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Abstract
The nearly perfectly matched layer (NPML) is a non-split perfectly matched layer that directly transforms the wave field. 
Compared to other non-split perfectly matched layers, NPML is computationally efficient and has advantages such as not 
changing the form of the equation and being easy to implement. However, in TTI medium simulations it is found that the 
NPML is very unstable and cannot absorb near-grazing incident waves. This explains why the CPML is currently used more 
frequently. In this study, the complex frequency shifted transform is used to enhance the absorption of near-grazing incident 
waves with NPML and to avoid the generation of low-frequency singular values. At the same time, the double damping 
profile is used to improve the stability of the boundary we called MCFS-NPML. Subsequently, this method is also applied 
to seismic wave equations in poroelastic media. In order to further improve the absorption capacity of the boundary and 
weaken the deviation caused by the discrete difference, a new attenuation function is proposed.

Keywords  Nearly perfectly matched layer · Complex frequency shifted transform · Double attenuation profiles · Seismic 
wave propagation

Introduction

Anisotropy is widely found in subsurface media such as 
fractured reservoirs, dense shale formations, and mudstone 
formations. Thomsen (1986) proposed the Thomsen coef-
ficient to represent this anisotropy Igel et al. (1995) and 
Dong et al. (1995) have performed forward modeling of 
anisotropic media using the staggered-grid finite difference 
method. Anisotropic seismic imaging is usually based on the 
vertical transversely isotropic (VTI) assumption, which is a 
good representation of the inherent anisotropy of shales in 
sedimentary basins (Tsvankin 2001). More complex tectonic 

environments involving tilted structures must account for 
a tilted symmetry axis in TTI media (Charles et al. 2008).

Special treatments are needed at the edges of the numeri-
cal model to absorb waves propagating outwardly when we 
simulate seismic wave propagation in TTI media. Such situa-
tions include paraxial conditions (e.g., Clayton and Engquist 
1977; Engquist and Majda 1977; Reynolds 1978; Higdon 
1991) and damping layers or sponge zones’ (e.g., Cerjan 
et al. 1985; Sochacki et al. 1987). However, all of the local 
conditions behave poorly under some circumstances, e.g., 
with spurious energy at grazing incidence or low-frequency 
energy at all angles of incidence. Berenger proposed the per-
fectly matched layer (PML) for electromagnetic equations, 
which has proven to be extremely efficient compared with 
classical conditions and has become very popular. The origi-
nal model has been simplified and reformulated in terms of 
a split field with complex coordinate stretching (e.g., Chew 
and Weedon 1994; Collino and Monk 1998b) and interpreted 
as an artificial anisotropic medium (Sacks et al. 1995; Ged-
ney 1996). The PML has been successfully applied to seis-
mic wave modeling in elastic media (Chew and Liu 1996; 
Hastings et al. 1996), anisotropic media (Collino and Tsogka 
2001), and poroelastic media (Zeng and Liu 2001). In addi-
tion, Komatitsch and Tromp have demonstrated the use of 
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PML for the elastic wave equation written as a second-order 
system in displacement. This method splits each variable 
into two variables, requires high cost for memory storage, 
and is computationally inefficient. Furthermore, the split 
PML can generate large spurious reflections for near-grazing 
incident waves or low-frequency waves.

Kuzuoglu (1996) and Roden and Gedney (2000) proposed 
complex frequency shifted-PML (C-PML) in electromag-
netic wave modeling. This method has been used in seismic 
wave modeling in elastic media (Komatitsch and Martin 
2007) and poroelastic media (Martin et al. 2008). Drossaert 
and Giannopoulos (2007) used recursive integration to avoid 
convolution terms. Festa (2005) pointed out that the PML 
boundary will generate numerical instabilities when absorb-
ing surface waves and Komatitsch and Martin (2007) used 
numerical simulation to demonstrate that C-PML does not 
solve all of the instability problems for elastic anisotropic 
media. Meza-Fajardo (2008) proved that traditional PML 
fails to satisfy strict asymptotic stability in both isotropic 
and anisotropic media and introduced attenuation factors 
operating simultaneously in multiple orthogonal directions; 
the result is called the multiaxial perfectly matched layer.

Cummer (2003) proposed the NPML by transforming 
the wave field directly. Unlike other PMLs, NPML does not 
change the form of the wave equation (Hu et al. 2007) and 
has the features of implementation simplicity and computa-
tional efficiency (Bérenger 2004). The NPML was used to 
solve various practical problems in electromagnetics (Rama-
dan 2005), and the method has been applied to seismic wave 
propagation in acoustic (Hu et al. 2007), elastic (Chen and 
Zhao 2011), and poroelastic media (Chen 2012).

In this paper, we extend the NPML to TTI media and 
poroelastic media. It is found that considerable energy 
is returned into the main domain in the form of spuri-
ous reflected waves at grazing incidence. The NPML is 
extremely unstable in some complex media and models. 
We give five simulation cases, all of which show unstable 
phenomena. Even though NPML has its own advantages in 
computing and application, C-PML is still mainly used in 
forward and inverse modeling.

The accumulation of seismic wave energy sends spurious 
energy back into the main domain under the long-time simu-
lation, dramatically increases the number of false reflections, 
and makes the system unstable even make seismic wave 
simulation data unavailable. The purpose of this paper is to 
improve the stability and absorption performance of NPML. 
In this study, two mutually perpendicular damping profiles 
are used for NPML called M-NPML. However, the addition 
of the damping profiles generates false reflections. There-
fore, a frequency-dependent term is introduced to M-NPML 
and the result is named complex frequency shifted-MNPML 
(MCFS-NPML). The resulting method is implemented to 
simulate seismic wave propagation in poroelastic media so 

as to study and verify the performance of MCFS-NPML. 
Finally, the MCFS-NPML is similar to other PMLs, in that 
it is impossible to avoid false reflections caused by discrete 
difference. In this paper, we also study the damping func-
tion with TTI media and propose a new decay function that 
can control the gradient value of the attenuation curve and 
enhance further the absorptive capacity of PML. Compared 
with NPML, MCFS-NPML introduced three additional fac-
tors (η, β, and P). We further study the influence of three 
factors on the new decay function and give a new scheme 
for the values of scaling factor and stability factor based on 
the attenuation function.

Methods

Governing equations

Assuming the external force is zero, the elastodynamics 
problem can be described by Cauchy's equation and gener-
alized Hooke's law:

where u is the displacement field, T is the stress tensor, E 
is the strain tensor and E = 1/2[▽u + (▽u)T], ρ is the mass 
density, and C is the elastic coefficient tensor matrix. Veloc-
ity is the first-order derivative of displacement with respect 
to time. Equation 1 is transformed into a first-order velocity 
stress equation with a velocity variable:

The elastic matrix of the TTI medium can be obtained 
by rotating the elastic matrix of the VTI through a Bond 
transformation by a certain angle:

θ and φ are the polarization and azimuth angles, respec-
tively, and Mθ and Mφ are defined as follows:

(1)��2
t
u = ∇ ⋅ τ, τ = C ∶ E,

(2)
��tv = ∇ ⋅ τ

�tτ = C ∶ ∇v.

(3)CVTI =

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C31 C32 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

⎤⎥⎥⎥⎥⎥⎥⎦

(4)

CTTI = M�M�CVTIM
T
�
MT

�
=

⎡⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C64 C64 C65 C66

⎤⎥⎥⎥⎥⎥⎥⎦

.
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To derive a new equation under the NPML, Eq. (2) is 
transformed into the frequency domain:

where Vf is the velocity component in the frequency domain, 
and T is the stress tensor in the frequency domain. The form 
of complex coordinate stretching (CCS) is (x direction):

By substituting Eqs. (9) into (7), the equations after 
CCS transformation are obtained:

Combining Eqs.  (9, 10) yields (taking Txx as an 
example):

In the same way, using the same method for other vari-
ables and converting back to the time domain:

(5)M� =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 � 0 sin2 � 0 − sin 2� 0

0 1 0 0 0 0

sin2 � 0 cos2 � 0 sin 2� 0

0 0 0 cos � 0 sin �
1

2
sin 2� 0 −

1

2
sin 2� 0 cos 2� 0

0 0 0 − sin � 0 cos �

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)M� =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos2 � sin2 � 0 0 0 − sin 2�

sin2 � cos2 � 0 0 0 sin 2�

0 0 1 0 0 0

0 0 0 cos� sin� 0

0 0 0 − sin� cos� 0
1

2
sin 2� −

1

2
sin 2� 0 0 0 cos 2�

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(7)
i��Vf = ∇ ⋅ T

i�T = C ∶ ∇Vf ,

(8)x̃(x) = x −
i

𝜔

x

∫
0

𝛼(s)ds

(9)𝜕x̃ =
1

sx
𝜕x, sx = 1 +

𝛼x

i𝜔
.

(10)

i��Vf = ∇ ⋅ T

i�T = C ∶ ∇Vf

T = T∕s

Vf = Vf∕s.

(11)
(
1 +

�x

i�

)
T
x

xx
= Txx

(12)i�T
x

xx
+�xT

x

xx
=i�Txx.

(13)
�t�v = ∇ ⋅ �

�tτ = C ∶ ∇v.

The variables after the transformation can be obtained 
with the following equation:

In the staggered second-order leapfrog scheme, Eq. (14) 
can be discretized as:

And we get:

From Eq. (13), we can see that the form of the reformu-
lated wave equations with NPML has not changed and we 
are able to find the auxiliary variables. Then, we can use 
Eq. (14) to update the variables.

Complex frequency shifted‑NPML (CFS‑NPML)

The NPML is obtained using complex frequency shifted 
transformation, and the complex frequency shifted trans-
formation equation is modified as follows:

Comparing Eqs. (17, 9), the 1 on the right side of Eq. (9) 
becomes a function related to x and is called the scaling fac-
tor (βx). Adding a frequency shifted factor to the denomina-
tor (ηx) and transforming Eqs. (7) with (17) yields:

Converting back to the time domain, one obtains:

Using the same method for the remaining variables, we 
obtain the transformation equation:

(14)
�t�

m
+ �m�

m
= �t�;

� = �xx, �zx, �zz, vx, vz;m = x, z.

(15)

(
𝜉m

)k+1∕2
−
(
𝜉m

)k−1∕2
Δt

+𝛼m

(
𝜉m

)k+1∕2
+
(
𝜉m

)k−1∕2
2

=
(𝜉m)k+1∕2 − (𝜉m)k−1∕2

Δt
.

(16)

(
�
m
)k+1∕2

=
1

1

Δt
+

�m

2

×

[(
1

Δt
−

�m

2

)(
�
m
)k−1∕2

+
(
1

Δt

)
(�m)k+1∕2 −

(
1

Δt

)
(�m)k−1∕2

]
.

(17)sx(x) = �x(x) +
�x(x)

�x(x) + i�
.

(18)[�x(x) + i�]�x(x)T
x

xx
+ �x(x)T

x

xx
= [�x(x) + i�]Txx

(19)[�x(x)�x(x)+�x(x)]T
x

xx
+ i��x(x)T

x

xx
= �x(x)Txx + i�Txx.

(20)[�x(x)�x(x)+�x(x)]�
x

xx
+ �x(x)�t�

x

xx
= �x(x)�xx + �t�xx.
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Replacing Eqs. (14) with (21), we obtain a wave equation 
based on CFS-NPML. Same to Eq. (14), we can deduce the 
following discrete scheme:

and

Multiaxial complex frequency shifted‑NPML 
(MCFS‑NPML)

As Fig. 1 shows, in region 1, αz = αz
(z) and αx = 0. In this 

region, the damping factor increases exponentially in the 
primary direction, but the value is 0 in the direction per-
pendicular to the primary direction. In region 3, the damp-
ing profiles at the right and top overlap; thus, there are two 
mutually perpendicular damping profiles. Therefore, it is 
only necessary to treat regions 1 and 2 when introducing a 
new profile:

(21)
�
m
+ �m�t�

m
= �m� + �t�;

� = �xx, �zx, �zz, vx, vz;m = x, z.

(22)

(
�
m
)k+1∕2

+
(
�
m
)k−1∕2

2
+ �m

(
�
m
)k+1∕2

−
(
�
m
)k−1∕2

Δt

= �m
(�m)k+1∕2 + (�m)k−1∕2

2
+

(�m)k+1∕2 − (�m)k−1∕2

Δt

(23)

(
𝜉m

)k+1∕2
=

1
𝛽m

Δt
+

𝜂m𝛽m+𝛼m

2

×

[(
𝛽m

Δt
−

𝜂m𝛽m + 𝛼m

2

)

(
𝜉m

)k−1∕2
+
(
1

Δt
+

𝜂m

2

)
(𝜉m)k+1∕2

+
(𝜂m
2

−
1

Δt

)
(𝜉m)k−1∕2

]
.

As shown in Eq. (24), the primary direction in region 1 is 
the z direction. The value of αx is no longer zero and is pro-
portional to the original damping function, and the propor-
tional coefficient P(x/z) is the stability factor. The multiaxial 
NPML (M-NPML) is derived below:

For CFS-NPML, the processing in regions 1 and 2 is dif-
ferent from that of NPML. The transformation function is 
as follows:

Substituting Eqs. (26) into (10), one obtains:

The above is the derivation process and transformation 
equation for NPML, M-NPML, and MCFS-NPML. The 
scaling factor and frequency shifted factor equations are as 
follows:

where L is the thickness of the NPML, and l is the distance 
between the calculated point and the inner boundary of 
the PML area. The value of the stability factor should be 
less than 1, and it changes depending on the complexity of 
the medium. It should not be too large or it will lead to an 
increase in the number of false reflections.

Absorption effect and stabilityr analysis

Absorption effect analysis

The solution to Eq. (1) has the following form:

When the complex frequency shifted transformation is 
performed, a new wave solution is obtained:

(24)
�z = �(z)

z
(z), �x = �(z)

x
(z)

�(z)
x
(z) = p(x∕z)�(z)

z
(z).

(25)
�t�

z
+ �z

z
�
z
= �t�

�t�
x
+ �(z)

x
�
x
= �t� = �t�

x
+ p(x∕z)�(z)

z
�
x
.

(26)

⎧⎪⎨⎪⎩

sz(z) = 𝛽z(z) +
𝛼
(z)
z (z)

𝜂z(z)+i𝜔
;⊥PML

sx(x) = 1 +
𝛼
(z)
x (x)

i𝜔
; ∥ PML.

(27)

𝜕t𝜉
z
+ 𝛼x

z
𝜉
z
= 𝜕t𝜉; ∥ PML

𝜕t𝜉
x
+ 𝛼z

x
𝜉
x
= 𝜕t𝜉; ∥ PML

[𝜂m𝛽m + 𝛼m
m
]𝜉

m
+ 𝛽m𝜕t𝜉

m
= 𝜂m𝜉 + 𝜕t𝜉;⊥PML.

(28)�x = 1 + (�0 − 1)(l∕L)P� , �x = �0�f
[
1 − (l∕L)P�

]
,

(29)u = u0 exp[i(�t − kx ⋅ x)].

Fig. 1   Schematic of different PML layers
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The wave solution after the complex frequency shifted trans-
formation (Eq. 30) has an additional term (not present in the 
original wave solution, Eq. 29) related to the damping func-
tion, and αx grows exponentially. The wave solution decreases 
rapidly with the increase of the integral value of αx, and finally 
tends to zero. From Eq. (30), we can see two problems that exist 
in the NPML. First, the ω in the denominator of the attenuation 
term produces a singular value when the incident wave fre-
quency is very low and causes instability. Second, the absorp-
tion capacity of PML for waves is related to ∫αx, and the inte-
gral value is related to the value of x. The waves with grazing 
incidence do not penetrate very deep in the PML, travel longer 
in a direction parallel to the layer, and cannot be absorbed effec-
tively. At the same time, unabsorbed waves form dissipative 
waves in the boundary, resulting in instability. When ηx and βx 
are introduced, the attenuation term is expressed as follows:

where u0 is the polarization vector, kx is the wave vector, 
kx = cos θ/c, c is the phase velocity depending on the prop-
agation direction, and θ is the angle between the normal 
direction of the wavefront and the x-axis. In Eq. (31), ηx in 
the denominator precludes the generation of singular val-
ues. βx reduces the wave propagation speed and bends the 
wavefront toward the normal direction of the PML, thereby 
decreasing the slowness angle and increasing the damping 
of waves with near-grazing incidence angles (Zhang 2010).

Damping factor

Although the MCFS-NPML can enhance the absorption 
capacity, false reflections at the boundary are unavoidable 
because the boundary and damping factor are discretized and 
there are discrete differences between the two layers. The 
simplest solution to this problem is to increase the number 
of layers to weaken the discrete difference, but this increases 
storage space and reduces computing efficiency. The two most 
widely used decay functions are the exponential and the trigo-
nometric decay function. The equation is defined as follows:

where L is the thickness of the PML, R is the theoretical 
reflection coefficient, vP is the P-wave velocity, and l is the 

(30)u = u0 exp
�
−i(kx ⋅ x − �t)

�
exp

⎡
⎢⎢⎣
−kx∕�

x

∫
0

�x(s)ds

⎤
⎥⎥⎦
.

(31)exp

⎡⎢⎢⎣
− cos �∕c

x

∫
0

�2∕(�2
x
+ �2)�x∕�xds

⎤⎥⎥⎦
,

(32)

⎧⎪⎨⎪⎩

�(x) = �0(l∕L)
4

�0 =
3vp ln(1∕R)

2L
,

distance between the target point and inner boundary. Groby 
improved the attenuation function in Eq. (32) as:

The damping function, in Eq. (33), is equal to Eq. (32) 
when n = 2. Chen (2010) proposed sine-type and cosine-type 
functions to increase the rate of growth of α at the interface 
boundary. The cosine-type function is:

The sine-type function is:

where B is the attenuation amplitude factor.
As Fig. 2a, b show, the exponential function grows too 

rapidly at the inner boundary in the case of n = 1. Conversely, 
it grows too slowly at the interface boundary and too quickly 
at the outer boundary if n > 1. The rapid growth at the inner 
boundary limits wave propagation into the boundary. If the 
growth rate is too slow, the remaining energy is greater when 
the wave propagates to other parts of the boundary. Further, 
the discrete difference of α is large here, so spurious reflec-
tions will be enhanced. Therefore, Chen (2010) proposed 
sine-type and cosine-type functions with inner boundary 
growth rates between the exponential functions n = 1 and 
n = 2 in order to improve the absorption effect. To find the 
most favorable damping function for boundary absorption, 
it is necessary to design a function that can flexibly control 
the gradient values of each part. The new function is:

where αb is a basic function; it must be increased progres-
sively from the inner boundary to the outer boundary. We 
can choose exponential functions, trigonometric functions, 
or other functions that satisfy this condition. The gradient 
value of α at each part of the boundary is mainly controlled 
by αe. As shown in Fig. 2c, d the values of δ and γ were 
modified to observe their effects. The parameter δ controls 
the position of the maximum value of the gradient of αe, as 
shown in Fig. 2c. As the value of δ increases, the maximum 
moves toward the outer boundary and its value decreases. 
The other parameter γ controls the magnitude of the maxi-
mum in Fig. 2d. The coefficients δ and γ together control 
the position and value of the maximum so as to regulate the 
damping curve. As a result, we may fine tune the growth of 
each part of α to make it more conducive to absorption at 
the boundary and further diminish the number of spurious 
reflections caused by the discrete difference. To compare 

(33)𝛼(x) =

�
0 l < 0

ln(1∕R)(l∕L)n
(n+1)

√
𝜇∕𝜌

2L
l ≥ 0.

(34)�(x) = B

[
1 − cos

�(L − l)

2L

]
.

(35)�(x) = B
(
1 − sin

�l

2L

)
,

(36)
�(x) = K[�b + �e]

�e = � exp(−�L∕l),
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the effects of the two damping functions, Eq. (36) can be 
written as:

Stability analysis

For the stability factor, the introduced attenuation profile is 
orthogonal to the original attenuation profile and is capable 
of further absorbing the wave at the boundary, even a near-
grazing incidence wave. The cluster energy remaining in the 
boundary will make PML unstable, send spurious energy 
back into the main domain, and reduce the absorption of 
the boundary.

(37)�(x) = K[�b + �e],K = ln(1∕R)
(n + 1)

√
�∕�

2L

�b = (l∕L)n, �e = � exp(−�L∕l).

Next, the role of stability factors in NPML was studied 
separately. In order to derive the stability of the entire sys-
tem of equations, we must combine Eqs. (13, 30). It should 
be noted that, when αx is 0, the equations under NPML are 
still written in the form of Eq. (1). The system can be cast 
in the following form:

Performing the Fourier transform on the space and merg-
ing the right side of the equation into one, we obtain:

(38)�tψ = Ax�xψ + Az�zψ

(39)ψ = [vx vzτxxτzzτzx]
T .

(40)�tU = AU

(41)U =

+∞

∫
−∞

� exp(ikxx + ikzz)dxdz.

Fig. 2   Decay function curve and gradient curve of αe
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A has the following form:

The coefficients matrix A is independent of the time vari-
able, and system 40 is a linear time-invariant or autonomous 
system. Meanwhile, the matrix A is non-singular, and the 
only equilibrium point of the autonomous system is the 
origin U(t) = 0. We study the stability by investigating the 
behavior of the solutions close to the equilibrium points. 
The equilibrium solution at the origin U is asymptotically 
stable if all the eigenvalues have negative real parts. The 
eigenvalues are as follows:

(42)

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0
1

�
ikx 0

1

�
ikz

0 0 0
1

�
ikz

1

�
ikx

C11ikx + C15ikz C13ikz + C15ikx 0 0 0

C13ikx + C35ikz C33ikz + C35ikx 0 0 0

C15ikx + C55ikz C35ikz + C55ikx 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

(43)� =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0,±
i

�

������������

(0.5(C11 + C55)k
2
x
� + (C15 + C35)kxkz� + 0.5(C33 + C55)k

2
z
�

−0.5

��������
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transformation equations and wave equations in the form of 
Eq. (40). After adding NPML, Eq. (38) is written as follows:

Because there are partial derivatives of time variables 
on both sides of the equation, it cannot be written in the 
form of Eq. (40) directly and Eq. (44) must be modified:

(44)�tψ = Ax�xψ + Az�zψ + At�tψ + Acψ.

(45)�tU
n = AnUn
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The four nonzero eigenvalues in 43 correspond to the 
propagating quasi-S and quasi-P modes and the real part 
of all eigenvalues is zero. Based on this, we may study the 
change of eigenvalues after introducing the boundary in 
order to understand the change in its stability. We write the 

The coefficients matrix An is shown in Appendix B 
(Eqs. 60, 61).

After applying a Fourier transform and introducing the 
stability factor, we obtain the system of Eq. (45) for the 
M-NPML. The eigenvalues for NPML with no α are as 
follows:
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There are 13 eigenvalues and five of the eigenvalues 
are identical to those given in Eq. (43) for the undamped 
system. The additional eight eigenvalues that are equal to 
zero are introduced. Next, we obtain the eigenvalues of 
the matrix An:

where the coefficient a is shown in Appendix B (Eq. 62).
After introducing α, only five eigenvalues remain. There 

are no general closed-form expressions for the remained of 
the eight eigenvalues, because they are the roots of the eighth-
order polynomial in Eq. (49). We forecast the direction on the 
complex plane in which those eight eigenvalues would move 
due to the introduction of α after applying the eigenvalue sen-
sitivity analysis (Adhikari and Friswell 2001). The method 
consists of obtaining the first derivatives of the eigenvalues 
with respect to α, evaluated at the point at which that α is 
zero. All eigenvalues have a zero-valued real part when the α 
is zero. Therefore, if the real part of the first derivatives for all 
eigenvalues is greater than 0, a small α will induce motion of 
the eigenvalues toward the positive half complex plane, caus-
ing the system to become unstable. Conversely, if the real part 
of the first derivatives is less than 0, the system is asymptoti-
cally stable.
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As shown in Eq. (50), eigenvalues are related to the elas-
tic coefficient tensor, direction of wave propagation, and sta-
bility factors. Substituting Eqs. (51) into (47), we eliminate 
the wave number:

Introducing the small α in the elastodynamic equation 
causes the system to become unstable. The eigenderiva-
tives are determined by the elastic constants, the direction 
of propagation, and the ratios p(x/z) and p(z/x). The eigenvalue 
sensitivity curve and the eigenderivatives equation at a spe-
cific angle are given below:
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In the case of M-NPML for anisotropic media, the differ-
ence in eigenderivatives corresponding to the quasi-S, quasi-
P modes and the situation of σ = 0 is small, and their curves 
basically overlap in Fig. 3. To observe the effect of p(x/z), 
we utilize the eigenderivatives equation (Eq. 52) related 
to quasi-P mode when the angle of incidence is 90°. As 
Eq. (52) shows, the value of eigenderivative is greater than 
0 with p(x/z) = 0. When we introduce the α, the eigenvalues 
move toward the positive half complex plane and the system 
is unstable. After introducing the p(x/z), the eigenvalues will 
tend to move toward the negative half complex plane and the 
p(x/z) can enhance the stability of the system. As shown in 
Eq. (52) and Fig. 3, the larger the p(x/z), the farther the first 
derivative is from 0 on the negative half complex plane. This 
ensures that, when the attenuation factor is introduced, the 
real part of the eigenvalue does not move to the positive half 
complex plane.

Numerical tests results and discussion

Model 1 (normal incidence)

We applied several PMLs and damping factors to the simu-
lations of seismic waves. The time step used is 0.6 ms, and 
the source-time function is a Ricker wavelet with a center 
frequency of 25 Hz. We consider two models to study the 
propagations of waves at normal incidence and grazing inci-
dence. The grid spacing is 5 m, and the size of the first model 
is 1100 × 1100 m. The elastic parameters of TI media, C11, 

C33, C13, C44, and C66, are 26.4 × 109 N/m2, 15.6 × 109 N/
m2, 6.11 × 109 N/m2, 4.38 × 109 N/m2, and 6.84 × 109 N/m2, 
respectively. The polarization and azimuth angles are 60° 
and 25°. The source is applied at (550, 550) m, 10 cells away 
from the PML-interior interface.

The snapshots in Fig. 4 of the vx component correspond 
to various NPMLs and two damping functions. The right-
most snapshots marked with ‘#’ are wavefield simulations 
obtained with the new damping function. The maps in 
Fig. 4b labeled solely with the stability factor P correspond 
to M-NPML, those marked with frequency shifted factor (η) 
or scaling factor (β) (Fig. 4c and d) are snapshots obtained 
with CFS-NPML, and those in Fig. 4e marked with all three 
factors correspond to the MCFS-NPML. From a comparison 
of Fig. 4b and d, it is clear that the stability factor and scal-
ing factor have little effect on the spurious reflections of the 
wave field at normal incidence. Fortunately, the frequency 
shifted factor can significantly reduce false reflections at 
the boundary and, the larger the factor value, the better the 
absorption effect. As shown in Fig. 4c and e, the absorp-
tion effect of MCFS-NPML is similar to that of CFS-NPML 
with the same η, and this confirms that the effect of stabil-
ity and scale factors on absorption is weak. The absorption 
effect of all boundaries was further improved when the α was 
replaced by Eq. (32).

Model 2 (grazing incidence)

Next, we design another model to study the propagation of 
waves at grazing incidence.

Fig. 3   M-NPML eigenderivatives for TI media
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Compared with Figs. 4 and 5, there is a large false reflec-
tion at the upper boundary of Fig. 5, which is caused by 
large angle incidence and is consistent with the conclusion 
of Eq. (26). The seismic waves at grazing incidence can-
not be absorbed along the edges of the model and gener-
ate dissipative waves. The accumulation of seismic wave 
energy sends spurious energy back into the main domain, 
dramatically increases the number of false reflections, and 

makes the system unstable. There is little change inside the 
upper PML layers resulting from the application of the new 
damping factor, because the false reflection enhancement 
and instability at grazing incidence are problems inherent in 
CCS transformation and have little to do with the attenuation 
function in this case.

When we introduce the stability factors p(x/z) and p(z/x), 
the accumulated cluster energy inside the upper NPML 

Fig. 4   Wavefield snapshots. a 
NPML. b M-NPML includes 
the stability factors p(x/z) and 
p(z/x). c CFS-NPML includes the 
frequency shifted factor (η). d 
CFS-NPML includes the scal-
ing factor (β). e MCFS-NPML 
includes p(x/z), p(z/x), η and β 
simultaneously
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layers is diminished and, the larger the stability factors, 
the more the residual energy in the boundary is reduced. 
However, the stability factors also increase the number of 
false reflections in this case. Although introduction of the 
factors can enhance the absorption of energy, the use of 
the damping profile corresponding to the stability factor 
prevents the waves from propagating into NPML layers to 
a certain degree; the larger the angle, the stronger is the 
energy of false reflections. When the parameter η is intro-
duced, the energy in the boundary and the false reflections 
returning into the main domain are greatly weakened; the β 
can suppress the instability in NPML. When the p, η, and β 
are introduced simultaneously, not only is the false reflec-
tion weakened, but the residual energy in the boundary 
is also the weakest observed. The new damping function 
attenuates false reflections in all cases but strengthens the 
residual energy inside the upper NPML layers.

The energy decay curve corresponds to the second model 
in Fig. 6, and the dashed and solid lines correspond to the 
energy curves of the entire domain and main domain, respec-
tively. The difference between the two curves represents the 
energy remaining inside the NPML layers. If the stability 
factor is large, the two curves appear to be nearly identical, 
as Fig. 6a shows. The divergence point of the energy curves 
demonstrates the effect of the scaling factor in repressing 
instability. The scaling factor dramatically improves the 
stability of the boundary but, when it is set to a large value, 
it will generate energy disturbances in the second half of 
the decay curve; this means that it will bring about another 
unstable phenomenon while enhancing the boundary stabil-
ity. In the meantime, the difference between the two curves 
is still large, and only the stability factor can eliminate the 
residual energy and suppress the energy disturbance caused 
by the parameter η. Similarly, the parameter η resolves the 

Fig. 5   Wavefield snapshots. This model adopts parameters similar to 
those used for the normal incidence model, except for the size and  
source location parameters. The size of the model is 2600 × 600  m, 

the source is applied at (130055)m, and the waves propagate along a 
path nearly parallel to the boundary
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problem of enhanced false reflections caused by the stabil-
ity factor.

We present the results of numerical tests with the two 
damping functions in Fig. 7. Although the new α can 
weaken the false reflections, the residual energy inside 
the NPML layers is higher than that of the original α after 
introduction of P and β in model 2. For this reason, we 
treat P and η specially and the problem is solved. First, 
the P parameter prevents the waves from propagating 
into NPML layers in a direction approximately parallel 
to the boundary. Therefore, P must be as small as pos-
sible while still ensuring the stability of the system. The 
new damping function moderates the attenuation profile 
perpendicular to the boundary direction, allowing more 
effective absorption of seismic waves by fine-tuning the 
gradient of the function. After fine-tuning, the new func-
tion increases faster than does the original function at 

the inner boundary. As a consequence, the new damping 
profile approximately parallel to the boundary further 
hinders waves from entering the layers and raises the 
second half of the decay curve above that of the original 
function in Fig. 7a and b. In this paper, γ in the additional 
profile is set to 0 and the results in Fig. 7c marked with 
‘*’ demonstrate that this method is effective. We must 
rewrite Eq. (20) when using the new α:

(53)
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Fig. 6   Energy decay curves. a NPML and M-NPML. b CFS-NPML includes the frequency shifted factor (η). c CFS-NPML includes the scaling 
factor (β). d MCFS-NPML, M-NPML and CFS-NPML
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As shown in Fig. 7a and b, if we apply the β as in Eq. (28) 
and use the new damping function, the total energy curve 
rises above that of the original function and the main domain 
energy curve is lower. A combination of Eqs. (28, 36) results 
in a new equation for β:

The test results using Eq. (53) are shown in Fig. 7c and 
marked with ‘*’, and the energy in the NPML layers is sup-
pressed. The phenomenon of instability accompanied by 
strong false reflections occurs, not only in seismic wave 
simulation in TTI media, but also in different media and 
models.

(54)
�x = 1 + (�0 − 1)

(
�b + �e

)P� ,

�b = (l∕L)P� , �e = � exp(−�L∕l).

Model 3 (Marmousi model in an elastic isotropic 
medium)

Next, the wave equations and simulation results in other 
media or models are presented to verify the importance of 
MCFS-NPML.

Figure 8 depicts simulation results derived from applica-
tion of the Marmousi model in an elastic isotropic medium. 
We take a snapshot of the wave field in part of the region, and 
the figures from left to right correspond to several NPMLs 
identified from top to bottom in the inset box in Fig. 8c. 
The wave field energy marked with the blue oval begins to 
accumulate after a certain period of time and returns to the 
main domain with the NPML. This simulation correspond-
ing to the black energy curve in Fig. 8c begins to diverge at 

Fig. 7   Energy decay curves. a Total energy. b Energy of main domain. c Total energy in α, new α and new α with special treatment
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Fig. 8   Wavefield snapshots and energy decay curves
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a time of about 4 s. The other three NPMLs can suppress the 
system instability, and only the introduction of the stability 
factor can completely clear the energy disturbance in NPML 
layers; this is shown by the area marked with a red rectangle 
in Fig. 8b. Regardless of the values of β and η for CFS-
NPML, large amounts of wave energy exist inside the upper 
NPML layers and they cause a certain degree of instability. 
However, as shown in the red ellipses, the false reflection 
is still strong prior to the introduction of the stability factor 
and it weakens considerably with CFS-NPML and MCFS-
NPML. The false waves caused by instability and boundary 
reflection seriously interfere with experimental results, so 
we must introduce the NPML boundary and all three factors 
at the same time (MCFS-NPML).

Model 4 (poroelastic VTI medium)

The theory of seismic wave propagation in a poroelas-
tic medium is described by Biot’s theory (Biot 1962). We 
provide the first-order partial differential equations for 

poroelastic VTI media after applying the MCFS-NPML in 
Appendix C.

Here the time step is 0.5 ms, and the source-time func-
tion is a Ricker wavelet with a center frequency of 40 Hz. 
The grid spacing is 5 m, and the size of the first model is 
3100 × 600 m. vp, vs, ζ, γ, and δ are 4167 m/s, 2612 m/s, 
0.17, 0.16, and − 0.2, respectively. Values of ρf, ρs, and 
ρa are 1040 kg/m3, 2500 kg/m3, and 200 kg/m3, respec-
tively. The values of bx and bz are 7.45 kg·m−3·s−1 and 
3 kg·m−3·s−1. Q1, Q3, and R are 2.15 × 109 kg·m−1·s−2, 
2.45 × 109 kg·m−1·s−2, and 1 × 109 kg·m−1·s−2. The source 
is applied at (1550, 55) m, 10 cells away from the PML-
interior interface.

In Fig. 9, the NPML is unstable and has strong false 
reflection for near-grazing incident waves, especially the 
slow P-waves. However, the MCFS-NPML can suppress 
instability and enhance absorption. This demonstrates that 
the MCFS-NPML is highly effective for seismic wave mod-
eling in poroelastic VTI media, as it is in elastic isotropic 
and TTI media.

Fig. 9   Wavefield snapshots and energy decay curves in poroelastic VTI media
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Model 5 (free surface)

Free surface conditions were used for the upper surface, and 
NPML was used for the left, right, and bottom boundaries. 
The size of this model is 1330 × 2660 m, and homogene-
ous medium model has the same parameters as model 1 
(Fig. 10). The parameters of the anticline model are shown 
in Table 1.

Compared with Fig. 5, because the surface is simulated 
by free surface conditions, surface waves are generated at 
the upper boundary shown by the area marked with a blue 
rectangle in Fig. 11a.

Such a boundary model is more consistent with the actual 
situation of seismic wave propagation, but for NPML, there 
are still problems of poor absorption effect and instability. 
When the seismic wave propagation is simulated for a long 
time, the unstable energy accumulation in the boundary will 
return to the main domain and pollute the whole wave field. 
Therefore, it is necessary to adopt the MCFS-NPML.

Conclusions

We have improved the behavior of the NPML at grazing 
incidence and normal incidence for the differential seismic 
wave equation and made the NPML more stable. Although 
the NPML has the advantages of implementation simplicity 
and computational efficiency, it will produce strong spuri-
ous reflections and is extremely unstable in some complex 
media and models, e.g., the poroelastic VTI media, the 
TTI medium, and the Marmousi model in elastic isotropic 
media. We also derived the M-NPML, but it has the limi-
tation of predicting excess absorption; CFS-NPML still 
produces instability phenomena shown in Figs. 6c, d and 
8a. The MCFS-NPML can solve all of the above problems. 
We designed a new damping function to enhance further 
the absorption of NPML, and the new function is perfectly 
implemented in MCFS-NPML by specially treating the scal-
ing factor (β) and stability factors (P).

Appendix

Appendix A: the discrete format 
of the fifinite‑difference operator for cfs‑npml 
equation

The velocity-stress Eq. (13) is first-order partial-differential 
equations with respect to time and space and can be discre-
tized as (take Formula 55 as an example):

Fig. 10   The anticline model

Table 1   The anticline model parameters

C11(109 N/m2) C13 C33 C44 ρ(kg/m3)

1 15.548 1.448 15.548 7.05 2200
2 30.456 7.050 21.150 9.0 2350
3 26.4 6.11 15.6 4.38 2300
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where D2M,2
x

 and D2M,2
z

 are finite-difference operators have 
2Mth-order accuracy in space and second-order accuracy in 
time along x- and z-axis, respectively. Term 

(
�xx

)k
i,j

 repre-
sents the discretized pressure wavefield p(x + i∆x, z + j∆z, 

(55)�t�xx = C11�xvx + C13�zvz + C15

(
�zvx + �xvz

)

(56)

(
�xx

)k
i,j
=
(
�xx

)k−1
i,j

+ ▵ t
[
C11D

2M,2
x

(
vx
)k−1∕2
i,j

+ C13D
2M,2
z

(
vz
)k−1∕2
i,j

�z

+C15

(
D2M,2

z

(
vx
)k−1∕2
i,j

+ D2M,2
x

(
vz
)k−1∕2
i,j

)]
,

k∆t), and 
(
vx
)k−1∕2
i,j

 denote the discretized velocity wave-
field.D2M,2

x
 is described by the following formula:

In this paper, the scheme with twelfth-order accuracy in 
space and second-order accuracy in time is adopted. The tradi-
tional high-order staggered finite-difference method has high-
order accuracy in space, but only the second-order accuracy 

(57)

D2M,2
x

v
k−1∕2

i,j
= 1∕Δx

M∑
m=1

dm,j

(
v
k−1∕2

i+(2m−1)∕2,j
− v

k−1∕2

i−(2m−1)∕2,j

)
.

Fig. 11   Wavefield snapshots. a, c, e, g, NPML. b, d, f, h MCFS-NPML p = 0.05, η0 = 3 and β0 = 2. a, b, e, f 0.36 s. c, d, g, h 0.84 s
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in time. Some new methods with sixth-order accuracy are 
proposed (Tan and Huang 2014; Chen, H. M., et al., 2017).

Tan and Huang determine the coefficients of the finite-
difference operator in the joint time–space domain to achieve 
high-order accuracy in time while preserving high-order accu-
racy in space. The finite-difference operators have fourth-order 
accuracy in time D2M,4

x
 is described as follows:

The CFS-NPML Eq. (19) has no partial derivation to 
space, so we can deduce the following discrete scheme:

Appendix B: stability factors analysis

(58)

D2M,4
x

v
k−1∕2

i,j
= 1∕Δx[

M∑
m=1

dm,j

(
v
k−1∕2

i+(2m−1)∕2,j
− v

k−1∕2

i−(2m−1)∕2,j

)

+d1,j

(
v
k−1∕2

i+1∕2,j+1
− v

k−1∕2

i−1∕2,j+1
+ v

k−1∕2

i+1∕2,j−1
− v

k−1∕2

i−1∕2,j−1

)
].

(59)

(
�
m
)k+1∕2

=
1

�m

Δt
+

�m�m+�m

2

×

[(
�m

Δt
−

�m�m + �m

2

)(
�
m
)k−1∕2

+
(
1

Δt
+

�m

2

)
(�m)k+1∕2 +

(�m
2

−
1

Δt

)
(�m)k−1∕2

]
.

(60)An =
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022 A2 024 C2

A1 033 C1 034
D3 043 D1 044
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Appendix C: the first‑order partial differential 
equations for poroelastic VTI media after applying 
the MCFS‑NPML
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and

where v is the velocity vector for the solid, V is the velocity 
vector for the fluid, and s is the pore fluid pressure. This 
results in:

where ρf and ρs are the densities of the fluid and solid, ρa 
is the macroscopic density of the fluid saturated medium, 
φ is the porosity, b is the dissipation coefficient, Q is the 
coupling parameter between the solid and the fluid, and R 
is the poroelastic coefficient of effective stress. For VTI 

(64)
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media, there are five independent elastic coefficients: vp 
represents the P-wave velocity, vs the S-wave velocity, and 
ζ, γ and δ the Thomsen anisotropy parameters.
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