of the Zagros Mountains with 
latitudes and longitudes ranging from 30° 08ʹ to 35° 04 ʹ 
and from 46° 06ʹ to 49° 10ʹ, respectively. Nearly 55.5% of 
the basin is located in mountainous areas and the rest in 
plains and foothills. The climate of Karkheh basin is Medi-
terranean-oriented. The mean annual rainfall fluctuates from 
150 mm in the South to more than 1000 mm in the North 
and East parts of the basin. In addition, the mean annual 
air temperature fluctuates from less than 5 °C over the high 
mountains to 25 °C in the southern areas.

Methodology

Dataset

A 30-year set of monthly recorded data including the maxi-
mum relative humidity  (RHMax), minimum relative humidity 
 (RHMin), maximum temperature (TMax), minimum tempera-
ture (TMin), and rainfall was compiled at the Kermanshah 
synoptic station. In this study, while SPI was considered the 
target/output variable, other variables and SPI with lag time 
(i.e.,  SPI(t−1),  SPI(t−2), etc.) were considered as the inputs 
used for predicting the target variable. The input and out-
put datasets were categorized into 3 subsets including 70% 
(from January 1988 to December 2008) for model develop-
ment and 30% (from January 2009 to December 2018) for 
model validation. 70:30 is the most widely used ratio in ML 
modeling (Khosravi et al. 2018a, b; Khosravi et al. 2019; 
Venegas-Quiñones et al. 2020; Khosravi et al. 2021a, b, c; 
Kargar et al. 2021; and Panahi et al. 2021). Table 1 presents 
the descriptive statistics of the development, calibration and 
validation datasets.

The input data added to the SPI include the monthly rain-
fall data collected from Kermanshah synoptic station. To 
be specific, the monthly precipitation dataset was prepared 
for a period of 30 × 12 = 420 months. The set of averaging 
periods is n = 3, 6, 12 and 48 months that represents the typi-
cal time scales for precipitation deficits. In this dataset, for 
each month, a new value is determined from the previous n 
months. Each of the datasets is fitted to the Gamma func-
tion to define the relationship of probability to precipitation. 
The probability of any observed precipitation data point was 

Fig. 1  Kermanshah synoptic station location in Kermanshah province, Iran
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calculated; then, it was used to measure the precipitation 
deviation for a normally distributed probability density with 
a mean of zero and standard deviation of unity. This value 
represents the SPI for a particular precipitation data point.

Given that the available data are homogenous, time series 
on monthly scales of 3, 6, 12 and 48 will be constructed, and 
finally, a time series will be fitted into the Gamma distribu-
tion. Therefore, the probability density function is calculated 
as follows (Kisi et al. 2019):

where � and � represent the shape factor and scale factor, 
respectively, and Γ(a) is the Gamma function defined as fol-
lows (Kisi et al. 2019):

where � and � are related to the Gamma density functions 
for each station and each time scale for every month of the 
year can be determined. McKee et al. (1993) predicted � 
and � using the optimum maximum likelihood method (Kisi 
et al. 2019):

where n is the number of rainfall data samples (i.e., observa-
tions) and X the mean rainfall in a specific period. Next, the 
aforementioned parameter is used for calculating the value 
of rainfall cumulative probability on a specific time scale. 
Rainfall cumulative probability calculated in Eq. 6, with the 

(1)g(x) =
1

𝛽𝛼Γ(𝛼)
X(a−1)e−X∕𝛽 for X > 0,

(2)Γ(�) =

∞

∫
0

x(a−1)e(−x)dx,

(3)� =
1

4A

(
1 +

√
1 +

4A

3

)

(4)A = Ln(X) −

∑
Ln(X)

n

(5)� =
X

a
,

assumption of t = X∕� , can be converted to a deficit Gamma 
function:

Given that Gamma function for X = 0 has not been defined 
yet, whenever the value of rainfall distribution reaches zero, 
the cumulative probability is calculated as follows:

where q is zero rainfall probability (q = m/n) and m is zero 
value in a time series of rainfall data. SPI can be predicted 
through the following equations (Kisi et al. 2019):

Regression form of t can be calculated as follows (Kisi 
et al. 2019):

Constant coefficient values in these equations are found 
in Table 2.

Constructing input combinations

The role of determining the most instrumental input vari-
ables in the modeling prediction power cannot be ruled out. 
In this respect, first, the correlation coefficient (r) between 

(6)G(X) =

x

∫
0

g(x).

(7)H(X) = q + (1 − q)G(X),

(8)SPI = −

[
t −

c0 + c1t + c2t

1 + d1t + d2t
2 + d3t

3

]
, 0 < H(X) ≤ 0.5

(9)SPI = +

[
t −

c0 + c1t + c2t

1 + d1t + d2t
2 + d3t

3

]
, 0.5 < H(X) ≤ 1.0.

(10)t =

√
ln

(
1

H(X)2

)
, 0 < H(X) ≤ 0.5

(11)t =

√
ln

(
1

(1 − H(X))2

)
, 0.5 < H(X) ≤ 1.0.

Table 1  Data characteristic for training and testing sections

Station Status Rainfall Tmax Tmin RHmax Rhmin SPI(3) SPI(6) SPI(12) SPI(48)

Kermanshah Training Min 0.00 0.27 − 10.42 22.16 6.07 − 0.87 − 2.75 − 2.20 − 2.01
Max 295.42 40.08 20.31 95.06 65.84 1.96 2.04 2.28 1.67
Mean 35.95 23.51 6.78 64.36 26.23 0.22 0.17 0.35 0.31
St.D 42.28 10.92 7.05 23.04 13.51 0.86 1.03 0.87 0.80

Testing Min 0.00 2.45 − 8.21 24.58 3.52 − 0.87 − 2.21 − 2.67 − 2.33
Max 132.13 40.15 19.18 95.61 61.48 1.02 0.87 − 0.08 − 0.86
Mean 30.84 23.84 7.42 62.08 23.69 − 0.08 − 0.36 − 0.98 − 1.46
SD 33.75 10.67 7.22 24.08 14.73 0.60 0.79 0.58 0.35
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the input variables and each SPI with different time scales 
was obtained and the values were considered as the bases for 
constructing different input combinations. At first, the input 
variables with the highest r values were determined as the 
first input. Next, those variables with the second highest r 
values were added to the first input to construct input No. 2. 
Therefore, this approach should be used until the variables 
with the lowest r values were added to construct input No. 9. 

To determine the most effective input combination, models 
with all inputs were applied (Table 3), and finally, the most 
effective one with the lowest value of Root Mean Square 
Error (RMSE) was considered as the best input scenario. 
This approach was among popular methods for creating and 
examining the input scenario through ML modeling (Mon-
teiro Junior et al. 2019; Nhu et al. 2020; Salih et al. 2020; 
Meshram et al. 2021).

Table 2  Constant coefficient 
values in SPI equations (Kisi 
et al. 2019; McKee et al. 1993)

Coefficient d1 d2 d3 c0 c1 c2

Values 1.432788 0.189269 0.001308 2.515517 0.802853 0.010328

Table 3  Various input 
combinations for SPI on 
different time scales

No. Input scenario Output

1 TMax SPI(3)

2 TMax–TMin SPI(3)

3 TMax, TMin,  RhMin SPI(3)

4 TMax, TMin,  RhMin,  RhMax SPI(3)

5 TMax, TMin,  RhMin,  RhMax, Rainfall SPI(3)

6 SPI(3–1) SPI(3)

7 SPI(3–1),  SPI(3–2) SPI(3)

8 SPI(3–1),  SPI(3–2),  SPI(3–3) SPI(3)

9 TMax, TMin,  RhMin,  RhMax, Rainfall,  SPI(3–1),  SPI(3–2),  SPI(3–3) SPI(3)

1 TMax SPI(6)

2 TMax–TMin SPI(6)

3 TMax, TMin,  RhMin SPI(6)

4 TMax, TMin,  RhMin,  RhMax SPI(6)

5 TMax, TMin,  RhMin,  RhMax, Rainfall SPI(6)

6 SPI(6–1) SPI(6)

7 SPI(6–1),  SPI(6–2) SPI(6)

8 SPI(6–1),  SPI(6–2),  SPI(6–3) SPI(6)

9 TMax, TMin,  RhMin,  RhMax, Rainfall,  SPI(6–1),  SPI(6–2),  SPI(6–3) SPI(6)

1 TMax SPI(12)

2 TMax–TMin SPI(12)

3 TMax, TMin,  RhMin SPI(12)

4 TMax, TMin,  RhMin,  RhMax SPI(12)

5 TMax, TMin,  RhMin,  RhMax, Rainfall SPI(12)

6 SPI(12–1) SPI(12)

7 SPI(12–1),  SPI(12–2) SPI(12)

8 SPI(12–1),  SPI(12–2),  SPI(12–3) SPI(12)

9 TMax, TMin,  RhMin,  RhMax, Rainfall,  SPI(12–1),  SPI(12–2),  SPI(12–3) SPI(12)

1 TMax SPI(48)

2 TMax–TMin SPI(48)

3 TMax, TMin,  RhMin SPI(48)

4 TMax, TMin,  RhMin,  RhMax SPI(48)

5 TMax, TMin,  RhMin,  RhMax, Rainfall SPI(48)

6 SPI(48–1) SPI(48)

7 SPI(48–1),  SPI(48–2) SPI(48)

8 SPI(48–1),  SPI(48–2),  SPI(48–3) SPI(48)

9 TMax, TMin,  RhMin,  RhMax, Rainfall,  SPI(48–1),  SPI(48–2),  SPI(48–3) SPI(48)
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Determining optimum values

Another step that significantly facilitates and affects pre-
diction power modeling is determining the optimum val-
ues for the parameters of the models. All the models except 
ANFIS and SVM (performing in MATLAB software) were 
developed in a Waikato Environment for Knowledge Analy-
sis (WEKA 3.9) software. To this end, the optimum values 
for the parameters of the models selection were obtained 
through trial and error. The first models were applied using 
default values, and then, larger and smaller values were con-
sidered. Consequently, the models were reapplied. Using this 
approach continues until determining the optimum values 
(Khosravi et al. 2021a, b, c). Similar to the previous sec-
tion, RMSE criterion is considered as the metric to obtain 
the optimum value.

Descriptions of the models

Reduced error pruning tree (REPT)

REPT is a radical simplification of Decision Tree (DT) 
based on the “if–then” rule that is used for linking a set of 
predictors (xi) to one predicted variable (y) and conduct-
ing in-depth research on suitable parameters among a large 
number of trees (Wang et al. 2020). The cumulative results 
of several iterations will yield several trees. In this respect, 
Mean Square Error (MSE) is used in Reduced Error Prun-
ing (REP) to prune the unsuitable tree initially provided by 
the regression tree (Lalitha et al. 2020). The splitting crite-
ria adopted by the REP Tree include the information gain 
ratio and error minimization of variance (Saha et al. 2020). 
The major benefit of REP Tree is its capability to accurately 
reduce the complexity of DT, which is widely regarded 
as the most significant deficiencies of DT approaches. In 
addition, the error resulting from variance is considerably 
reduced (Abdar et al. 2020; Murwendo et al. 2020). Given 
that there are a large number of trees in the DT, at each node, 
the error is computed and compared to each class, the total 
aggregate error is then recorded, and the most significant 
errors are finally pruned, this process is referred to as “divide 
and conquer” (Li et al. 2020).

Bootstrap aggregation (bagging)

To enhance the accuracy of the individual decision tree 
models, the idea of establishing an ensemble of methods 
was suggested, which was greatly conducive to the better-
ment of the accuracy, precision and robustness of the deci-
sion tree models. Bootstrap aggregating, also called Bag-
ging (BA), is one of the most and well-known algorithms 
that function based on the idea of generating multiple 
models and aggregating them into a unique and coherent 

aggregated predictor (Sánchez-Medina et al. 2020). BA is 
an ML ensemble meta-algorithm proposed to enhance the 
accuracy of ML models used in both statistical classification 
and regression approaches. It also reduces the variance and 
helps avoid overfitting. One of the major contributions of the 
ensemble methods is their capability to decrease the vari-
ances of the regression and classification errors (Chen et al. 
2020) and overcome the overfitting problem encountered 
when using the single tree (Lee et al. 2020). BA works by 
drawing each training pattern through Bootstrap sampling; 
consequently, n training samples yield n different sets of 
Out-of-Bag instances (Liu and Chen 2020). BA model can 
be established in 3 steps. First, the training dataset should be 
randomly re-sampled, thus providing a set of training subsets 
with the same size. In the second stage, an individual model 
is designed and trained for each subset. Finally, a coherent 
aggregated predictor is constructed based on the averaging 
approach (Chen et al. 2020). BA model ensures the enhance-
ment of unstable procedures including ANN, classification 
and regression trees and subset selection in Linear Regres-
sion. BA model can improve preimage learning. However, it 
can mildly degrade the performance of stable methods such 
as K-nearest neighbors.

Disjoint aggregating (Dagging)

DA is one of the meta-algorithms that were first introduced 
by Ting and Witten (1997). This meta-classifier forms sev-
eral disjoint stratified folds based on the data and feeds each 
chunk of data to a copy of the supplied base classifier. Since 
all the generated base classifiers were put into the Vote meta-
classifier, predictions were made possible through averag-
ing (Chen et  al. 2022; Zhao et al. 2020). DA is suitable for 
base classifiers that are quadratic or worse in time behavior 
with respect to some instances in the training data. During 
computation, with N patterns forming the training dataset, 
the DA built M subset of data where each n pattern does not 
follow any common pattern. Therefore, an exclusive model 
was formed for each dataset and the final model was selected 
based on voting strategy (Ting and Witten 1997).

Additive regression (AR)

The AR model is classified as a type of nonparametric 
regression. It is a part of Alternating Conditional Expecta-
tions (ACE) algorithm that was first introduced by Friedman 
and Stuetzle (1981). ACE and AR are more flexible due to 
less curse of dimensionality, hence used for predicting much 
more complex phenomena. AR is a general (potential and 
nonlinear) regression model that incorporates a special case 
of linear regression. Suppose that variable Yi(i = 1, 2,… , n) 
is unrestricted function fj(j = 1, 2,… , p) , determined by the 
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input variables Xi1,Xi2 … ,Xip , respectively. In this model, 
a mathematical equation is proposed (Xu and Lin 2017):

 where fj(Xij) is the nonparametric function that fits the data. 
The random error term (�i) has zero mean and variance of 
�2.

Random committee (RC)

Hybrid models produced by a combination of more than 
2 artificial intelligence techniques are generally called Com-
mittee Machine (CM). The major advantage of the CMs is 
their ability to constitute a robust model with a necessary 
know-how to compensate for the deficiencies currently 
attributed to the individual model (Ghiasi-Freez et al. 2012). 
RC is a type of the CM learning approach to solving both 
classification and regression problems, and it is considered 
one of the promising ensemble models (Niranjan et  al. 
2017). Upon using the RC, an ensemble of randomizable 
base regressors or classifiers should be developed, in which 
each classifier is formed based on identical data, but uses 
a unique random number seed. The final response of the 
model is obtained by averaging the prediction results of each 
individual model (Witten and Frank 2005; Lira et al. 2007).

Model performance evaluation

The present study presents a visual method of scatter plot 
and offers some quantitative metrics including RMSE, Mean 
Absolute Error (MAE), Nash Sutcliff Efficiency (NSE), Per-
centage of BIAS (PBIAS), Coefficient of Persistence (CP) 
and the ratio of RMSE to standard deviation of the observa-
tions (RSR). These metrics are measured in the following:

(12)Yi =

p∑
j=1

fj
(
Xij

)
+ �i, �i ∼ iid

(
0, �2

)
,

(13)RMSE =

√√√√1

n

n∑
i=1

(SPIe − SPIo)
2

(14)MAE =
1

n

n∑
i=1

||SPIe − SPIo
||

(15)NSE = 1 −
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i=1
(SPIe − SPIo)

2

∑n

i=1
(SPIe − SPIe)

2

(16)PBIAS =

�∑n

i=1
(SPIo − SPIe)∑n

i=1
SPIe

�
∗ 100

 where  SPIo and  SPIe are the computed and predicted values, 
respectively. SPIe and SPIo are the average forecasted and 
measured values, j is the prediction lead and n is the number 
of datasets used. The lower the RMSE and MAE, the better 
the performance of the models. Given that the closer the 
NSE to 1, the better the model performance, in which case 
NSE varies between – and 1. In addition, the closer PBIAS 
and RSR get to zero, the higher the prediction power of mod-
els will be. CP is used to compare the performance of this 
model with that of a simple model using the observed value 
of the previous day as the prediction for the current day. The 
maximum value of PI, which is equal to 1, is indicative of a 
perfect fit. The values lower than 0 suggest that it is better 
to accept the last SPI as a forecast instead of using the tested 
model. R2 varies between 0 and 1, and the model with R2 = 1 
exhibits perfect performance.

Results and analysis

Effectiveness of input variables

According to the findings in this study, in the case of SPI 
prediction on a three-month time scale, Tmax had the high-
est effect on the modeling process (r = 0.61), followed by 
Tmin (r = 0.60), RH min (r = 0.51),  RHmax (r = 0.43) and 
rainfall (r = 0.41) (Table 4). Table 5 presents the correlation 
coefficients between SPI for different time scales and their 
lags. According to the results, followed by determining the 

(17)RSR =

����
∑n

i=1
(SPIe − SPIo)

2

∑n

i=1
(SPIe − SPIe)

2

(18)CP = 1 −

�∑�
SPIO(i) − SPIe(i)

�2�
�∑�

SPIO(i) − SPIe(i−j)

�2�

(19)

R2 =

⎡
⎢⎢⎢⎣

∑n

i=1
(SPIo − SPIo) − (SPIe − SPIe)�∑n

i=1
(SPIo − SPIo)

2

�∑n

i=1
(SPIe − SPIe)

2

⎤
⎥⎥⎥⎦
,

Table 4  Correlation coefficient between input and output variables

Rainfall Tmax Tmin RHmax RHmin

SPI-3 0.41 − 0.61 − 0.60 0.43 0.51
SPI-6 0.62 − 0.82 − 0.80 0.78 0.73
SPI-12 0.14 − 0.03 − 0.01 0.10 0.13
SPI-48 0.07 − 0.01 − 0.01 0.04 0.12
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highest value of the time scale (e.g., from 3 to 48 months), 
the rainfall variable gains higher significance than other 
input variables. For example, rainfall had the least effect on 
the SPI prediction on a three-month time scale; however, it 
had the highest effect on the 12 month time scale, followed 
by the 48 month time scale as the second effective variable. 
Further, the effectiveness of each variable in the final out-
come declined on higher time scales because in this situa-
tion, i.e., higher time scales, the prediction process became 
complicated, especially when we consider the erratic nature 
of atmospheric variables.

Best input scenario

Figure 2 shows the results of the best input scenario. The 
best input scenario clearly varies in different models because 
each model has a different structure in a way that is devel-
oped according to its specific structure. For example, for SPI 
prediction on a three-month time scale, Input 7 is the most 
effectively instrumental scenario for the standalone REP 
Tree model, while for BA-REP Tree model, Input 9 is the 
best one and Input 8 has the highest effect for the remaining 
of the models. In the case of SPI on a 6 month time scale, 
Input 4 is the optimal input scenario with the lowest RMSE. 
In the cases of SPI on 12 and 48 month time scales, Input 6 
has the highest effect on the modeling process.

Model evaluation and comparison

Upon determining the most effective input scenario for 
each model, the models developed for each time scale are 
shown in Fig. 3. According to this table, on the 3 month 
time scale, BA-REP Tree exhibits the highest performance 
(R2 = 0.856), followed by RC-REP Tree (R2 = 0.790), DA-
REP Tree (R2 = 0.761), AR-REP Tree (R2 = 0.721) and REP 
Tree (R2 = 0.690). On the 6 month time scale, BA-REP Tree 
has the highest performance (R2 = 0.842), followed by DA-
REP Tree (R2 = 0.830), RC-REP Tree (R2 = 0.824), AR-
REP Tree (R2 = 0.770) and REP Tree (R2 = 0.703). On the 
12 month time scale, RC-REP Tree shows the highest perfor-
mance (R2 = 0.774), followed by BA-REP Tree (R2 = 0.763), 

DA-REP Tree (R2 = 0.752), AR-REP Tree  (R2 = 0.745) and 
REP Tree (R2 = 0.720). Finally, on the 48 month time scale, 
BA-REP Tree exhibits the highest performance (R2 = 0.867), 
followed by DA-REP Tree (R2 = 0.855), AR-REP Tree 
(R2 = 0.852), RC-REP Tree (R2 = 0.832) and REP Tree 
(R2 = 0.821). Therefore, on time scales of 3 to 48 months, 
the best model with the highest performance is observed, as 
implied by both data pattern and model structure.

R2 metric indicates the performance of the models, yet it 
is subject to a number of drawbacks such as high sensitivity 
to outlier and maximum values. Another drawback lies in 
the primacy of the model precision over its accuracy. For 
example, a model with high R2 value only has high precision 
depite its very low performance (low accuracy). To over-
come this problem, a number of other quantitative metrics 
should be employed (Table 6).

Results revealed that on the time scale of three 
months, BA-REP Tree outperformed the other mod-
els (RMSE = 0.269, MSE = 0.207, NSE = 0.798 and 
RSR = 0.449), followed by RC-REP Tree (RMSE = 0.306, 
MAE = 0.212, NSE = 0.739 and RSR = 0.511), AR-
REP Tree (RMSE = 0.348, MSE = 0.246, MAE = 0.662 
and RSR = 0.581), DA-REP Tree (RMSE = 0.352, 
MAE = 0.277, NSE = 0.654 and RSR = 0.588) and REP 
Tree (RMSE = 0.369, MAE = 0.281, NSE = 0.621 and 
RSR = 0.616). According to the PBIAS metric, all the mod-
els underestimated SPI values (positive value).

On the time scale of 6 months, DA-REP Tree outper-
formed the other models (RMSE = 0.387, MSE = 0.313, 
NSE = 0.759 and RSR = 0.449), followed by AR-REP 
Tree (RMSE = 0.306, MAE = 0.212, NSE = 0.739 
and RSR = 0.511), RC-REP Tree (RMSE = 0.399, 
MAE = 0.323, NSE = 0.744 and RSR = 0.506), BA-REP 
Tree (RMSE = 0.399, MAE = 0.332, NSE = 0.743 and 
RSR = 0.515) and REP Tree (RMSE = 0.468, MAE = 0.364, 
NSE = 0.649 and RSR = 0.592).

On the time scale of 12 months, RC-REP Tree outper-
formed the other models (RMSE = 0.313, MAE = 0.205, 
NSE = 0.745 and RSR = 0.505), followed by BA-REP 
Tree (RMSE = 0.316, MAE = 0.212, NSE = 0.740 
and RSR = 0.510), DA-REP Tree (RMSE = 0.327, 
MAE = 0.207, NSE = 0.721 and RSR = 0.528), AR-REP 
Tree (RMSE = 0.332, MAE = 0.209, NSE = 0.714 and 
RSR = 0.535) and REP Tree (RMSE = 0.353, MAE = 0.243, 
NSE = 0.675 and RSR = 0.570).

On the time scale of 48 months, DA-REP Tree outper-
formed the other models (RMSE = 0.411, MAE = 0.300, 
MAE = 0.750 and RSR = 0.500), followed by AR-
REP Tree (RMSE = 0.413, MAE = 0.302, NSE = 0.738 
and RSR = 0.502), BA-REP Tree (RMSE = 0.453, 
MAE = 0.346, NSE = 0.697 and RSR = 0.551), RC-REP 
Tree (RMSE = 0.474, MAE = 0.350, NSE = 0.669 and 
RSR = 0.575) and REP Tree (RMSE = 0.494, MAE = 0.385, 

Table 5  Correlation coefficient between SPI and their lags

SPI (3–3) SPI (3–2) SPI (3–1)
SPI-3 − 0.02 0.45 0.81

SPI (6–3) SPI (6–2) SPI (6–1)
SPI-6 0.10 0.50 0.83

SPI (12–3) SPI (12–2) SPI (12–1)
SPI-12 0.75 0.84 0.92

SPI (48–3) SPI (48–2) SPI (48–1)
SPI-48 0.94 0.96 0.98
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NSE = 0.639 and RSR = 0.601). Furthermore, based on the 
PBIAS metric, it was observed that all the developed models 
underestimated SPI values (positive PBIAS value).

Results demonstrated that all hybrid algorithms enhanced 
the modeling performance of the standalone REP Tree algo-
rithm. On the time scale of 3 months, BA-, RC-, AR- and 

Fig. 2  Selection of the best 
input scenario
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DA-models improved the performance of the REP Tree 
model by about 22.25%, 15.96%, 6.1% and 5.1%, respec-
tively, based on the NSE metric. These enhancement rates 
within 6 months were about 12.65%, 12.76%, 13.2% and 
14.5%. On the 12 month time scale, they were about 8.7%, 

9.4%, 5.5% and 6.3%, respectively, and on the 48 month 
scale, they were 8.3%, 4.5%, 13.4% and 14.8%, respectively. 
According to the findings, the BA algorithm outperformed 
the other models in terms of performance enhancement 
(22.25%).

Fig. 3  Scatter plot of the measured and predicted SPI values (blue, green, red and gray colors denote 3, 6, 12 and 48 month time scales)
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According to NSE metric, the standalone REP Tree 
model in all the cases exhibited a favorable performance 
(0.75 > NSE > 0.65). On the contrary, in most of these 
cases, the hybrid models exhibited an excellent performance 
(1 > NSE > 0.75). Furthermore, while comparing the perfor-
mances of the models on all time scales of 3, 6, 12 and 48 
in predicting SPI, lower model performance was observed 
on higher time scales; take, for example, the comparative 
performances of BA-REP Tree (time scale of 3 months), 
DA-REP Tree (time scale of 6  months), RC-REP Tree 
(time scale of 12 months) and DA-REP Tree (time scale of 
48 months) with the NSE values of 0.798, 0.759, 0.745 and 
0.750, respectively.

According to the NSE metric, no NSE value higher than 
0.85 has been achieved for hybrid models yet; however, 

while predicting many other variables, NSE can reach about 
0.980 by BA-M5P to consequently predict the suspended 
sediment load in glacierized Andean catchment in Chile 
(Khosravi et al. 2018b), about 0.94 by BA-M5P to predict 
the bed load transport rate (Khosravi et al. 2020a), about 
0.98 by the weighted instance handler wrapper (WIHW-
Kstar) model to predict the bridge pier scour depth (Khos-
ravi et al. 2021a; b, c, d, e), about 0.94 by instance-based 
K-nearest neighbors model to predict the Fluoride concen-
tration (Khosravi et al. 2020b), about 0.99 for river water 
salinity prediction by AR-M5P (Melesse et al. 2020), about 
0.90 for shear stress distribution prediction by RF model 
(Khozani et al. 2020) and about 0.94 for water quality index 
prediction by BA-RT (Tien Bui et al. 2020). This shows 
that the atmosphere-related prediction variables, especially 

Fig. 3  (continued)
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drought perdition variables, are more erratic than other vari-
ables and their prediction includes more uncertainty.

To compare the prediction power of newly developed 
models, the old and most widely used conventional ML 
models of SVM and ANFIS were taken into account as the 
benchmark (Fig. 4). Based on the obtained results, it can 
be concluded that new developed models in this study have 
higher predictive power than those of both ANFIS and SVM 
models.

One of the significant criteria that affect the results is the 
length of the training and testing datasets. Although there is 
no standard to determine what percentage of data has been 
used for training and testing datasets, previous studies (Liu 
et al. 2020; Zhao et al. 2021) proved that the testing dataset 
needs to be representative of approximately 10–40% of the 
size of the whole dataset. The 70:30 ratio is often used for 
training and testing in machine learning models (He et al. 
2020, 2021; Chen et al. 2021; Che and Wang 2021; Liang 
et al. 2022). Another method that has a great effect on the 
result is the selection of the best input combination with 
input variables. Sometimes, this variable has either a null 
or negative effect on the result; thus, it must be determined 
and removed from the modeling. Although there are some 
methods that draw the best input scenario automatically such 
as Principal Component Analysis (PCA), Khosravi et al. 
(2020b) proved that constructing different input combina-
tions and evaluating them would sound more effective than 
employing the PCA method. In the literature, while some 
research papers used the meteorological variables as the 

input to predict SPI, some others considered SPI with lag 
time as the input. The findings of this study confirmed that a 
combination of both SPI and meteorological variables as the 
input could significantly enhance the modeling performance. 
Due to the different structure of each model and each data 
pattern, the best model with high accuracy could be differ-
ent on different time scales. In other words, BA, DA and RC 
models are more effective than AR models.

Conclusion

This research attempted to predict drought using SPI as a 
drought indicator on different time scales of 3, 6, 12 and 
48 months using the standalone REP Tree model and sev-
eral hybrid models of BA, DA, RC and AR algorithms. The 
following statements briefly summarize the overall findings 
of this study.

 1. Meteorological variables failed to predict SPI accu-
rately.

 2. SPI with lag-time as an input was much more effective 
than the meteorological variables.

 3. Combination of SPI and lag-time and meteorological 
variables as the inputs could improve the modeling 
prediction power.

 4. The best input scenario varied on different time scales.
 5. The model with high accuracy did not function simi-

larly on different time scales.

Table 6  Model evaluation and 
comparison in the testing period

Time scale Model RMSE MSE NSE PBIAS RSR CP

3 REP tree 0.369 0.281 0.621 101.748 0.616 0.610
3 BA-REP tree 0.269 0.207 0.798 167.159 0.449 0.72
3 DA-REP tree 0.352 0.277 0.654 189.094 0.588 0.62
3 AR-REP tree 0.348 0.246 0.662 178.917 0.581 0.63
3 RC-REP tree 0.306 0.212 0.739 123.350 0.511 0.70
6 REP tree 0.468 0.364 0.649 34.458 0.592 0.60
6 BA-REP tree 0.399 0.332 0.743 85.368 0.515 0.72
6 DA-REP tree 0.387 0.313 0.759 61.352 0.491 0.73
6 AR-REP tree 0.396 0.311 0.748 17.377 0.502 0.72
6 RC-REP tree 0.399 0.323 0.744 64.496 0.506 0.72
12 REP tree 0.353 0.243 0.675 15.277 0.570 0.65
12 BA-REP tree 0.316 0.212 0.740 10.109 0.510 0.72
12 DA-REP tree 0.327 0.207 0.721 11.662 0.528 0.70
12 AR-REP tree 0.332 0.209 0.714 11.856 0.535 0.69
12 RC-REP tree 0.313 0.205 0.745 9.848 0.505 0.72
48 REP tree 0.494 0.385 0.639 32.022 0.601 0.61
48 BA-REP tree 0.453 0.346 0.697 30.750 0.551 0.66
48 DA-REP tree 0.411 0.300 0.750 24.385 0.500 0.72
48 AR-REP tree 0.413 0.302 0.738 25.816 0.502 0.71
48 RC-REP tree 0.474 0.350 0.669 31.051 0.575 0.63
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 6. Standalone model had a good performance; however, 
hybrid models exhibited excellent performance in most 
of these cases.

 7. Modeling performance decreased upon increasing the 
time scale from 3 to 48 months.

 8. All of BA, DA and RC models were much effective 
than the AR model.

 9. Upon increasing the time scale from 3 to 48 months, 
the efficiency of the variable Tmax in the SPI prediction 

decreased and that of rainfall increased (using correla-
tion coefficient).

 10. All the newly developed models exhibited more favora-
ble performance than conventional ANFIS and SVM 
models.

Funding There is not any funding for this paper.
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